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Lecture #4

Finite projective planes (part I)

Irena Penev

1 Finite projective planes: definition and basic
properties

For a set X, the power set of X, denoted by P(X), is the set of all subsets
of X. For example, if X = {1, 2, 3}, then

P(X) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

Obviously, for any set X, we have that ∅ ∈P(X) and X ∈P(X). Further-
more, if X is finite, then |P(X)| = 2|X|.

A set system is an ordered pair (X,S) such that X is a set (called the
ground set) and S ⊆P(X).

A finite projective plane is set system (X,P) such that X is a finite, and
the following three properties are satisfied:

(P0) there exists a 4-element subset Q ⊆ X such that every P ∈ P satisfies
|P ∩Q| ≤ 2;

(P1) all distinct P1, P2 ∈ P satisfy |P1 ∩ P2| = 1;

(P2) for all distinct x1, x2 ∈ X, there exists a unique P ∈ P such that
x1, x2 ∈ P .

If (X,P) is a finite projective plane, then members of X are called points,
and members of P are called lines. For a point x ∈ X and a line P ∈ P
such that x ∈ P , we say that the line P is incident with the point x, or that
P contains x, or that P passes through x. For distinct points a, b ∈ X, we
denote by ab the unique line in P that contains a and b (the existence and
uniqueness of such a line follow from (P2)).

Finite projective planes (defined above) and the usual Euclidean planes
(i.e. planes that you studied in high school) have some obvious similarities,
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Figure 1.1: The Fano plane.
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Figure 1.2: The incidence graph of the Fano plane.

but also some obvious differences. In a Euclidean plane, two distinct lines
may intersect in at most one point, but distinct, parallel lines have an empty
intersection. In finite projective planes, there are no “parallel lines”: by (P1),
two distinct lines always intersect in exactly one point, called their point
of intersection or intersection point. Property (P2) from the definition of a
finite projective plane is the same as for the Euclidean plane.

Example 1.1. Let X = {1, 2, 3, 4, 5, 6, 7} and P = {a, b, c, d, e, f, g}, where

• a = {1, 2, 3},

• b = {3, 4, 5},

• c = {5, 6, 1},

• d = {5, 7, 2},

• e = {1, 7, 4},

• f = {3, 7, 6},

• g = {2, 4, 6}.

Then (X,P) is a finite projective plane,1 called the Fano plane (see Fig-
ure 1.1).

Note that in Figure 1.1, the seven lines of the Fano plane are represented
by six line segments and one circle. However, formally, each line of the Fano

1It is easy to check that (P1) and (P2) are satisfied. For (P0), we can take, for instance,
Q = {1, 3, 5, 7}.
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plane is simply a set of three points. Drawings such as the one in Figure 1.1
can sometimes be useful for guiding our intuition. However, formal proofs
should never rely on such pictures; instead, they should rely solely on the
definition of a finite projective plane or on results (propositions, lemmas,
theorems) proven about them.2

To each finite projective plane (X,P), we associate an “incidence graph”
defined as follows. The incidence graph of a finite projective plane (X,P)
is a bipartite graph with bipartition (X,P),3 in which x ∈ X and P ∈ P
are adjacent if and only if x ∈ P . The incidence graph of the Fano plane is
represented in Figure 1.2.

Note that each line of the Fano plane (see Example 1.1 and Figure 1.1)
contains the same number of points. As our next proposition shows, this is
not an accident.

Proposition 1.2. Let (X,P) be a finite projective plane. Then all lines in
P have the same number of points.

Proof. Fix P1, P2 ∈ P. We must show that |P1| = |P2|.

Claim. There exists a point z ∈ X such that z /∈ P1 ∪ P2.

Proof of the Claim. First, using (P0) from the definition of a finite projective
plane, we fix a 4-element subset Q ⊆ X such that for all P ∈ P, we have
that |Q ∩ P | ≤ 2. If Q 6⊆ P1 ∪ P2, then we take any z ∈ Q \ (P1 ∪ P2), and
we are done. So assume that Q ⊆ P1 ∪ P2.

Since |Q| = 4 and |Q∩P1|, |Q∩P2| ≤ 2, we now deduce that Q∩P1 and
Q ∩ P2 are disjoint and each contain exactly two points. Set Q ∩ P1 = {a, b}
and Q ∩ P2 = {c, d}. We now consider the lines Pac := ac and Pbd := bd.4

Since no line in P contains more than two points of Q, and since a, c ∈ Q∩Pac,
we see that Q∩Pac = {a, c}. Similarly, Q∩Pbd = {b, d}. Since P1, P2, Pac, Pbd

have pairwise distinct intersections with the set Q, we see that the lines
P1, P2, Pac, Pbd are pairwise distinct.

