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For a set X , the power set of X , denoted by P(X ), is the set
of all subsets of X .

For example, if X = {1, 2, 3}, then

P(X ) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

A set system is an ordered pair (X ,S) s.t. X is a set (called
the ground set) and S ⊆P(X ).

Definition
A finite projective plane is set system (X ,P) s.t. X is a finite, and
the following three properties are satisfied:

(P0) there exists a 4-element subset Q ⊆ X s.t. every P ∈ P
satisfies |P ∩ Q| ≤ 2;

(P1) all distinct P1, P2 ∈ P satisfy |P1 ∩ P2| = 1;
(P2) for all distinct x1, x2 ∈ X , there exists a unique P ∈ P s.t.

x1, x2 ∈ P.



For a set X , the power set of X , denoted by P(X ), is the set
of all subsets of X .
For example, if X = {1, 2, 3}, then

P(X ) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

A set system is an ordered pair (X ,S) s.t. X is a set (called
the ground set) and S ⊆P(X ).

Definition
A finite projective plane is set system (X ,P) s.t. X is a finite, and
the following three properties are satisfied:

(P0) there exists a 4-element subset Q ⊆ X s.t. every P ∈ P
satisfies |P ∩ Q| ≤ 2;

(P1) all distinct P1, P2 ∈ P satisfy |P1 ∩ P2| = 1;
(P2) for all distinct x1, x2 ∈ X , there exists a unique P ∈ P s.t.

x1, x2 ∈ P.



For a set X , the power set of X , denoted by P(X ), is the set
of all subsets of X .
For example, if X = {1, 2, 3}, then

P(X ) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

A set system is an ordered pair (X ,S) s.t. X is a set (called
the ground set) and S ⊆P(X ).

Definition
A finite projective plane is set system (X ,P) s.t. X is a finite, and
the following three properties are satisfied:

(P0) there exists a 4-element subset Q ⊆ X s.t. every P ∈ P
satisfies |P ∩ Q| ≤ 2;

(P1) all distinct P1, P2 ∈ P satisfy |P1 ∩ P2| = 1;
(P2) for all distinct x1, x2 ∈ X , there exists a unique P ∈ P s.t.

x1, x2 ∈ P.



For a set X , the power set of X , denoted by P(X ), is the set
of all subsets of X .
For example, if X = {1, 2, 3}, then

P(X ) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

A set system is an ordered pair (X ,S) s.t. X is a set (called
the ground set) and S ⊆P(X ).

Definition
A finite projective plane is set system (X ,P) s.t. X is a finite, and
the following three properties are satisfied:

(P0) there exists a 4-element subset Q ⊆ X s.t. every P ∈ P
satisfies |P ∩ Q| ≤ 2;

(P1) all distinct P1, P2 ∈ P satisfy |P1 ∩ P2| = 1;
(P2) for all distinct x1, x2 ∈ X , there exists a unique P ∈ P s.t.

x1, x2 ∈ P.



Definition
A finite projective plane is set system (X ,P) s.t. X is a finite, and
the following three properties are satisfied:

(P0) there exists a 4-element subset Q ⊆ X s.t. every P ∈ P
satisfies |P ∩ Q| ≤ 2;

(P1) all distinct P1, P2 ∈ P satisfy |P1 ∩ P2| = 1;
(P2) for all distinct x1, x2 ∈ X , there exists a unique P ∈ P s.t.

x1, x2 ∈ P.

If (X ,P) is a finite projective plane, then members of X are
called points, and members of P are called lines.
For a point x ∈ X and a line P ∈ P s.t. x ∈ P, we say that
the line P is incident with the point x , or that P contains x ,
or that P passes through x .
For distinct points a, b ∈ X , we denote by ab the unique line
in P that contains a and b (the existence and uniqueness of
such a line follow from (P2)).
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(P2) is the same as for points and lines in the Euclidean plane.
But (P1) is different! There are no “parallel lines” in a finite
projective plane.
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Example 1.1
Let X = {1, 2, 3, 4, 5, 6, 7} and P = {a, b, c, d , e, f , g}, where

a = {1, 2, 3},
b = {3, 4, 5},
c = {5, 6, 1},

d = {5, 7, 2},
e = {1, 7, 4},
f = {3, 7, 6},

g = {2, 4, 6}.

