NDMI011: Combinatorics and Graph Theory 1

Lecture #4

Finite projective planes (part I)

Irena Penev

October 19, 2020

• For a set X, the *power set* of X, denoted by $\mathscr{P}(X)$, is the set of all subsets of X.

- For a set X, the *power set* of X, denoted by 𝒫(X), is the set of all subsets of X.
- For example, if $X = \{1, 2, 3\}$, then

 $\mathscr{P}(X) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}.$

- For a set X, the *power set* of X, denoted by 𝒫(X), is the set of all subsets of X.
- For example, if $X = \{1, 2, 3\}$, then

 $\mathscr{P}(X) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}.$

A set system is an ordered pair (X, S) s.t. X is a set (called the ground set) and S ⊆ 𝒫(X).

- For a set X, the *power set* of X, denoted by 𝒫(X), is the set of all subsets of X.
- For example, if $X = \{1, 2, 3\}$, then

 $\mathscr{P}(X) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}.$

A set system is an ordered pair (X, S) s.t. X is a set (called the ground set) and S ⊆ 𝒫(X).

Definition

- (P0) there exists a 4-element subset Q ⊆ X s.t. every P ∈ P satisfies |P ∩ Q| ≤ 2;
- (P1) all distinct $P_1, P_2 \in \mathcal{P}$ satisfy $|P_1 \cap P_2| = 1$;
- (P2) for all distinct $x_1, x_2 \in X$, there exists a unique $P \in \mathcal{P}$ s.t. $x_1, x_2 \in P$.

- (P0) there exists a 4-element subset $Q \subseteq X$ s.t. every $P \in \mathcal{P}$ satisfies $|P \cap Q| \le 2$;
- (P1) all distinct $P_1, P_2 \in \mathcal{P}$ satisfy $|P_1 \cap P_2| = 1$;
- (P2) for all distinct $x_1, x_2 \in X$, there exists a unique $P \in \mathcal{P}$ s.t. $x_1, x_2 \in P$.

- (P0) there exists a 4-element subset $Q \subseteq X$ s.t. every $P \in \mathcal{P}$ satisfies $|P \cap Q| \le 2$;
- (P1) all distinct $P_1, P_2 \in \mathcal{P}$ satisfy $|P_1 \cap P_2| = 1$;
- (P2) for all distinct $x_1, x_2 \in X$, there exists a unique $P \in \mathcal{P}$ s.t. $x_1, x_2 \in P$.
 - If (X, P) is a finite projective plane, then members of X are called *points*, and members of P are called *lines*.

- (P0) there exists a 4-element subset $Q \subseteq X$ s.t. every $P \in \mathcal{P}$ satisfies $|P \cap Q| \le 2$;
- (P1) all distinct $P_1, P_2 \in \mathcal{P}$ satisfy $|P_1 \cap P_2| = 1$;
- (P2) for all distinct $x_1, x_2 \in X$, there exists a unique $P \in \mathcal{P}$ s.t. $x_1, x_2 \in P$.
 - If (X, P) is a finite projective plane, then members of X are called *points*, and members of P are called *lines*.
 - For a point x ∈ X and a line P ∈ P s.t. x ∈ P, we say that the line P is *incident* with the point x, or that P contains x, or that P passes through x.

- (P0) there exists a 4-element subset $Q \subseteq X$ s.t. every $P \in \mathcal{P}$ satisfies $|P \cap Q| \le 2$;
- (P1) all distinct $P_1, P_2 \in \mathcal{P}$ satisfy $|P_1 \cap P_2| = 1$;
- (P2) for all distinct $x_1, x_2 \in X$, there exists a unique $P \in \mathcal{P}$ s.t. $x_1, x_2 \in P$.
 - If (X, P) is a finite projective plane, then members of X are called *points*, and members of P are called *lines*.
 - For a point x ∈ X and a line P ∈ P s.t. x ∈ P, we say that the line P is *incident* with the point x, or that P contains x, or that P passes through x.
 - For distinct points a, b ∈ X, we denote by ab the unique line in P that contains a and b (the existence and uniqueness of such a line follow from (P2)).