Now, by (P1), we have that |Pac ∩ Pbd| = 1; set Pac ∩ Pbd = {z} (see the
picture below).

2The proofs of those results must, ultimately, rely only on the definition of a finite
projective plane.

3So, in our incidence graph, X and P are stable (i.e. independent) sets. (A stable set,
also called an independent set, in a graph G is any set of pairwise non-adjacent vertices of
G.)

4Recall that, by (P2), there exists a unique line in P that contains both a and c, and
according to our notation, this line is denoted ac. For convenience, we set Pac = ac. Similar
remarks holds for b, d.
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Since Pac ∩Q and Pbd ∩Q are disjoint, we see that z /∈ Q. If z ∈ P1, then
a, z ∈ P1 ∩ Pac, which is impossible because a, z are distinct points,5 P1, Pac

are distinct lines, and by (P1), any two distinct lines intersect in exactly one
point. Thus, z /∈ P1, and similarly, z /∈ P2. This proves the Claim. �

Let z be as in the Claim. We now define a function ϕ : P1 → P2, as
follows. For all x ∈ P1, let ϕ(x) be the unique point in the intersection of
the lines xz and P2 (see the picture below); by (P1) and (P2), our function
ϕ is well-defined.6

z x ϕ(x)

P1 P2

Let us check that ϕ : P1 → P2 is surjective (i.e. onto). Fix y ∈ P2, and let x
be the point of intersection of the lines P1 and yz.7 Then y is the point of
intersection of lines xz and P2, and it follows that y = ϕ(x). So, ϕ : P1 → P2

is surjective. This implies that |P1| ≥ |P2|. By symmetry, we also have that
|P2| ≥ |P1|, and we deduce that |P1| = |P2|.

The order of a finite projective plane (X,P) is the number |P | − 1, where

5We know that a 6= z because a ∈ Q and z /∈ Q.
6Let us check that this in detail. First, since z /∈ P1, we know that for all x ∈ P1, we

have that x 6= z, and so by (P2), there is exactly one line (which we denoted by xz) that
passes through x and z; furthermore, since z /∈ P2, we have that xz and P2 are distinct
lines, and so (P1) guarantees that xz and P2 intersect in exactly one point, and we call
this point ϕ(x). Thus, ϕ is well-defined. (We remark that it is possible that P1 = P2; in
this case, the function ϕ is simply the identity function on P1 = P2, that is, ϕ(x) = x for
all x ∈ P1.)

7Check that x exists and is unique!
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P is any line in P.8 By Proposition 1.2, this is well-defined. Note that the
Fano plane has order two. Furthermore, the following proposition shows that
the order of any finite projective plane is at least two.

Proposition 1.3. The order of any finite projective plane is at least two.

Proof. Let (X,P) be a finite projective plane. It suffices to show that some
line in P passes through at least three points. Using (P0) from the definition
of a finite projective plane, we fix a 4-element subset Q ⊆ X such that for
all P ∈ P, we have that |Q ∩ P | ≤ 2. Set Q = {a, b, c, d}. Consider the
lines Pab := ab and Pcd := cd. Since Q intersects each line in P in at most
two points, we see that Q ∩ Pab = {a, b} and Q ∩ Pcd = {c, d}; in particular,
Pab 6= Pcd. By (P1), Pab and Pcd intersect in exactly one point, call it z.
Since Q ∩ Pab and Q ∩ Pcd are disjoint, we see that z /∈ Q. But now Pab

contains at least three points, namely a, b, z.

Theorem 1.4. Let (X,P) be a finite projective plane of order n.9 Then all
the following hold:

(a) for each point x ∈ X, exactly n + 1 lines in P pass through x;

(b) |X| = n2 + n + 1;

(c) |P| = n2 + n + 1.

Proof of (a) and (b). We begin by proving an auxiliary claim.

Claim. For every point x ∈ X, there exists a line P ∈ P such
that x /∈ P .

Proof of the Claim. Fix a point x ∈ X. Using (P0) from the definition of
a finite projective plane, we fix a 4-element subset Q ⊆ X such that for all
P ∈ P , we have that |Q∩P | ≤ 2. Clearly, |Q\{x}| ≥ 3. Let a, b, c ∈ Q\{x}
be pairwise distinct. It now suffices to show that x belongs to at most one
of ab and ac. Suppose otherwise, i.e. suppose that x belongs both to ab and
to ac. Then the lines ab and ac have at least two points (namely, a and x)
in common, and so by (P2), we have that ab = ac. But now the line ab = ac
contains at least three points (namely, a, b, c) of Q, a contradiction. This
proves the Claim. �

We now prove (a). Fix a point x ∈ X. By the Claim, there exists a line
P ∈ P such that x /∈ P . Since (X,P) is of order n, we know that |P | = n+1;
set P = {x0, x1, . . . , xn}. By (P2), the lines xx0, xx1, . . . , xxn are pairwise

8So, if (X,P) is a finite projective plane of order n, then each line in P contains exactly
n + 1 points.