Then (X ,P) is a finite projective plane,a called the Fano plane.
aIt is easy to check that (P1) and (P2) are satisfied. For (P0), we can take,

for instance, Q = {1, 3, 5, 7}.
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Figure: The Fano plane.

In the picture above, the seven lines of the Fano plane are
represented by six line segments and one circle.
However, formally, each line of the Fano plane is simply a set
of three points.
Drawings can sometimes be useful for guiding our intuition.
However, formal proofs should never rely on such pictures;
instead, they should rely solely on the definition of a finite
projective plane or on results (propositions, lemmas,
theorems) proven about them.
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The incidence graph of a finite projective plane (X ,P) is a
bipartite graph with bipartition (X ,P), in which x ∈ X and
P ∈ P are adjacent if and only if x ∈ P.
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Figure: The Fano plane.

1 2 3 4 5 6 7

a b c d e f g

Figure: The incidence graph of the Fano plane.
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Figure: The Fano plane.

Note that each line of the Fano plane contains the same
number of points.

This is not an accident!

Proposition 1.2
Let (X ,P) be a finite projective plane. Then all lines in P have
the same number of points.
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Proposition 1.2
Let (X ,P) be a finite projective plane. Then all lines in P have
the same number of points.

Proof (outline). Fix P1, P2 ∈ P. WTS |P1| = |P2|.

Claim. There exists a point z ∈ X s.t. z /∈ P1 ∪ P2.

Proof of the Claim (outline). Using (P0), we fix a 4-element
subset Q ⊆ X s.t. for all P ∈ P, |Q ∩ P| ≤ 2. If Q 6⊆ P1 ∪ P2,
then we take any z ∈ Q \ (P1 ∪ P2), and we are done.
So assume that Q ⊆ P1 ∪ P2. Since |Q| = 4 and
|Q ∩ P1|, |Q ∩ P2| ≤ 2, we now deduce that Q ∩ P1 and Q ∩ P2 are
disjoint and each contain exactly two points. Set Q ∩ P1 = {a, b}
and Q ∩ P2 = {c, d}.
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This proves the Claim.
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the same number of points.

Proof (outline). Fix P1, P2 ∈ P. WTS |P1| = |P2|.
Claim. There exists a point z ∈ X s.t. z /∈ P1 ∪ P2.

We define ϕ : P1 → P2 as follows: for all x ∈ P1, let ϕ(x) be the
unique point in the intersection of the lines xz and P2.

z x ϕ(x)

P1 P2

It is not hard to check (detail: Lecture Notes) that ϕ is
well-defined and surjective (i.e. onto). So, |P1| ≥ |P2|. By
symmetry, |P2| ≥ |P1|. So, |P1| = |P2|. Q.E.D.
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Proposition 1.2
Let (X ,P) be a finite projective plane. Then all lines in P have
the same number of points.

Definition
The order of a finite projective plane (X ,P) is the number |P| − 1,
where P is any line in P.a

aSo, if (X , P) is a finite projective plane of order n, then each line in P
contains exactly n + 1 points.

By Proposition 1.2, this is well-defined.
The Fano plane has order two.

Proposition 1.3
The order of any finite projective plane is at least two.

Proof. Easy (read the Lecture Notes).
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Theorem 1.4
Let (X ,P) be a finite projective plane of order n. Then all the
following hold:
(a) for each point x ∈ X , exactly n + 1 lines in P pass through x ;
(b) |X | = n2 + n + 1;
(c) |P| = n2 + n + 1.

We give an outline of the proof of (a). (The details are in the
Lecture Notes.)
The proof of (b) is in the Lecture Notes.
We prove (c) after introducing “duality” (we use (a) and (b)).
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Proof (outline).

Claim. For every point x ∈ X, there exists a line P ∈ P
s.t. x /∈ P.

Proof of the Claim (outline). Fix a point x ∈ X . Using (P0) from
the definition of a finite projective plane, we fix a 4-element subset
Q ⊆ X s.t. for all P ∈ P, |Q ∩ P| ≤ 2. Then |Q \ {x}| ≥ 3; let
a, b, c ∈ Q \ {x} be pairwise distinct.
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Claim. For every point x ∈ X, there exists a line P ∈ P
s.t. x /∈ P.

