NDMI011: Combinatorics and Graph Theory 1

Lecture \#4

Finite projective planes (part I)

Irena Penev

October 19, 2020

- For a set X, the power set of X, denoted by $\mathscr{P}(X)$, is the set of all subsets of X.
- For a set X, the power set of X, denoted by $\mathscr{P}(X)$, is the set of all subsets of X.
- For example, if $X=\{1,2,3\}$, then

$$
\mathscr{P}(X)=\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\} .
$$

- For a set X, the power set of X, denoted by $\mathscr{P}(X)$, is the set of all subsets of X.
- For example, if $X=\{1,2,3\}$, then

$$
\mathscr{P}(X)=\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\} .
$$

- A set system is an ordered pair (X, \mathcal{S}) s.t. X is a set (called the ground set) and $\mathcal{S} \subseteq \mathscr{P}(X)$.
- For a set X, the power set of X, denoted by $\mathscr{P}(X)$, is the set of all subsets of X.
- For example, if $X=\{1,2,3\}$, then

$$
\mathscr{P}(X)=\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\} .
$$

- A set system is an ordered pair (X, \mathcal{S}) s.t. X is a set (called the ground set) and $\mathcal{S} \subseteq \mathscr{P}(X)$.

Definition

A finite projective plane is set system (X, \mathcal{P}) s.t. X is a finite, and the following three properties are satisfied:
(P0) there exists a 4-element subset $Q \subseteq X$ s.t. every $P \in \mathcal{P}$ satisfies $|P \cap Q| \leq 2$;
(P1) all distinct $P_{1}, P_{2} \in \mathcal{P}$ satisfy $\left|P_{1} \cap P_{2}\right|=1$;
(P2) for all distinct $x_{1}, x_{2} \in X$, there exists a unique $P \in \mathcal{P}$ s.t. $x_{1}, x_{2} \in P$.

Definition

A finite projective plane is set system (X, \mathcal{P}) s.t. X is a finite, and the following three properties are satisfied:
(P0) there exists a 4-element subset $Q \subseteq X$ s.t. every $P \in \mathcal{P}$ satisfies $|P \cap Q| \leq 2$;
(P1) all distinct $P_{1}, P_{2} \in \mathcal{P}$ satisfy $\left|P_{1} \cap P_{2}\right|=1$;
(P2) for all distinct $x_{1}, x_{2} \in X$, there exists a unique $P \in \mathcal{P}$ s.t. $x_{1}, x_{2} \in P$.

Definition

A finite projective plane is set system (X, \mathcal{P}) s.t. X is a finite, and the following three properties are satisfied:
(P0) there exists a 4-element subset $Q \subseteq X$ s.t. every $P \in \mathcal{P}$ satisfies $|P \cap Q| \leq 2$;
(P1) all distinct $P_{1}, P_{2} \in \mathcal{P}$ satisfy $\left|P_{1} \cap P_{2}\right|=1$;
(P2) for all distinct $x_{1}, x_{2} \in X$, there exists a unique $P \in \mathcal{P}$ s.t. $x_{1}, x_{2} \in P$.

- If (X, \mathcal{P}) is a finite projective plane, then members of X are called points, and members of \mathcal{P} are called lines.

Definition

A finite projective plane is set system (X, \mathcal{P}) s.t. X is a finite, and the following three properties are satisfied:
(P0) there exists a 4-element subset $Q \subseteq X$ s.t. every $P \in \mathcal{P}$ satisfies $|P \cap Q| \leq 2$;
(P1) all distinct $P_{1}, P_{2} \in \mathcal{P}$ satisfy $\left|P_{1} \cap P_{2}\right|=1$;
(P2) for all distinct $x_{1}, x_{2} \in X$, there exists a unique $P \in \mathcal{P}$ s.t. $x_{1}, x_{2} \in P$.

- If (X, \mathcal{P}) is a finite projective plane, then members of X are called points, and members of \mathcal{P} are called lines.
- For a point $x \in X$ and a line $P \in \mathcal{P}$ s.t. $x \in P$, we say that the line P is incident with the point x, or that P contains x, or that P passes through x.

Definition

A finite projective plane is set system (X, \mathcal{P}) s.t. X is a finite, and the following three properties are satisfied:
(P0) there exists a 4-element subset $Q \subseteq X$ s.t. every $P \in \mathcal{P}$ satisfies $|P \cap Q| \leq 2$;
(P1) all distinct $P_{1}, P_{2} \in \mathcal{P}$ satisfy $\left|P_{1} \cap P_{2}\right|=1$;
(P2) for all distinct $x_{1}, x_{2} \in X$, there exists a unique $P \in \mathcal{P}$ s.t. $x_{1}, x_{2} \in P$.

- If (X, \mathcal{P}) is a finite projective plane, then members of X are called points, and members of \mathcal{P} are called lines.
- For a point $x \in X$ and a line $P \in \mathcal{P}$ s.t. $x \in P$, we say that the line P is incident with the point x, or that P contains x, or that P passes through x.
- For distinct points $a, b \in X$, we denote by $\overline{a b}$ the unique line in \mathcal{P} that contains a and b (the existence and uniqueness of such a line follow from (P2)).