- (P0) there exists a 4-element subset $Q \subseteq X$ s.t. every $P \in \mathcal{P}$ satisfies $|P \cap Q| \le 2$;
- (P1) all distinct $P_1, P_2 \in \mathcal{P}$ satisfy $|P_1 \cap P_2| = 1$;
- (P2) for all distinct $x_1, x_2 \in X$, there exists a unique $P \in \mathcal{P}$ s.t. $x_1, x_2 \in P$.

- (P0) there exists a 4-element subset $Q \subseteq X$ s.t. every $P \in \mathcal{P}$ satisfies $|P \cap Q| \le 2$;
- (P1) all distinct $P_1, P_2 \in \mathcal{P}$ satisfy $|P_1 \cap P_2| = 1$;
- (P2) for all distinct $x_1, x_2 \in X$, there exists a unique $P \in \mathcal{P}$ s.t. $x_1, x_2 \in P$.
 - (P2) is the same as for points and lines in the Euclidean plane.

- (P0) there exists a 4-element subset $Q \subseteq X$ s.t. every $P \in \mathcal{P}$ satisfies $|P \cap Q| \le 2$;
- (P1) all distinct $P_1, P_2 \in \mathcal{P}$ satisfy $|P_1 \cap P_2| = 1$;
- (P2) for all distinct $x_1, x_2 \in X$, there exists a unique $P \in \mathcal{P}$ s.t. $x_1, x_2 \in P$.
 - (P2) is the same as for points and lines in the Euclidean plane.
 - But (P1) is different! There are no "parallel lines" in a finite projective plane.

- (P0) there exists a 4-element subset Q ⊆ X s.t. every P ∈ P satisfies |P ∩ Q| ≤ 2;
- (P1) all distinct $P_1, P_2 \in \mathcal{P}$ satisfy $|P_1 \cap P_2| = 1$;
- (P2) for all distinct $x_1, x_2 \in X$, there exists a unique $P \in \mathcal{P}$ s.t. $x_1, x_2 \in P$.

Example 1.1

Let $X = \{1, 2, 3, 4, 5, 6, 7\}$ and $\mathcal{P} = \{a, b, c, d, e, f, g\}$, where

Then (X, \mathcal{P}) is a finite projective plane,^a called the *Fano plane*.

^aIt is easy to check that (P1) and (P2) are satisfied. For (P0), we can take, for instance, $Q = \{1, 3, 5, 7\}$.

Figure: The Fano plane.

Figure: The Fano plane.

• In the picture above, the seven lines of the Fano plane are represented by six line segments and one circle.

Figure: The Fano plane.

- In the picture above, the seven lines of the Fano plane are represented by six line segments and one circle.
- However, formally, each line of the Fano plane is simply a set of three points.

Figure: The Fano plane.

- In the picture above, the seven lines of the Fano plane are represented by six line segments and one circle.
- However, formally, each line of the Fano plane is simply a set of three points.
- Drawings can sometimes be useful for guiding our intuition. However, formal proofs should never rely on such pictures; instead, they should rely solely on the definition of a finite projective plane or on results (propositions, lemmas, theorems) proven about them.

The *incidence graph* of a finite projective plane (X, P) is a bipartite graph with bipartition (X, P), in which x ∈ X and P ∈ P are adjacent if and only if x ∈ P.

Figure: The incidence graph of the Fano plane.

Figure: The Fano plane.

• Note that each line of the Fano plane contains the same number of points.

Figure: The Fano plane.

- Note that each line of the Fano plane contains the same number of points.
- This is not an accident!

Figure: The Fano plane.

- Note that each line of the Fano plane contains the same number of points.
- This is not an accident!

Let (X, \mathcal{P}) be a finite projective plane. Then all lines in \mathcal{P} have the same number of points.

Let (X, \mathcal{P}) be a finite projective plane. Then all lines in \mathcal{P} have the same number of points.

Proof (outline). Fix $P_1, P_2 \in \mathcal{P}$. WTS $|P_1| = |P_2|$.

Let (X, \mathcal{P}) be a finite projective plane. Then all lines in \mathcal{P} have the same number of points.

Proof (outline). Fix $P_1, P_2 \in \mathcal{P}$. WTS $|P_1| = |P_2|$.

Claim. There exists a point $z \in X$ s.t. $z \notin P_1 \cup P_2$.

Let (X, \mathcal{P}) be a finite projective plane. Then all lines in \mathcal{P} have the same number of points.