Proof of the Claim (outline, continued).

ab

c

Then x belongs to at most one of ab and ac. This proves the
Claim.
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Let (X ,P) be a finite projective plane of order n. Then all the
following hold:
(a) for each point x ∈ X , exactly n + 1 lines in P pass through x ;
(b) |X | = n2 + n + 1;
(c) |P| = n2 + n + 1.

Proof of (a) (outline). Fix a point x ∈ X . By the Claim, there
exists a line P ∈ P s.t. x /∈ P. Since (X ,P) is of order n, we know
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x

x0

x1

xn

P
At least n + 1 lines (namely,

xx0, . . . , xxn) pass through x.

Every line through x intersects

P , so xx0, . . . , xxn are the

only lines through x.



We next introduce “duality.”

Essentially, the “dual” of a finite projective plane is another
finite projective plane, but with the roles of points and lines
reveresed.

Definition
For a set system (X ,S), we define the dual of (X ,S) to be the
ordered pair (Y , T ), where Y = S and

T =
{
{S ∈ S | x ∈ S} | x ∈ X

}
.

Example 2.1
Let X = {1, 2, 3} and S = {A, B}, where A = {1, 2} and
B = {1, 3}. Then the dual of (X ,S) is (Y , T ), where Y = {A, B}
and T =

{
{A, B}, {A}, {B}

}
.a

aIndeed {S ∈ S | 1 ∈ S} = {A, B}, {S ∈ S | 2 ∈ S} = {A}, and
{S ∈ S | 3 ∈ S} = {B}.
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Theorem 2.2
The dual of a finite projective plane is again a finite projective
plane.

Proof. Lecture Notes.

But why is this “reasonable”?
Suppose (X ,P) is a finite projective plane.
For each x ∈ X , let Rx = {P ∈ P | x ∈ P}.
Set Y = P and R = {Rx | x ∈ X}.
Then by definition, (Y ,R) is the dual of (X ,P).
For all distinct x1, x2 ∈ X , there is a unique P ∈ P s.t.
x1, x2 ∈ P.

So, for all distinct Rx1 , Rx2 ∈ R, |Rx1 ∩ Rx2 | = 1.

For all distinct P1, P2 ∈ P, |P1 ∩ P2| = 1.

So, for all distinct P1, P2 ∈ P, there is a unique Rx ∈ R s.t.
P1, P2 ∈ Rx .

So, (P1) and (P2) are satisfied for the dual.
A bit more work for (P0).
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Theorem 2.2
The dual of a finite projective plane is again a finite projective
plane.

Theorem 1.4
Let (X ,P) be a finite projective plane of order n. Then all the
following hold:
(a) for each point x ∈ X , exactly n + 1 lines in P pass through x ;
(b) |X | = n2 + n + 1;
(c) |P| = n2 + n + 1.

Proof of (c). By Theorem 2.2, the dual (Y ,R) of (X ,P) is a finite
projective plane. We have Y = P and R = {Rx | x ∈ X}, where
Rx = {P ∈ P | x ∈ P} for all x ∈ X . By (a), each Rx contains
exactly n + 1 members of P. So, the order of (Y ,R) is n. By (b),
|Y | = n2 + n + 1. So, |P| = n2 + n + 1. This proves (c).



Theorem 2.2
The dual of a finite projective plane is again a finite projective
plane.

Theorem 1.4
Let (X ,P) be a finite projective plane of order n. Then all the
following hold:
(a) for each point x ∈ X , exactly n + 1 lines in P pass through x ;
(b) |X | = n2 + n + 1;
(c) |P| = n2 + n + 1.

Proof of (c).

By Theorem 2.2, the dual (Y ,R) of (X ,P) is a finite
projective plane. We have Y = P and R = {Rx | x ∈ X}, where
Rx = {P ∈ P | x ∈ P} for all x ∈ X . By (a), each Rx contains
exactly n + 1 members of P. So, the order of (Y ,R) is n. By (b),
|Y | = n2 + n + 1. So, |P| = n2 + n + 1. This proves (c).



Theorem 2.2
The dual of a finite projective plane is again a finite projective
plane.

Theorem 1.4
Let (X ,P) be a finite projective plane of order n. Then all the
following hold:
(a) for each point x ∈ X , exactly n + 1 lines in P pass through x ;
(b) |X | = n2 + n + 1;
(c) |P| = n2 + n + 1.

Proof of (c). By Theorem 2.2, the dual (Y ,R) of (X ,P) is a finite
projective plane.