Definition

A finite projective plane is set system (X, \mathcal{P}) s.t. X is a finite, and the following three properties are satisfied:
(P0) there exists a 4-element subset $Q \subseteq X$ s.t. every $P \in \mathcal{P}$ satisfies $|P \cap Q| \leq 2$;
(P1) all distinct $P_{1}, P_{2} \in \mathcal{P}$ satisfy $\left|P_{1} \cap P_{2}\right|=1$;
(P2) for all distinct $x_{1}, x_{2} \in X$, there exists a unique $P \in \mathcal{P}$ s.t.

$$
x_{1}, x_{2} \in P .
$$

Definition

A finite projective plane is set system (X, \mathcal{P}) s.t. X is a finite, and the following three properties are satisfied:
(P0) there exists a 4-element subset $Q \subseteq X$ s.t. every $P \in \mathcal{P}$ satisfies $|P \cap Q| \leq 2$;
(P1) all distinct $P_{1}, P_{2} \in \mathcal{P}$ satisfy $\left|P_{1} \cap P_{2}\right|=1$;
(P2) for all distinct $x_{1}, x_{2} \in X$, there exists a unique $P \in \mathcal{P}$ s.t. $x_{1}, x_{2} \in P$.

- (P2) is the same as for points and lines in the Euclidean plane.

Definition

A finite projective plane is set system (X, \mathcal{P}) s.t. X is a finite, and the following three properties are satisfied:
(P0) there exists a 4-element subset $Q \subseteq X$ s.t. every $P \in \mathcal{P}$ satisfies $|P \cap Q| \leq 2$;
(P1) all distinct $P_{1}, P_{2} \in \mathcal{P}$ satisfy $\left|P_{1} \cap P_{2}\right|=1$;
(P2) for all distinct $x_{1}, x_{2} \in X$, there exists a unique $P \in \mathcal{P}$ s.t. $x_{1}, x_{2} \in P$.

- (P2) is the same as for points and lines in the Euclidean plane.
- But (P1) is different! There are no "parallel lines" in a finite projective plane.
(P0) there exists a 4-element subset $Q \subseteq X$ s.t. every $P \in \mathcal{P}$ satisfies $|P \cap Q| \leq 2$;
(P1) all distinct $P_{1}, P_{2} \in \mathcal{P}$ satisfy $\left|P_{1} \cap P_{2}\right|=1$;
(P2) for all distinct $x_{1}, x_{2} \in X$, there exists a unique $P \in \mathcal{P}$ s.t. $x_{1}, x_{2} \in P$.

Example 1.1

Let $X=\{1,2,3,4,5,6,7\}$ and $\mathcal{P}=\{a, b, c, d, e, f, g\}$, where

- $a=\{1,2,3\}$,
- $d=\{5,7,2\}$,
- $g=\{2,4,6\}$.
- $b=\{3,4,5\}$,
- $e=\{1,7,4\}$,
- $c=\{5,6,1\}$,
- $f=\{3,7,6\}$,

Then (X, \mathcal{P}) is a finite projective plane, ${ }^{a}$ called the Fano plane.
${ }^{a}$ It is easy to check that (P1) and (P2) are satisfied. For (P0), we can take, for instance, $Q=\{1,3,5,7\}$.

Figure: The Fano plane.

Figure: The Fano plane.

- In the picture above, the seven lines of the Fano plane are represented by six line segments and one circle.

Figure: The Fano plane.

- In the picture above, the seven lines of the Fano plane are represented by six line segments and one circle.
- However, formally, each line of the Fano plane is simply a set of three points.

Figure: The Fano plane.

- In the picture above, the seven lines of the Fano plane are represented by six line segments and one circle.
- However, formally, each line of the Fano plane is simply a set of three points.
- Drawings can sometimes be useful for guiding our intuition. However, formal proofs should never rely on such pictures; instead, they should rely solely on the definition of a finite projective plane or on results (propositions, lemmas, theorems) proven about them.
- The incidence graph of a finite projective plane (X, \mathcal{P}) is a bipartite graph with bipartition (X, \mathcal{P}), in which $x \in X$ and $P \in \mathcal{P}$ are adjacent if and only if $x \in P$.

Figure: The Fano plane.

Figure: The incidence graph of the Fano plane.

Figure: The Fano plane.

- Note that each line of the Fano plane contains the same number of points.

Figure: The Fano plane.

- Note that each line of the Fano plane contains the same number of points.
- This is not an accident!

Figure: The Fano plane.

- Note that each line of the Fano plane contains the same number of points.
- This is not an accident!

Proposition 1.2

Let (X, \mathcal{P}) be a finite projective plane. Then all lines in \mathcal{P} have the same number of points.

Proposition 1.2

Let (X, \mathcal{P}) be a finite projective plane. Then all lines in \mathcal{P} have the same number of points.