Proof (outline). Fix $P_1, P_2 \in \mathcal{P}$. WTS $|P_1| = |P_2|$.

Claim. There exists a point $z \in X$ s.t. $z \notin P_1 \cup P_2$.

Proof of the Claim (outline). Using (P0), we fix a 4-element subset $Q \subseteq X$ s.t. for all $P \in \mathcal{P}$, $|Q \cap P| \leq 2$.

Let (X, \mathcal{P}) be a finite projective plane. Then all lines in \mathcal{P} have the same number of points.

Proof (outline). Fix $P_1, P_2 \in \mathcal{P}$. WTS $|P_1| = |P_2|$.

Claim. There exists a point $z \in X$ s.t. $z \notin P_1 \cup P_2$.

Proof of the Claim (outline). Using (P0), we fix a 4-element subset $Q \subseteq X$ s.t. for all $P \in \mathcal{P}$, $|Q \cap P| \leq 2$. If $Q \not\subseteq P_1 \cup P_2$, then we take any $z \in Q \setminus (P_1 \cup P_2)$, and we are done.

Let (X, \mathcal{P}) be a finite projective plane. Then all lines in \mathcal{P} have the same number of points.

Proof (outline). Fix $P_1, P_2 \in \mathcal{P}$. WTS $|P_1| = |P_2|$.

Claim. There exists a point $z \in X$ s.t. $z \notin P_1 \cup P_2$.

Proof of the Claim (outline). Using (P0), we fix a 4-element subset $Q \subseteq X$ s.t. for all $P \in \mathcal{P}$, $|Q \cap P| \leq 2$. If $Q \not\subseteq P_1 \cup P_2$, then we take any $z \in Q \setminus (P_1 \cup P_2)$, and we are done. So assume that $Q \subseteq P_1 \cup P_2$.

Let (X, \mathcal{P}) be a finite projective plane. Then all lines in \mathcal{P} have the same number of points.

Proof (outline). Fix $P_1, P_2 \in \mathcal{P}$. WTS $|P_1| = |P_2|$.

Claim. There exists a point $z \in X$ s.t. $z \notin P_1 \cup P_2$.

Proof of the Claim (outline). Using (P0), we fix a 4-element subset $Q \subseteq X$ s.t. for all $P \in \mathcal{P}$, $|Q \cap P| \leq 2$. If $Q \not\subseteq P_1 \cup P_2$, then we take any $z \in Q \setminus (P_1 \cup P_2)$, and we are done. So assume that $Q \subseteq P_1 \cup P_2$. Since |Q| = 4 and $|Q \cap P_1|, |Q \cap P_2| \leq 2$, we now deduce that $Q \cap P_1$ and $Q \cap P_2$ are disjoint and each contain exactly two points.

Let (X, \mathcal{P}) be a finite projective plane. Then all lines in \mathcal{P} have the same number of points.

Proof (outline). Fix $P_1, P_2 \in \mathcal{P}$. WTS $|P_1| = |P_2|$.

Claim. There exists a point $z \in X$ s.t. $z \notin P_1 \cup P_2$.

Proof of the Claim (outline). Using (P0), we fix a 4-element subset $Q \subseteq X$ s.t. for all $P \in \mathcal{P}$, $|Q \cap P| \leq 2$. If $Q \not\subseteq P_1 \cup P_2$, then we take any $z \in Q \setminus (P_1 \cup P_2)$, and we are done. So assume that $Q \subseteq P_1 \cup P_2$. Since |Q| = 4 and $|Q \cap P_1|, |Q \cap P_2| \leq 2$, we now deduce that $Q \cap P_1$ and $Q \cap P_2$ are disjoint and each contain exactly two points. Set $Q \cap P_1 = \{a, b\}$ and $Q \cap P_2 = \{c, d\}$.

Let (X, \mathcal{P}) be a finite projective plane. Then all lines in \mathcal{P} have the same number of points.

Proof (outline). Fix $P_1, P_2 \in \mathcal{P}$. WTS $|P_1| = |P_2|$.

Claim. There exists a point $z \in X$ s.t. $z \notin P_1 \cup P_2$.

Proof of the Claim (outline, continued).

This proves the Claim.

Let (X, \mathcal{P}) be a finite projective plane. Then all lines in \mathcal{P} have the same number of points.