We have Y = P and R = {Rx | x ∈ X}, where
Rx = {P ∈ P | x ∈ P} for all x ∈ X . By (a), each Rx contains
exactly n + 1 members of P. So, the order of (Y ,R) is n. By (b),
|Y | = n2 + n + 1. So, |P| = n2 + n + 1. This proves (c).



Theorem 2.2
The dual of a finite projective plane is again a finite projective
plane.

Theorem 1.4
Let (X ,P) be a finite projective plane of order n. Then all the
following hold:
(a) for each point x ∈ X , exactly n + 1 lines in P pass through x ;
(b) |X | = n2 + n + 1;
(c) |P| = n2 + n + 1.

Proof of (c). By Theorem 2.2, the dual (Y ,R) of (X ,P) is a finite
projective plane. We have Y = P and R = {Rx | x ∈ X}, where
Rx = {P ∈ P | x ∈ P} for all x ∈ X .

By (a), each Rx contains
exactly n + 1 members of P. So, the order of (Y ,R) is n. By (b),
|Y | = n2 + n + 1. So, |P| = n2 + n + 1. This proves (c).



Theorem 2.2
The dual of a finite projective plane is again a finite projective
plane.

Theorem 1.4
Let (X ,P) be a finite projective plane of order n. Then all the
following hold:
(a) for each point x ∈ X , exactly n + 1 lines in P pass through x ;
(b) |X | = n2 + n + 1;
(c) |P| = n2 + n + 1.

Proof of (c). By Theorem 2.2, the dual (Y ,R) of (X ,P) is a finite
projective plane. We have Y = P and R = {Rx | x ∈ X}, where
Rx = {P ∈ P | x ∈ P} for all x ∈ X . By (a), each Rx contains
exactly n + 1 members of P.

So, the order of (Y ,R) is n. By (b),
|Y | = n2 + n + 1. So, |P| = n2 + n + 1. This proves (c).



Theorem 2.2
The dual of a finite projective plane is again a finite projective
plane.

Theorem 1.4
Let (X ,P) be a finite projective plane of order n. Then all the
following hold:
(a) for each point x ∈ X , exactly n + 1 lines in P pass through x ;
(b) |X | = n2 + n + 1;
(c) |P| = n2 + n + 1.

Proof of (c). By Theorem 2.2, the dual (Y ,R) of (X ,P) is a finite
projective plane. We have Y = P and R = {Rx | x ∈ X}, where
Rx = {P ∈ P | x ∈ P} for all x ∈ X . By (a), each Rx contains
exactly n + 1 members of P. So, the order of (Y ,R) is n.

By (b),
|Y | = n2 + n + 1. So, |P| = n2 + n + 1. This proves (c).



Theorem 2.2
The dual of a finite projective plane is again a finite projective
plane.

Theorem 1.4
Let (X ,P) be a finite projective plane of order n. Then all the
following hold:
(a) for each point x ∈ X , exactly n + 1 lines in P pass through x ;
(b) |X | = n2 + n + 1;
(c) |P| = n2 + n + 1.

Proof of (c). By Theorem 2.2, the dual (Y ,R) of (X ,P) is a finite
projective plane. We have Y = P and R = {Rx | x ∈ X}, where
Rx = {P ∈ P | x ∈ P} for all x ∈ X . By (a), each Rx contains
exactly n + 1 members of P. So, the order of (Y ,R) is n. By (b),
|Y | = n2 + n + 1.

So, |P| = n2 + n + 1. This proves (c).



Theorem 2.2
The dual of a finite projective plane is again a finite projective
plane.

Theorem 1.4
Let (X ,P) be a finite projective plane of order n. Then all the
following hold:
(a) for each point x ∈ X , exactly n + 1 lines in P pass through x ;
(b) |X | = n2 + n + 1;
(c) |P| = n2 + n + 1.

Proof of (c). By Theorem 2.2, the dual (Y ,R) of (X ,P) is a finite
projective plane. We have Y = P and R = {Rx | x ∈ X}, where
Rx = {P ∈ P | x ∈ P} for all x ∈ X . By (a), each Rx contains
exactly n + 1 members of P. So, the order of (Y ,R) is n. By (b),
|Y | = n2 + n + 1. So, |P| = n2 + n + 1. This proves (c).