Proof (outline). Fix $P_{1}, P_{2} \in \mathcal{P}$. WTS $\left|P_{1}\right|=\left|P_{2}\right|$.

Proposition 1.2

Let (X, \mathcal{P}) be a finite projective plane. Then all lines in \mathcal{P} have the same number of points.

Proof (outline). Fix $P_{1}, P_{2} \in \mathcal{P}$. WTS $\left|P_{1}\right|=\left|P_{2}\right|$.
Claim. There exists a point $z \in X$ s.t. $z \notin P_{1} \cup P_{2}$.

Proposition 1.2

Let (X, \mathcal{P}) be a finite projective plane. Then all lines in \mathcal{P} have the same number of points.

Proof (outline). Fix $P_{1}, P_{2} \in \mathcal{P}$. WTS $\left|P_{1}\right|=\left|P_{2}\right|$.
Claim. There exists a point $z \in X$ s.t. $z \notin P_{1} \cup P_{2}$.
Proof of the Claim (outline). Using (P0), we fix a 4-element subset $Q \subseteq X$ s.t. for all $P \in \mathcal{P},|Q \cap P| \leq 2$.

Proposition 1.2

Let (X, \mathcal{P}) be a finite projective plane. Then all lines in \mathcal{P} have the same number of points.

Proof (outline). Fix $P_{1}, P_{2} \in \mathcal{P}$. WTS $\left|P_{1}\right|=\left|P_{2}\right|$.
Claim. There exists a point $z \in X$ s.t. $z \notin P_{1} \cup P_{2}$.
Proof of the Claim (outline). Using (P0), we fix a 4-element subset $Q \subseteq X$ s.t. for all $P \in \mathcal{P},|Q \cap P| \leq 2$. If $Q \nsubseteq P_{1} \cup P_{2}$, then we take any $z \in Q \backslash\left(P_{1} \cup P_{2}\right)$, and we are done.

Proposition 1.2

Let (X, \mathcal{P}) be a finite projective plane. Then all lines in \mathcal{P} have the same number of points.

Proof (outline). Fix $P_{1}, P_{2} \in \mathcal{P}$. WTS $\left|P_{1}\right|=\left|P_{2}\right|$.
Claim. There exists a point $z \in X$ s.t. $z \notin P_{1} \cup P_{2}$.
Proof of the Claim (outline). Using (P0), we fix a 4-element subset $Q \subseteq X$ s.t. for all $P \in \mathcal{P},|Q \cap P| \leq 2$. If $Q \nsubseteq P_{1} \cup P_{2}$, then we take any $z \in Q \backslash\left(P_{1} \cup P_{2}\right)$, and we are done.
So assume that $Q \subseteq P_{1} \cup P_{2}$.

Proposition 1.2

Let (X, \mathcal{P}) be a finite projective plane. Then all lines in \mathcal{P} have the same number of points.

Proof (outline). Fix $P_{1}, P_{2} \in \mathcal{P}$. WTS $\left|P_{1}\right|=\left|P_{2}\right|$.
Claim. There exists a point $z \in X$ s.t. $z \notin P_{1} \cup P_{2}$.
Proof of the Claim (outline). Using (P0), we fix a 4-element subset $Q \subseteq X$ s.t. for all $P \in \mathcal{P},|Q \cap P| \leq 2$. If $Q \nsubseteq P_{1} \cup P_{2}$, then we take any $z \in Q \backslash\left(P_{1} \cup P_{2}\right)$, and we are done.
So assume that $Q \subseteq P_{1} \cup P_{2}$. Since $|Q|=4$ and $\left|Q \cap P_{1}\right|,\left|Q \cap P_{2}\right| \leq 2$, we now deduce that $Q \cap P_{1}$ and $Q \cap P_{2}$ are disjoint and each contain exactly two points.

Proposition 1.2

Let (X, \mathcal{P}) be a finite projective plane. Then all lines in \mathcal{P} have the same number of points.

Proof (outline). Fix $P_{1}, P_{2} \in \mathcal{P}$. WTS $\left|P_{1}\right|=\left|P_{2}\right|$.
Claim. There exists a point $z \in X$ s.t. $z \notin P_{1} \cup P_{2}$.
Proof of the Claim (outline). Using (P0), we fix a 4-element subset $Q \subseteq X$ s.t. for all $P \in \mathcal{P},|Q \cap P| \leq 2$. If $Q \nsubseteq P_{1} \cup P_{2}$, then we take any $z \in Q \backslash\left(P_{1} \cup P_{2}\right)$, and we are done.
So assume that $Q \subseteq P_{1} \cup P_{2}$. Since $|Q|=4$ and $\left|Q \cap P_{1}\right|,\left|Q \cap P_{2}\right| \leq 2$, we now deduce that $Q \cap P_{1}$ and $Q \cap P_{2}$ are disjoint and each contain exactly two points. Set $Q \cap P_{1}=\{a, b\}$ and $Q \cap P_{2}=\{c, d\}$.

Proposition 1.2

Let (X, \mathcal{P}) be a finite projective plane. Then all lines in \mathcal{P} have the same number of points.