Proof (outline). Fix $P_1, P_2 \in \mathcal{P}$. WTS $|P_1| = |P_2|$.

Claim. There exists a point $z \in X$ s.t. $z \notin P_1 \cup P_2$.

Let (X, \mathcal{P}) be a finite projective plane. Then all lines in \mathcal{P} have the same number of points.

Proof (outline). Fix $P_1, P_2 \in \mathcal{P}$. WTS $|P_1| = |P_2|$.

Claim. There exists a point $z \in X$ s.t. $z \notin P_1 \cup P_2$.

We define $\varphi : P_1 \to P_2$ as follows: for all $x \in P_1$, let $\varphi(x)$ be the unique point in the intersection of the lines \overline{xz} and P_2 .

Let (X, \mathcal{P}) be a finite projective plane. Then all lines in \mathcal{P} have the same number of points.

Proof (outline). Fix $P_1, P_2 \in \mathcal{P}$. WTS $|P_1| = |P_2|$.

Claim. There exists a point $z \in X$ s.t. $z \notin P_1 \cup P_2$.

We define $\varphi: P_1 \to P_2$ as follows: for all $x \in P_1$, let $\varphi(x)$ be the unique point in the intersection of the lines \overline{xz} and P_2 .

It is not hard to check (detail: Lecture Notes) that φ is well-defined and surjective (i.e. onto).

Let (X, \mathcal{P}) be a finite projective plane. Then all lines in \mathcal{P} have the same number of points.

Proof (outline). Fix $P_1, P_2 \in \mathcal{P}$. WTS $|P_1| = |P_2|$.

Claim. There exists a point $z \in X$ s.t. $z \notin P_1 \cup P_2$.

We define $\varphi : P_1 \to P_2$ as follows: for all $x \in P_1$, let $\varphi(x)$ be the unique point in the intersection of the lines \overline{xz} and P_2 .

It is not hard to check (detail: Lecture Notes) that φ is well-defined and surjective (i.e. onto). So, $|P_1| \ge |P_2|$.

Let (X, \mathcal{P}) be a finite projective plane. Then all lines in \mathcal{P} have the same number of points.

Proof (outline). Fix $P_1, P_2 \in \mathcal{P}$. WTS $|P_1| = |P_2|$.

Claim. There exists a point $z \in X$ s.t. $z \notin P_1 \cup P_2$.

We define $\varphi : P_1 \to P_2$ as follows: for all $x \in P_1$, let $\varphi(x)$ be the unique point in the intersection of the lines \overline{xz} and P_2 .

It is not hard to check (detail: Lecture Notes) that φ is well-defined and surjective (i.e. onto). So, $|P_1| \ge |P_2|$. By symmetry, $|P_2| \ge |P_1|$. So, $|P_1| = |P_2|$. Q.E.D.

Let (X, \mathcal{P}) be a finite projective plane. Then all lines in \mathcal{P} have the same number of points.

Let (X, \mathcal{P}) be a finite projective plane. Then all lines in \mathcal{P} have the same number of points.

Definition

The order of a finite projective plane (X, \mathcal{P}) is the number |P| - 1, where P is any line in \mathcal{P} .^{*a*}

^aSo, if (X, \mathcal{P}) is a finite projective plane of order *n*, then each line in \mathcal{P} contains exactly n + 1 points.

Proposition 1.2

Let (X, \mathcal{P}) be a finite projective plane. Then all lines in \mathcal{P} have the same number of points.

Definition

The order of a finite projective plane (X, \mathcal{P}) is the number |P| - 1, where P is any line in \mathcal{P} .^{*a*}

^aSo, if (X, \mathcal{P}) is a finite projective plane of order *n*, then each line in \mathcal{P} contains exactly n + 1 points.

• By Proposition 1.2, this is well-defined.

Proposition 1.2

Let (X, \mathcal{P}) be a finite projective plane. Then all lines in \mathcal{P} have the same number of points.

Definition

The order of a finite projective plane (X, \mathcal{P}) is the number |P| - 1, where P is any line in \mathcal{P} .^{*a*}

^aSo, if (X, \mathcal{P}) is a finite projective plane of order *n*, then each line in \mathcal{P} contains exactly n + 1 points.

- By Proposition 1.2, this is well-defined.
- The Fano plane has order two.

Proposition 1.2

Let (X, \mathcal{P}) be a finite projective plane. Then all lines in \mathcal{P} have the same number of points.