9By Proposition 1.3, we have that n ≥ 2.
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distinct,10 and they all contain x. So, there are at least n + 1 lines passing
through x. On the other hand, by (P1), any line passing though x intersects
the line P in one of the points x0, x1, . . . , xn, and is therefore (by (P2)) equal
to one of xx0, . . . , xx1, xxn. Thus, exactly n + 1 lines pass through x. This
proves (a).

We now prove (b). Fix any line P ∈ P. Since (X,P) is of order n, we
know that |P | = n + 1; set P = {x0, x1, . . . , xn}. Since every line in P has
n + 1 points, the Claim guarantees that |X| ≥ n + 2; consequently, P $ X.
Fix any a ∈ X \ P . For each i ∈ {0, 1, . . . , n}, we set Pi := axi (see the
picture below).

a

x0

x1

xn

P0

P1

Pn

P

By (P2), lines P0, P1, . . . , Pn are pairwise distinct,11 and so by (P1), any
two of them have exactly one point in common. Since a lies on each of
P0, P1, . . . , Pn, we see that Pi ∩ Pj = {a} for all distinct i, j ∈ {0, 1, . . . , n};
consequently, P0 \{a}, P1 \{a}, . . . , Pn \{a} are pairwise disjoint. Now, since
(X,P) is of order n, we know that P0, P1, . . . , Pn each have n+ 1 points, and
we deduce that

|P0 ∪ P1 ∪ · · · ∪ Pn| = |{a}|+ |P0 \ {a}|+ |P1 \ {a}|+ · · ·+ |Pn \ {a}|

= 1 + (n + 1)n

= n2 + n + 1.

It now remains to show that X = P0 ∪P1 ∪ · · · ∪Pn; in fact, we only need to
show that X ⊆ P0 ∪P1 ∪ · · · ∪Pn, for the reverse inclusion is immediate. Fix
a point x ∈ X; we must show that x belongs to at least one of P0, P1, . . . , Pn.
We may assume that x 6= a, for otherwise we are done. The line R := xa is
distinct from P (because a ∈ R, but a /∈ P ), and so by (P1), |P ∩ R| = 1.
Since P = {x0, x1, . . . , xn}, it follows that there exists some i ∈ {0, 1, . . . , n}

10Indeed, suppose that for some distinct i, j ∈ {0, 1, . . . , n}, we had xxi = xxj . Now
the line xxi = xxj contains both xi and xj . On the other hand, we know that the line P
contains both xi and xj . By (P2), there is exactly one line that contains both xi and xj ,
and we deduce that P = xxi = xxj . But this implies that x ∈ P , contrary to the choice of
P .

11This is analogous to the argument from footnote 10.
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such that P ∩R = {xi}. Now lines Pi and R have at least two points (namely,
a and xi) in common, and so by (P2), we have that R = Pi. Since x ∈ R,
we deduce that x ∈ Pi. This completes the argument.

We postpone the proof of Theorem 1.4(c) to the end of section 2.

2 Duality

In this section, we show (roughly speaking) that by swapping the roles of
points and lines of a finite projective plane, we obtain another finite projective
plane (called the “dual” of the original finite projective plane).

Let us be more precise. For a set system (X,S), we define the dual of
(X,S) to be the ordered pair (Y, T ), where Y = S and

T =
{
{S ∈ S | x ∈ S} | x ∈ X

}
.

Example 2.1. Let X = {1, 2, 3} and S = {A,B}, where A = {1, 2} and
B = {1, 3}. Then the dual of (X,S) is (Y, T ), where Y = {A,B} and

T =
{
{A,B}, {A}, {B}

}
.12

Theorem 2.2 (below) states that the dual of a finite projective plane is
again a finite projective plane. Before giving a formal proof, let us try to
give some intuition behind this. If (X,P) is a finite projective plane, and
(Y,R) is its dual, then the lines of (X,P) become points of (Y,R) (indeed,
by definition, Y = P). Furthermore, points of (X,P) correspond to the
lines of (Y,R) in a natural way: a point x ∈ X corresponds to the line
Rx := {P ∈ P | x ∈ P} ∈ R. The incidence graphs of (X,P) and (Y,R)
are isomoprhic (i.e. identical up to a relabeling of the vertices), except that
points turn into lines and vice versa.