Proof (outline). Fix $P_{1}, P_{2} \in \mathcal{P}$. WTS $\left|P_{1}\right|=\left|P_{2}\right|$.
Claim. There exists a point $z \in X$ s.t. $z \notin P_{1} \cup P_{2}$.
Proof of the Claim (outline, continued).

This proves the Claim.

Proposition 1.2
Let (X, \mathcal{P}) be a finite projective plane. Then all lines in \mathcal{P} have the same number of points.

Proof (outline). Fix $P_{1}, P_{2} \in \mathcal{P}$. WTS $\left|P_{1}\right|=\left|P_{2}\right|$.
Claim. There exists a point $z \in X$ s.t. $z \notin P_{1} \cup P_{2}$.

Proposition 1.2

Let (X, \mathcal{P}) be a finite projective plane. Then all lines in \mathcal{P} have the same number of points.

Proof (outline). Fix $P_{1}, P_{2} \in \mathcal{P}$. WTS $\left|P_{1}\right|=\left|P_{2}\right|$.
Claim. There exists a point $z \in X$ s.t. $z \notin P_{1} \cup P_{2}$.
We define $\varphi: P_{1} \rightarrow P_{2}$ as follows: for all $x \in P_{1}$, let $\varphi(x)$ be the unique point in the intersection of the lines $\overline{x z}$ and P_{2}.

Proposition 1.2

Let (X, \mathcal{P}) be a finite projective plane. Then all lines in \mathcal{P} have the same number of points.

Proof (outline). Fix $P_{1}, P_{2} \in \mathcal{P}$. WTS $\left|P_{1}\right|=\left|P_{2}\right|$.
Claim. There exists a point $z \in X$ s.t. $z \notin P_{1} \cup P_{2}$.
We define $\varphi: P_{1} \rightarrow P_{2}$ as follows: for all $x \in P_{1}$, let $\varphi(x)$ be the unique point in the intersection of the lines $\overline{x z}$ and P_{2}.

It is not hard to check (detail: Lecture Notes) that φ is well-defined and surjective (i.e. onto).

Proposition 1.2

Let (X, \mathcal{P}) be a finite projective plane. Then all lines in \mathcal{P} have the same number of points.

Proof (outline). Fix $P_{1}, P_{2} \in \mathcal{P}$. WTS $\left|P_{1}\right|=\left|P_{2}\right|$.
Claim. There exists a point $z \in X$ s.t. $z \notin P_{1} \cup P_{2}$.
We define $\varphi: P_{1} \rightarrow P_{2}$ as follows: for all $x \in P_{1}$, let $\varphi(x)$ be the unique point in the intersection of the lines $\overline{x z}$ and P_{2}.

It is not hard to check (detail: Lecture Notes) that φ is well-defined and surjective (i.e. onto). So, $\left|P_{1}\right| \geq\left|P_{2}\right|$.

Proposition 1.2

Let (X, \mathcal{P}) be a finite projective plane. Then all lines in \mathcal{P} have the same number of points.

Proof (outline). Fix $P_{1}, P_{2} \in \mathcal{P}$. WTS $\left|P_{1}\right|=\left|P_{2}\right|$.
Claim. There exists a point $z \in X$ s.t. $z \notin P_{1} \cup P_{2}$.
We define $\varphi: P_{1} \rightarrow P_{2}$ as follows: for all $x \in P_{1}$, let $\varphi(x)$ be the unique point in the intersection of the lines $\overline{x z}$ and P_{2}.

It is not hard to check (detail: Lecture Notes) that φ is well-defined and surjective (i.e. onto). So, $\left|P_{1}\right| \geq\left|P_{2}\right|$. By symmetry, $\left|P_{2}\right| \geq\left|P_{1}\right|$. So, $\left|P_{1}\right|=\left|P_{2}\right|$. Q.E.D.

Proposition 1.2

Let (X, \mathcal{P}) be a finite projective plane. Then all lines in \mathcal{P} have the same number of points.

Proposition 1.2

Let (X, \mathcal{P}) be a finite projective plane. Then all lines in \mathcal{P} have the same number of points.

Definition

The order of a finite projective plane (X, \mathcal{P}) is the number $|P|-1$, where P is any line in $\mathcal{P} .{ }^{a}$
${ }^{\text {a }}$ So, if (X, \mathcal{P}) is a finite projective plane of order n, then each line in \mathcal{P} contains exactly $n+1$ points.

Proposition 1.2

Let (X, \mathcal{P}) be a finite projective plane. Then all lines in \mathcal{P} have the same number of points.

Definition

The order of a finite projective plane (X, \mathcal{P}) is the number $|P|-1$, where P is any line in $\mathcal{P} .{ }^{a}$
${ }^{\text {a }}$ So, if (X, \mathcal{P}) is a finite projective plane of order n, then each line in \mathcal{P} contains exactly $n+1$ points.

- By Proposition 1.2, this is well-defined.