Definition

The order of a finite projective plane (X, \mathcal{P}) is the number |P| - 1, where P is any line in \mathcal{P} .^{*a*}

^aSo, if (X, \mathcal{P}) is a finite projective plane of order *n*, then each line in \mathcal{P} contains exactly n + 1 points.

- By Proposition 1.2, this is well-defined.
- The Fano plane has order two.

Proposition 1.3

The order of any finite projective plane is at least two.

Proof. Easy (read the Lecture Notes).

Let (X, \mathcal{P}) be a finite projective plane of order *n*. Then all the following hold:

(a) for each point *x* ∈ *X*, exactly *n* + 1 lines in *P* pass through *x*;
(b) |*X*| = *n*² + *n* + 1;
(c) |*P*| = *n*² + *n* + 1.

Let (X, \mathcal{P}) be a finite projective plane of order *n*. Then all the following hold:

(a) for each point x ∈ X, exactly n + 1 lines in P pass through x;
(b) |X| = n² + n + 1;
(c) |P| = n² + n + 1.

• We give an outline of the proof of (a). (The details are in the Lecture Notes.)

Let (X, \mathcal{P}) be a finite projective plane of order *n*. Then all the following hold:

(a) for each point x ∈ X, exactly n + 1 lines in P pass through x;
(b) |X| = n² + n + 1;
(c) |P| = n² + n + 1.

- We give an outline of the proof of (a). (The details are in the Lecture Notes.)
- The proof of (b) is in the Lecture Notes.

Let (X, \mathcal{P}) be a finite projective plane of order *n*. Then all the following hold:

(a) for each point x ∈ X, exactly n + 1 lines in P pass through x;
(b) |X| = n² + n + 1;
(c) |P| = n² + n + 1.

- We give an outline of the proof of (a). (The details are in the Lecture Notes.)
- The proof of (b) is in the Lecture Notes.
- We prove (c) after introducing "duality" (we use (a) and (b)).

Let (X, \mathcal{P}) be a finite projective plane of order *n*. Then all the following hold:

(a) for each point $x \in X$, exactly n + 1 lines in \mathcal{P} pass through x;

(b) $|X| = n^2 + n + 1;$ (c) $|\mathcal{P}| = n^2 + n + 1.$

Proof (outline).

Let (X, \mathcal{P}) be a finite projective plane of order *n*. Then all the following hold:

(a) for each point x ∈ X, exactly n + 1 lines in P pass through x;
(b) |X| = n² + n + 1;
(c) |P| = n² + n + 1.

Proof (outline).

Claim. For every point $x \in X$, there exists a line $P \in \mathcal{P}$ s.t. $x \notin P$.

Let (X, \mathcal{P}) be a finite projective plane of order *n*. Then all the following hold:

(a) for each point x ∈ X, exactly n + 1 lines in P pass through x;
(b) |X| = n² + n + 1;
(c) |P| = n² + n + 1.

Proof (outline).

Claim. For every point $x \in X$, there exists a line $P \in \mathcal{P}$ s.t. $x \notin P$.

Proof of the Claim (outline). Fix a point $x \in X$. Using (P0) from the definition of a finite projective plane, we fix a 4-element subset $Q \subseteq X$ s.t. for all $P \in \mathcal{P}$, $|Q \cap P| \leq 2$.

Let (X, \mathcal{P}) be a finite projective plane of order *n*. Then all the following hold:

(a) for each point x ∈ X, exactly n + 1 lines in P pass through x;
(b) |X| = n² + n + 1;
(c) |P| = n² + n + 1.

Proof (outline).

Claim. For every point $x \in X$, there exists a line $P \in \mathcal{P}$ s.t. $x \notin P$.

Proof of the Claim (outline). Fix a point $x \in X$. Using (P0) from the definition of a finite projective plane, we fix a 4-element subset $Q \subseteq X$ s.t. for all $P \in \mathcal{P}$, $|Q \cap P| \le 2$. Then $|Q \setminus \{x\}| \ge 3$; let $a, b, c \in Q \setminus \{x\}$ be pairwise distinct.

Claim. For every point $x \in X$, there exists a line $P \in \mathcal{P}$ s.t. $x \notin P$.

Proof of the Claim (outline, continued).