Theorem 2.2. The dual of a finite projective plane is again a finite projective
plane.

Proof. Let (X,P) be a finite projective plane, and let (Y,R) be its dual. To
simplify notation, for all x ∈ X, we set Rx = {P ∈ P | x ∈ P}. We now have
that Y = P and R = {Rx | x ∈ X}.13 Obviously, for all x ∈ X, we have that
Rx ⊆ P = Y , and consequently Rx ∈ P(Y ); thus, R ⊆ P(Y ), i.e. (Y,R)
is a set system. Furthermore, since X is finite, and since Y = P ⊆ P(X),
we have that Y is finite. It now remains to show that (Y,R) satisfies (P0),
(P1), and (P2).

We first prove that (Y,R) satisfies (P0). Since (X,P) is a finite projective
plane, (P0) guarantees that there exists a 4-element set Q ⊆ X such that

12Indeed {S ∈ S | 1 ∈ S} = {A,B}, {S ∈ S | 2 ∈ S} = {A}, and {S ∈ S | 3 ∈ S} = {B}.
13It is not hard to show (details?) that for all x1, x2 ∈ X, we have that Rx1 = Rx2 if

and only if x1 = x2. However, we will not use this fact.
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for all P ∈ P, we have that |Q ∩ P | ≤ 2. Set Q = {a, b, c, d}. Further,
set P1 = ab, P2 = bc, P3 = cd, and P4 = da. Since |Q ∩ P | ≤ 2 for all
P ∈ P , we now deduce that Q∩P1 = {a, b}, Q∩P2 = {b, c}, Q∩P3 = {c, d},
and Q ∩ P4 = {d, a}; in particular, every point of Q belongs to exactly two
of P1, P2, P3, P4. Now, set Q∗ = {P1, P2, P3, P4}; we must show that no
element of R contains more than two elements of Q∗. Suppose otherwise.
Then there exist some x ∈ X and pairwise distinct i, j, k ∈ {1, 2, 3} such
that Pi, Pj , Pk ∈ Rx; consequently, x ∈ Pi ∩ Pj ∩ Pk. Since each point in Q
belongs to exactly two of P1, P2, P3, P4, whereas x belongs to at least three of
them, we see that x /∈ Q. On the other hand, for any three of P1, P2, P3, P4,
some two of them have a point of Q in common. So, some two of Pi, Pj , Pk,
have at least two points in common (namely, one point of Q, plus the point
x) and are therefore (by (P2) applied to (X,P)) identical, a contradiction.
This proves that (Y,R) satisfies (P0).

We next show that (Y,R) satisfies (P1). Fix distinct R1, R2 ∈ R; we
must show that |R1 ∩R2| = 1. By the construction of R, there exist some
x1, x2 ∈ X such that R1 = Rx1 and R2 = Rx2 ; since R1 6= R2, we have
that x1 6= x2. Now, R1 ∩ R2 = {P ∈ P | x1, x2 ∈ P}. By (P2) for (X,P),
there is exactly one P ∈ P such that x1, x2 ∈ P ; so, R1 ∩R2 = {P}, and in
particular, |R1 ∩R2| = 1. Thus, (Y,R) satisfies (P1).

It remains to show that (Y,R) satisfies (P2). Fix distinct P1, P2 ∈ Y (=
P); we must show that there is exactly one member of R that contains both
P1 and P2. By (P1) for (X,P), we know that |P1∩P2| = 1; set P1∩P2 = {x0}.
So, Rx0 is the only member of R that contains both P1 and P2. Thus, (Y,R)
satisfies (P2).

Notation: The dual of a finite projective plane (X,P) is sometimes
denoted by (X,P)∗.

We complete this section by proving Theorem 1.4(c), as follows. Let
(X,P) be a finite projective plane of order n; we must show that |P| =
n2 + n + 1. By Theorem 2.2, (Y,R) := (X,P)∗ is also a finite projective
plane. By Theorem 1.4(a), we have that for all x ∈ X, there are exactly n+ 1
lines P ∈ P that contain x. It then follows from the construction that all
R ∈ R satisfy |R| = n+ 1.14 So, the finite projective plane (Y,R) is of order
n. By Theorem 1.4(b), we now have that |Y | = n2 + n + 1. But Y = P , and
so |P| = n2 + n + 1, which is what we needed to show.

14Let us check this. First, for all x ∈ X, we set Rx = {P ∈ P | x ∈ P}, as in the proof
of Theorem 2.2. Since every point in X belongs to precisely n + 1 lines in P, we see that
for all x ∈ X, we have that |Rx| = n + 1. Since R = {Rx | x ∈ X}, we deduce that all
members of R have precisely n + 1 elements.
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