Proposition 1.2

Let (X, \mathcal{P}) be a finite projective plane. Then all lines in \mathcal{P} have the same number of points.

Definition

The order of a finite projective plane (X, \mathcal{P}) is the number $|P|-1$, where P is any line in $\mathcal{P} .{ }^{a}$

[^0]- By Proposition 1.2, this is well-defined.
- The Fano plane has order two.

Proposition 1.2

Let (X, \mathcal{P}) be a finite projective plane. Then all lines in \mathcal{P} have the same number of points.

Definition

The order of a finite projective plane (X, \mathcal{P}) is the number $|P|-1$, where P is any line in $\mathcal{P} .{ }^{a}$
${ }^{\text {a }}$ So, if (X, \mathcal{P}) is a finite projective plane of order n, then each line in \mathcal{P} contains exactly $n+1$ points.

- By Proposition 1.2, this is well-defined.
- The Fano plane has order two.

Proposition 1.3

The order of any finite projective plane is at least two.
Proof. Easy (read the Lecture Notes).

Theorem 1.4

Let (X, \mathcal{P}) be a finite projective plane of order n. Then all the following hold:
(a) for each point $x \in X$, exactly $n+1$ lines in \mathcal{P} pass through x;
(b) $|X|=n^{2}+n+1$;
(c) $|\mathcal{P}|=n^{2}+n+1$.

Theorem 1.4

Let (X, \mathcal{P}) be a finite projective plane of order n. Then all the following hold:
(a) for each point $x \in X$, exactly $n+1$ lines in \mathcal{P} pass through x;
(b) $|X|=n^{2}+n+1$;
(c) $|\mathcal{P}|=n^{2}+n+1$.

- We give an outline of the proof of (a). (The details are in the Lecture Notes.)

Theorem 1.4

Let (X, \mathcal{P}) be a finite projective plane of order n. Then all the following hold:
(a) for each point $x \in X$, exactly $n+1$ lines in \mathcal{P} pass through x;
(b) $|X|=n^{2}+n+1$;
(c) $|\mathcal{P}|=n^{2}+n+1$.

- We give an outline of the proof of (a). (The details are in the Lecture Notes.)
- The proof of (b) is in the Lecture Notes.

Theorem 1.4

Let (X, \mathcal{P}) be a finite projective plane of order n. Then all the following hold:
(a) for each point $x \in X$, exactly $n+1$ lines in \mathcal{P} pass through x;
(b) $|X|=n^{2}+n+1$;
(c) $|\mathcal{P}|=n^{2}+n+1$.

- We give an outline of the proof of (a). (The details are in the Lecture Notes.)
- The proof of (b) is in the Lecture Notes.
- We prove (c) after introducing "duality" (we use (a) and (b)).

Theorem 1.4

Let (X, \mathcal{P}) be a finite projective plane of order n. Then all the following hold:
(a) for each point $x \in X$, exactly $n+1$ lines in \mathcal{P} pass through x;
(b) $|X|=n^{2}+n+1$;
(c) $|\mathcal{P}|=n^{2}+n+1$.

Proof (outline).

Theorem 1.4

Let (X, \mathcal{P}) be a finite projective plane of order n. Then all the following hold:
(a) for each point $x \in X$, exactly $n+1$ lines in \mathcal{P} pass through x;
(b) $|X|=n^{2}+n+1$;
(c) $|\mathcal{P}|=n^{2}+n+1$.

Proof (outline).
Claim. For every point $x \in X$, there exists a line $P \in \mathcal{P}$ s.t. $x \notin P$.

Theorem 1.4

Let (X, \mathcal{P}) be a finite projective plane of order n. Then all the following hold:
(a) for each point $x \in X$, exactly $n+1$ lines in \mathcal{P} pass through x;
(b) $|X|=n^{2}+n+1$;
(c) $|\mathcal{P}|=n^{2}+n+1$.

Proof (outline).
Claim. For every point $x \in X$, there exists a line $P \in \mathcal{P}$ s.t. $x \notin P$.

Proof of the Claim (outline). Fix a point $x \in X$. Using (P0) from the definition of a finite projective plane, we fix a 4-element subset $Q \subseteq X$ s.t. for all $P \in \mathcal{P},|Q \cap P| \leq 2$.

Theorem 1.4

Let (X, \mathcal{P}) be a finite projective plane of order n. Then all the following hold:
(a) for each point $x \in X$, exactly $n+1$ lines in \mathcal{P} pass through x;
(b) $|X|=n^{2}+n+1$;
(c) $|\mathcal{P}|=n^{2}+n+1$.

Proof (outline).
Claim. For every point $x \in X$, there exists a line $P \in \mathcal{P}$ s.t. $x \notin P$.

Proof of the Claim (outline). Fix a point $x \in X$. Using (P0) from the definition of a finite projective plane, we fix a 4-element subset $Q \subseteq X$ s.t. for all $P \in \mathcal{P},|Q \cap P| \leq 2$. Then $|Q \backslash\{x\}| \geq 3$; let $a, b, c \in Q \backslash\{x\}$ be pairwise distinct.