Then x belongs to at most one of \overline{ab} and \overline{ac} . This proves the Claim.

Let (X, \mathcal{P}) be a finite projective plane of order *n*. Then all the following hold:

(a) for each point x ∈ X, exactly n + 1 lines in P pass through x;
(b) |X| = n² + n + 1;
(c) |P| = n² + n + 1.

Proof of (a) (outline). Fix a point $x \in X$. By the Claim, there exists a line $P \in \mathcal{P}$ s.t. $x \notin P$. Since (X, \mathcal{P}) is of order *n*, we know that |P| = n + 1; set $P = \{x_0, x_1, \dots, x_n\}$.

At least n + 1 lines (namely,

 $\overline{xx_0}, \ldots, \overline{xx_n}$) pass through x.

Every line through x intersects

P, so $\overline{xx_0}, \ldots, \overline{xx_n}$ are the

only lines through x.

• We next introduce "duality."

- We next introduce "duality."
- Essentially, the "dual" of a finite projective plane is another finite projective plane, but with the roles of points and lines reveresed.

- We next introduce "duality."
- Essentially, the "dual" of a finite projective plane is another finite projective plane, but with the roles of points and lines reveresed.

Definition

For a set system (X, S), we define the *dual* of (X, S) to be the ordered pair (Y, T), where Y = S and

$$\mathcal{T} = \Big\{ \{ S \in \mathcal{S} \mid x \in S \} \mid x \in X \Big\}.$$

- We next introduce "duality."
- Essentially, the "dual" of a finite projective plane is another finite projective plane, but with the roles of points and lines reveresed.

Definition

For a set system (X, S), we define the *dual* of (X, S) to be the ordered pair (Y, T), where Y = S and

$$\mathcal{T} = \Big\{ \{ S \in \mathcal{S} \mid x \in S \} \mid x \in X \Big\}.$$

Example 2.1

Let
$$X = \{1, 2, 3\}$$
 and $S = \{A, B\}$, where $A = \{1, 2\}$ and $B = \{1, 3\}$. Then the dual of (X, S) is (Y, T) , where $Y = \{A, B\}$ and $T = \{\{A, B\}, \{A\}, \{B\}\}$.^a

^aIndeed $\{S \in S \mid 1 \in S\} = \{A, B\}, \{S \in S \mid 2 \in S\} = \{A\}$, and $\{S \in S \mid 3 \in S\} = \{B\}$.

The dual of a finite projective plane is again a finite projective plane.

The dual of a finite projective plane is again a finite projective plane.

Proof. Lecture Notes.

• But why is this "reasonable"?

The dual of a finite projective plane is again a finite projective plane.

- But why is this "reasonable"?
- Suppose (X, \mathcal{P}) is a finite projective plane.

The dual of a finite projective plane is again a finite projective plane.

- But why is this "reasonable"?
- Suppose (X, \mathcal{P}) is a finite projective plane.
- For each $x \in X$, let $R_x = \{P \in \mathcal{P} \mid x \in P\}$.

The dual of a finite projective plane is again a finite projective plane.

- But why is this "reasonable"?
- Suppose (X, \mathcal{P}) is a finite projective plane.
- For each $x \in X$, let $R_x = \{P \in \mathcal{P} \mid x \in P\}$.
- Set $Y = \mathcal{P}$ and $\mathcal{R} = \{R_x \mid x \in X\}$.

The dual of a finite projective plane is again a finite projective plane.

- But why is this "reasonable"?
- Suppose (X, \mathcal{P}) is a finite projective plane.
- For each $x \in X$, let $R_x = \{P \in \mathcal{P} \mid x \in P\}$.
- Set $Y = \mathcal{P}$ and $\mathcal{R} = \{R_x \mid x \in X\}$.
- Then by definition, (Y, \mathcal{R}) is the dual of (X, \mathcal{P}) .

The dual of a finite projective plane is again a finite projective plane.

Proof. Lecture Notes.

- But why is this "reasonable"?
- Suppose (X, \mathcal{P}) is a finite projective plane.
- For each $x \in X$, let $R_x = \{P \in \mathcal{P} \mid x \in P\}$.
- Set $Y = \mathcal{P}$ and $\mathcal{R} = \{R_x \mid x \in X\}.$
- Then by definition, (Y, \mathcal{R}) is the dual of (X, \mathcal{P}) .
- For all distinct $x_1, x_2 \in X$, there is a unique $P \in \mathcal{P}$ s.t. $x_1, x_2 \in P$.