Claim. For every point $x \in X$, there exists a line $P \in \mathcal{P}$ s.t. $x \notin P$.

Proof of the Claim (outline, continued).

Then x belongs to at most one of $\overline{a b}$ and $\overline{a c}$. This proves the Claim.

Theorem 1.4

Let (X, \mathcal{P}) be a finite projective plane of order n. Then all the following hold:
(a) for each point $x \in X$, exactly $n+1$ lines in \mathcal{P} pass through x;
(b) $|X|=n^{2}+n+1$;
(c) $|\mathcal{P}|=n^{2}+n+1$.

Proof of (a) (outline). Fix a point $x \in X$. By the Claim, there exists a line $P \in \mathcal{P}$ s.t. $x \notin P$. Since (X, \mathcal{P}) is of order n, we know that $|P|=n+1$; set $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$.

At least $n+1$ lines (namely,
$\left.\overline{x x_{0}}, \ldots, \overline{x x_{n}}\right)$ pass through x.
Every line through x intersects
P, so $\overline{x x_{0}}, \ldots, \overline{x x_{n}}$ are the
only lines through x.

- We next introduce "duality."
- We next introduce "duality."
- Essentially, the "dual" of a finite projective plane is another finite projective plane, but with the roles of points and lines reveresed.
- We next introduce "duality."
- Essentially, the "dual" of a finite projective plane is another finite projective plane, but with the roles of points and lines reveresed.

Definition

For a set system (X, \mathcal{S}), we define the dual of (X, \mathcal{S}) to be the ordered pair (Y, \mathcal{T}), where $Y=\mathcal{S}$ and

$$
\mathcal{T}=\{\{S \in \mathcal{S} \mid x \in S\} \mid x \in X\}
$$

- We next introduce "duality."
- Essentially, the "dual" of a finite projective plane is another finite projective plane, but with the roles of points and lines reveresed.

Definition

For a set system (X, \mathcal{S}), we define the dual of (X, \mathcal{S}) to be the ordered pair (Y, \mathcal{T}), where $Y=\mathcal{S}$ and

$$
\mathcal{T}=\{\{S \in \mathcal{S} \mid x \in S\} \mid x \in X\}
$$

Example 2.1

Let $X=\{1,2,3\}$ and $\mathcal{S}=\{A, B\}$, where $A=\{1,2\}$ and $B=\{1,3\}$. Then the dual of (X, \mathcal{S}) is (Y, \mathcal{T}), where $Y=\{A, B\}$ and $\mathcal{T}=\{\{A, B\},\{A\},\{B\}\}$.a

```
    \({ }^{\text {a }}\) Indeed \(\{S \in \mathcal{S} \mid 1 \in S\}=\{A, B\},\{S \in \mathcal{S} \mid 2 \in S\}=\{A\}\), and
\(\{S \in \mathcal{S} \mid 3 \in S\}=\{B\}\).
```


Theorem 2.2

The dual of a finite projective plane is again a finite projective plane.

Proof. Lecture Notes.

Theorem 2.2

The dual of a finite projective plane is again a finite projective plane.

Proof. Lecture Notes.

- But why is this "reasonable"?

Theorem 2.2

The dual of a finite projective plane is again a finite projective plane.

Proof. Lecture Notes.

- But why is this "reasonable"?
- Suppose (X, \mathcal{P}) is a finite projective plane.

Theorem 2.2

The dual of a finite projective plane is again a finite projective plane.

Proof. Lecture Notes.

- But why is this "reasonable"?
- Suppose (X, \mathcal{P}) is a finite projective plane.
- For each $x \in X$, let $R_{X}=\{P \in \mathcal{P} \mid x \in P\}$.

Theorem 2.2

The dual of a finite projective plane is again a finite projective plane.

Proof. Lecture Notes.

- But why is this "reasonable"?
- Suppose (X, \mathcal{P}) is a finite projective plane.
- For each $x \in X$, let $R_{X}=\{P \in \mathcal{P} \mid x \in P\}$.
- Set $Y=\mathcal{P}$ and $\mathcal{R}=\left\{R_{x} \mid x \in X\right\}$.

Theorem 2.2

The dual of a finite projective plane is again a finite projective plane.

Proof. Lecture Notes.

- But why is this "reasonable"?
- Suppose (X, \mathcal{P}) is a finite projective plane.
- For each $x \in X$, let $R_{X}=\{P \in \mathcal{P} \mid x \in P\}$.
- Set $Y=\mathcal{P}$ and $\mathcal{R}=\left\{R_{x} \mid x \in X\right\}$.
- Then by definition, (Y, \mathcal{R}) is the dual of (X, \mathcal{P}).

Theorem 2.2

The dual of a finite projective plane is again a finite projective plane.

Proof. Lecture Notes.