• So, for all distinct $R_{x_1}, R_{x_2} \in \mathcal{R}$, $|R_{x_1} \cap R_{x_2}| = 1$.

The dual of a finite projective plane is again a finite projective plane.

- But why is this "reasonable"?
- Suppose (X, \mathcal{P}) is a finite projective plane.
- For each $x \in X$, let $R_x = \{P \in \mathcal{P} \mid x \in P\}$.
- Set $Y = \mathcal{P}$ and $\mathcal{R} = \{R_x \mid x \in X\}$.
- Then by definition, (Y, \mathcal{R}) is the dual of (X, \mathcal{P}) .
- For all distinct $x_1, x_2 \in X$, there is a unique $P \in \mathcal{P}$ s.t. $x_1, x_2 \in P$.
 - So, for all distinct $R_{x_1}, R_{x_2} \in \mathcal{R}$, $|R_{x_1} \cap R_{x_2}| = 1$.
- For all distinct $P_1, P_2 \in \mathcal{P}$, $|P_1 \cap P_2| = 1$.
 - So, for all distinct $P_1, P_2 \in \mathcal{P}$, there is a unique $R_x \in \mathcal{R}$ s.t. $P_1, P_2 \in R_x$.

The dual of a finite projective plane is again a finite projective plane.

- But why is this "reasonable"?
- Suppose (X, \mathcal{P}) is a finite projective plane.
- For each $x \in X$, let $R_x = \{P \in \mathcal{P} \mid x \in P\}$.
- Set $Y = \mathcal{P}$ and $\mathcal{R} = \{R_x \mid x \in X\}$.
- Then by definition, (Y, \mathcal{R}) is the dual of (X, \mathcal{P}) .
- For all distinct $x_1, x_2 \in X$, there is a unique $P \in \mathcal{P}$ s.t. $x_1, x_2 \in P$.
 - So, for all distinct $R_{x_1}, R_{x_2} \in \mathcal{R}$, $|R_{x_1} \cap R_{x_2}| = 1$.
- For all distinct $P_1, P_2 \in \mathcal{P}$, $|P_1 \cap P_2| = 1$.
 - So, for all distinct $P_1, P_2 \in \mathcal{P}$, there is a unique $R_x \in \mathcal{R}$ s.t. $P_1, P_2 \in R_x$.
- So, (P1) and (P2) are satisfied for the dual.

The dual of a finite projective plane is again a finite projective plane.

- But why is this "reasonable"?
- Suppose (X, \mathcal{P}) is a finite projective plane.
- For each $x \in X$, let $R_x = \{P \in \mathcal{P} \mid x \in P\}$.
- Set $Y = \mathcal{P}$ and $\mathcal{R} = \{R_x \mid x \in X\}$.
- Then by definition, (Y, \mathcal{R}) is the dual of (X, \mathcal{P}) .
- For all distinct $x_1, x_2 \in X$, there is a unique $P \in \mathcal{P}$ s.t. $x_1, x_2 \in P$.
 - So, for all distinct $R_{x_1}, R_{x_2} \in \mathcal{R}$, $|R_{x_1} \cap R_{x_2}| = 1$.
- For all distinct $P_1, P_2 \in \mathcal{P}$, $|P_1 \cap P_2| = 1$.
 - So, for all distinct $P_1, P_2 \in \mathcal{P}$, there is a unique $R_x \in \mathcal{R}$ s.t. $P_1, P_2 \in R_x$.
- So, (P1) and (P2) are satisfied for the dual.
- A bit more work for (P0).

The dual of a finite projective plane is again a finite projective plane.

The dual of a finite projective plane is again a finite projective plane.

Theorem 1.4

Let (X, \mathcal{P}) be a finite projective plane of order *n*. Then all the following hold:

(a) for each point x ∈ X, exactly n + 1 lines in P pass through x;
(b) |X| = n² + n + 1;
(c) |P| = n² + n + 1.

Proof of (c).

The dual of a finite projective plane is again a finite projective plane.