- But why is this "reasonable"?
- Suppose (X, \mathcal{P}) is a finite projective plane.
- For each $x \in X$, let $R_{X}=\{P \in \mathcal{P} \mid x \in P\}$.
- Set $Y=\mathcal{P}$ and $\mathcal{R}=\left\{R_{x} \mid x \in X\right\}$.
- Then by definition, (Y, \mathcal{R}) is the dual of (X, \mathcal{P}).
- For all distinct $x_{1}, x_{2} \in X$, there is a unique $P \in \mathcal{P}$ s.t. $x_{1}, x_{2} \in P$.
- So, for all distinct $R_{x_{1}}, R_{x_{2}} \in \mathcal{R},\left|R_{x_{1}} \cap R_{x_{2}}\right|=1$.

Theorem 2.2

The dual of a finite projective plane is again a finite projective plane.

Proof. Lecture Notes.

- But why is this "reasonable"?
- Suppose (X, \mathcal{P}) is a finite projective plane.
- For each $x \in X$, let $R_{X}=\{P \in \mathcal{P} \mid x \in P\}$.
- Set $Y=\mathcal{P}$ and $\mathcal{R}=\left\{R_{X} \mid x \in X\right\}$.
- Then by definition, (Y, \mathcal{R}) is the dual of (X, \mathcal{P}).
- For all distinct $x_{1}, x_{2} \in X$, there is a unique $P \in \mathcal{P}$ s.t. $x_{1}, x_{2} \in P$.
- So, for all distinct $R_{x_{1}}, R_{x_{2}} \in \mathcal{R},\left|R_{x_{1}} \cap R_{x_{2}}\right|=1$.
- For all distinct $P_{1}, P_{2} \in \mathcal{P},\left|P_{1} \cap P_{2}\right|=1$.
- So, for all distinct $P_{1}, P_{2} \in \mathcal{P}$, there is a unique $R_{x} \in \mathcal{R}$ s.t. $P_{1}, P_{2} \in R_{x}$.

Theorem 2.2

The dual of a finite projective plane is again a finite projective plane.

Proof. Lecture Notes.

- But why is this "reasonable"?
- Suppose (X, \mathcal{P}) is a finite projective plane.
- For each $x \in X$, let $R_{X}=\{P \in \mathcal{P} \mid x \in P\}$.
- Set $Y=\mathcal{P}$ and $\mathcal{R}=\left\{R_{X} \mid x \in X\right\}$.
- Then by definition, (Y, \mathcal{R}) is the dual of (X, \mathcal{P}).
- For all distinct $x_{1}, x_{2} \in X$, there is a unique $P \in \mathcal{P}$ s.t.
$x_{1}, x_{2} \in P$.
- So, for all distinct $R_{x_{1}}, R_{x_{2}} \in \mathcal{R},\left|R_{x_{1}} \cap R_{x_{2}}\right|=1$.
- For all distinct $P_{1}, P_{2} \in \mathcal{P},\left|P_{1} \cap P_{2}\right|=1$.
- So, for all distinct $P_{1}, P_{2} \in \mathcal{P}$, there is a unique $R_{x} \in \mathcal{R}$ s.t. $P_{1}, P_{2} \in R_{x}$.
- So, (P1) and (P2) are satisfied for the dual.

Theorem 2.2

The dual of a finite projective plane is again a finite projective plane.

Proof. Lecture Notes.

- But why is this "reasonable"?
- Suppose (X, \mathcal{P}) is a finite projective plane.
- For each $x \in X$, let $R_{X}=\{P \in \mathcal{P} \mid x \in P\}$.
- Set $Y=\mathcal{P}$ and $\mathcal{R}=\left\{R_{X} \mid x \in X\right\}$.
- Then by definition, (Y, \mathcal{R}) is the dual of (X, \mathcal{P}).
- For all distinct $x_{1}, x_{2} \in X$, there is a unique $P \in \mathcal{P}$ s.t.
$x_{1}, x_{2} \in P$.
- So, for all distinct $R_{x_{1}}, R_{x_{2}} \in \mathcal{R},\left|R_{x_{1}} \cap R_{x_{2}}\right|=1$.
- For all distinct $P_{1}, P_{2} \in \mathcal{P},\left|P_{1} \cap P_{2}\right|=1$.
- So, for all distinct $P_{1}, P_{2} \in \mathcal{P}$, there is a unique $R_{x} \in \mathcal{R}$ s.t. $P_{1}, P_{2} \in R_{x}$.
- So, (P1) and (P2) are satisfied for the dual.
- A bit more work for (P0).

Theorem 2.2
The dual of a finite projective plane is again a finite projective plane.

Theorem 2.2

The dual of a finite projective plane is again a finite projective plane.

Theorem 1.4

Let (X, \mathcal{P}) be a finite projective plane of order n. Then all the following hold:
(a) for each point $x \in X$, exactly $n+1$ lines in \mathcal{P} pass through x;
(b) $|X|=n^{2}+n+1$;
(c) $|\mathcal{P}|=n^{2}+n+1$.

Proof of (c).

Theorem 2.2

The dual of a finite projective plane is again a finite projective plane.

Theorem 1.4

Let (X, \mathcal{P}) be a finite projective plane of order n. Then all the following hold:
(a) for each point $x \in X$, exactly $n+1$ lines in \mathcal{P} pass through x;
(b) $|X|=n^{2}+n+1$;
(c) $|\mathcal{P}|=n^{2}+n+1$.

Proof of (c). By Theorem 2.2, the dual (Y, \mathcal{R}) of (X, \mathcal{P}) is a finite projective plane.

Theorem 2.2

The dual of a finite projective plane is again a finite projective plane.

Theorem 1.4

Let (X, \mathcal{P}) be a finite projective plane of order n. Then all the following hold:
(a) for each point $x \in X$, exactly $n+1$ lines in \mathcal{P} pass through x;
(b) $|X|=n^{2}+n+1$;
(c) $|\mathcal{P}|=n^{2}+n+1$.

Proof of (c). By Theorem 2.2, the dual (Y, \mathcal{R}) of (X, \mathcal{P}) is a finite projective plane. We have $Y=\mathcal{P}$ and $\mathcal{R}=\left\{R_{x} \mid x \in X\right\}$, where $R_{x}=\{P \in \mathcal{P} \mid x \in P\}$ for all $x \in X$.

Theorem 2.2

The dual of a finite projective plane is again a finite projective plane.

Theorem 1.4

Let (X, \mathcal{P}) be a finite projective plane of order n. Then all the following hold:
(a) for each point $x \in X$, exactly $n+1$ lines in \mathcal{P} pass through x;
(b) $|X|=n^{2}+n+1$;
(c) $|\mathcal{P}|=n^{2}+n+1$.

Proof of (c). By Theorem 2.2, the dual (Y, \mathcal{R}) of (X, \mathcal{P}) is a finite projective plane. We have $Y=\mathcal{P}$ and $\mathcal{R}=\left\{R_{x} \mid x \in X\right\}$, where $R_{x}=\{P \in \mathcal{P} \mid x \in P\}$ for all $x \in X$. By (a), each R_{x} contains exactly $n+1$ members of \mathcal{P}.

Theorem 2.2

The dual of a finite projective plane is again a finite projective plane.

Theorem 1.4

Let (X, \mathcal{P}) be a finite projective plane of order n. Then all the following hold:
(a) for each point $x \in X$, exactly $n+1$ lines in \mathcal{P} pass through x;
(b) $|X|=n^{2}+n+1$;
(c) $|\mathcal{P}|=n^{2}+n+1$.

Proof of (c). By Theorem 2.2, the dual (Y, \mathcal{R}) of (X, \mathcal{P}) is a finite projective plane. We have $Y=\mathcal{P}$ and $\mathcal{R}=\left\{R_{X} \mid x \in X\right\}$, where $R_{x}=\{P \in \mathcal{P} \mid x \in P\}$ for all $x \in X$. By (a), each R_{x} contains exactly $n+1$ members of \mathcal{P}. So, the order of (Y, \mathcal{R}) is n.

Theorem 2.2

The dual of a finite projective plane is again a finite projective plane.

Theorem 1.4

Let (X, \mathcal{P}) be a finite projective plane of order n. Then all the following hold:
(a) for each point $x \in X$, exactly $n+1$ lines in \mathcal{P} pass through x;
(b) $|X|=n^{2}+n+1$;
(c) $|\mathcal{P}|=n^{2}+n+1$.

Proof of (c). By Theorem 2.2, the dual (Y, \mathcal{R}) of (X, \mathcal{P}) is a finite projective plane. We have $Y=\mathcal{P}$ and $\mathcal{R}=\left\{R_{X} \mid x \in X\right\}$, where $R_{x}=\{P \in \mathcal{P} \mid x \in P\}$ for all $x \in X$. By (a), each R_{x} contains exactly $n+1$ members of \mathcal{P}. So, the order of (Y, \mathcal{R}) is n. By (b), $|Y|=n^{2}+n+1$.

Theorem 2.2

The dual of a finite projective plane is again a finite projective plane.

Theorem 1.4

Let (X, \mathcal{P}) be a finite projective plane of order n. Then all the following hold:
(a) for each point $x \in X$, exactly $n+1$ lines in \mathcal{P} pass through x;
(b) $|X|=n^{2}+n+1$;
(c) $|\mathcal{P}|=n^{2}+n+1$.

Proof of (c). By Theorem 2.2, the dual (Y, \mathcal{R}) of (X, \mathcal{P}) is a finite projective plane. We have $Y=\mathcal{P}$ and $\mathcal{R}=\left\{R_{X} \mid x \in X\right\}$, where $R_{x}=\{P \in \mathcal{P} \mid x \in P\}$ for all $x \in X$. By (a), each R_{x} contains exactly $n+1$ members of \mathcal{P}. So, the order of (Y, \mathcal{R}) is n. By (b), $|Y|=n^{2}+n+1$. So, $|\mathcal{P}|=n^{2}+n+1$. This proves (c).

[^0]: ${ }^{a}$ So, if (X, \mathcal{P}) is a finite projective plane of order n, then each line in \mathcal{P} contains exactly $n+1$ points.