Theorem 1.4

Let (X, \mathcal{P}) be a finite projective plane of order *n*. Then all the following hold:

(a) for each point x ∈ X, exactly n + 1 lines in P pass through x;
(b) |X| = n² + n + 1;
(c) |P| = n² + n + 1.

Proof of (c). By Theorem 2.2, the dual (Y, \mathcal{R}) of (X, \mathcal{P}) is a finite projective plane.

The dual of a finite projective plane is again a finite projective plane.

Theorem 1.4

Let (X, \mathcal{P}) be a finite projective plane of order *n*. Then all the following hold:

(a) for each point x ∈ X, exactly n + 1 lines in P pass through x;
(b) |X| = n² + n + 1;
(c) |P| = n² + n + 1.

Proof of (c). By Theorem 2.2, the dual (Y, \mathcal{R}) of (X, \mathcal{P}) is a finite projective plane. We have $Y = \mathcal{P}$ and $\mathcal{R} = \{R_x \mid x \in X\}$, where $R_x = \{P \in \mathcal{P} \mid x \in P\}$ for all $x \in X$.

The dual of a finite projective plane is again a finite projective plane.

Theorem 1.4

Let (X, \mathcal{P}) be a finite projective plane of order *n*. Then all the following hold:

(a) for each point x ∈ X, exactly n + 1 lines in P pass through x;
(b) |X| = n² + n + 1;
(c) |P| = n² + n + 1.

Proof of (c). By Theorem 2.2, the dual (Y, \mathcal{R}) of (X, \mathcal{P}) is a finite projective plane. We have $Y = \mathcal{P}$ and $\mathcal{R} = \{R_x \mid x \in X\}$, where $R_x = \{P \in \mathcal{P} \mid x \in P\}$ for all $x \in X$. By (a), each R_x contains exactly n + 1 members of \mathcal{P} .

The dual of a finite projective plane is again a finite projective plane.

Theorem 1.4

Let (X, \mathcal{P}) be a finite projective plane of order *n*. Then all the following hold:

(a) for each point x ∈ X, exactly n + 1 lines in P pass through x;
(b) |X| = n² + n + 1;
(c) |P| = n² + n + 1.

Proof of (c). By Theorem 2.2, the dual (Y, \mathcal{R}) of (X, \mathcal{P}) is a finite projective plane. We have $Y = \mathcal{P}$ and $\mathcal{R} = \{R_x \mid x \in X\}$, where $R_x = \{P \in \mathcal{P} \mid x \in P\}$ for all $x \in X$. By (a), each R_x contains exactly n + 1 members of \mathcal{P} . So, the order of (Y, \mathcal{R}) is n.

The dual of a finite projective plane is again a finite projective plane.

Theorem 1.4

Let (X, \mathcal{P}) be a finite projective plane of order *n*. Then all the following hold:

(a) for each point x ∈ X, exactly n + 1 lines in P pass through x;
(b) |X| = n² + n + 1;
(c) |P| = n² + n + 1.

Proof of (c). By Theorem 2.2, the dual (Y, \mathcal{R}) of (X, \mathcal{P}) is a finite projective plane. We have $Y = \mathcal{P}$ and $\mathcal{R} = \{R_x \mid x \in X\}$, where $R_x = \{P \in \mathcal{P} \mid x \in P\}$ for all $x \in X$. By (a), each R_x contains exactly n + 1 members of \mathcal{P} . So, the order of (Y, \mathcal{R}) is n. By (b), $|Y| = n^2 + n + 1$.

The dual of a finite projective plane is again a finite projective plane.

Theorem 1.4

Let (X, \mathcal{P}) be a finite projective plane of order *n*. Then all the following hold:

(a) for each point x ∈ X, exactly n + 1 lines in P pass through x;
(b) |X| = n² + n + 1;
(c) |P| = n² + n + 1.

Proof of (c). By Theorem 2.2, the dual (Y, \mathcal{R}) of (X, \mathcal{P}) is a finite projective plane. We have $Y = \mathcal{P}$ and $\mathcal{R} = \{R_x \mid x \in X\}$, where $R_x = \{P \in \mathcal{P} \mid x \in P\}$ for all $x \in X$. By (a), each R_x contains exactly n + 1 members of \mathcal{P} . So, the order of (Y, \mathcal{R}) is n. By (b), $|Y| = n^2 + n + 1$. So, $|\mathcal{P}| = n^2 + n + 1$. This proves (c).