NDMI011: Combinatorics and Graph Theory 1

Lecture #3

Generating functions (part II)

Irena Penev

October 12, 2020

Basic operations with generating functions;

- Basic operations with generating functions;
- 2 Application #1: counting binary trees;

- Basic operations with generating functions;
- Application #1: counting binary trees;
- **3** Application #2: random walks.

Definition

Suppose $\{a_n\}_{n=0}^{\infty}$ is some infinite sequence of real (or complex) numbers. The generating function of this sequence is the power series

$$\sum_{n=0}^{\infty} a_n x^n.$$

Definition

Suppose $\{a_n\}_{n=0}^{\infty}$ is some infinite sequence of real (or complex) numbers. The generating function of this sequence is the power series

$$\sum_{n=0}^{\infty} a_n x^n.$$

• Let $\{a_n\}_{n=0}^{\infty}$ and $\{b_n\}_{n=0}^{\infty}$ be sequences with corresponding generating functions $a(x) = \sum_{n=0}^{\infty} a_n x^n$ and $b(x) = \sum_{n=0}^{\infty} b_n x^n$, and let α be a constant.

Definition

Suppose $\{a_n\}_{n=0}^{\infty}$ is some infinite sequence of real (or complex) numbers. The generating function of this sequence is the power series

$$\sum_{n=0}^{\infty} a_n x^n.$$

- Let $\{a_n\}_{n=0}^{\infty}$ and $\{b_n\}_{n=0}^{\infty}$ be sequences with corresponding generating functions $a(x) = \sum_{n=0}^{\infty} a_n x^n$ and $b(x) = \sum_{n=0}^{\infty} b_n x^n$, and let α be a constant.
 - (1) The generating function of the sequence $\{a_n + b_n\}_{n=0}^{\infty}$ is a(x) + b(x).

Definition

Suppose $\{a_n\}_{n=0}^{\infty}$ is some infinite sequence of real (or complex) numbers. The generating function of this sequence is the power series

$$\sum_{n=0}^{\infty} a_n x^n.$$

- Let $\{a_n\}_{n=0}^{\infty}$ and $\{b_n\}_{n=0}^{\infty}$ be sequences with corresponding generating functions $a(x) = \sum_{n=0}^{\infty} a_n x^n$ and $b(x) = \sum_{n=0}^{\infty} b_n x^n$, and let α be a constant.
 - (1) The generating function of the sequence $\{a_n + b_n\}_{n=0}^{\infty}$ is a(x) + b(x).

(2) The generating function of the sequence $\{a_n - b_n\}_{n=0}^{\infty}$ is a(x) - b(x).

Definition

Suppose $\{a_n\}_{n=0}^{\infty}$ is some infinite sequence of real (or complex) numbers. The generating function of this sequence is the power series

$$\sum_{n=0}^{\infty} a_n x^n.$$

- Let $\{a_n\}_{n=0}^{\infty}$ and $\{b_n\}_{n=0}^{\infty}$ be sequences with corresponding generating functions $a(x) = \sum_{n=0}^{\infty} a_n x^n$ and $b(x) = \sum_{n=0}^{\infty} b_n x^n$, and let α be a constant.
 - (1) The generating function of the sequence $\{a_n + b_n\}_{n=0}^{\infty}$ is a(x) + b(x).
 - (2) The generating function of the sequence $\{a_n b_n\}_{n=0}^{\infty}$ is a(x) b(x).
 - (3) The generating function of the sequence $\{\alpha a_n\}_{n=0}^{\infty}$ is $\alpha a(x)$.

• Let $\{a_n\}_{n=0}^{\infty}$ and $\{b_n\}_{n=0}^{\infty}$ be sequences with corresponding generating functions $a(x) = \sum_{n=0}^{\infty} a_n x^n$ and $b(x) = \sum_{n=0}^{\infty} b_n x^n$, and let α be a constant.

- Let $\{a_n\}_{n=0}^{\infty}$ and $\{b_n\}_{n=0}^{\infty}$ be sequences with corresponding generating functions $a(x) = \sum_{n=0}^{\infty} a_n x^n$ and $b(x) = \sum_{n=0}^{\infty} b_n x^n$, and let α be a constant.
 - (4) For an integer $k \ge 1$, the generating function of the sequence $\underbrace{0, \ldots, 0}_{k}, a_0, a_1, a_2, \ldots$ is $x^k a(x)$.

- Let $\{a_n\}_{n=0}^{\infty}$ and $\{b_n\}_{n=0}^{\infty}$ be sequences with corresponding generating functions $a(x) = \sum_{n=0}^{\infty} a_n x^n$ and $b(x) = \sum_{n=0}^{\infty} b_n x^n$, and let α be a constant.
 - (4) For an integer $k \ge 1$, the generating function of the sequence $\underbrace{0, \ldots, 0}_{k=1}, a_0, a_1, a_2, \ldots$ is $x^k a(x)$.
 - (5) For an integer $k \ge 1$, the generating function of the sequence $\{a_{n+k}\}_{n=0}^{\infty}$, i.e. the sequence $a_k, a_{k+1}, a_{k+2}, \ldots$, is $\frac{1}{x^k} \left(a(x) \sum_{i=0}^{k-1} a_i x^i\right)$.

- Let $\{a_n\}_{n=0}^{\infty}$ and $\{b_n\}_{n=0}^{\infty}$ be sequences with corresponding generating functions $a(x) = \sum_{n=0}^{\infty} a_n x^n$ and $b(x) = \sum_{n=0}^{\infty} b_n x^n$, and let α be a constant.
 - (4) For an integer $k \ge 1$, the generating function of the sequence $0, \ldots, 0, a_0, a_1, a_2, \ldots$ is $x^k a(x)$.
 - (5) For an integer $k \ge 1$, the generating function of the sequence $\{a_{n+k}\}_{n=0}^{\infty}$, i.e. the sequence $a_k, a_{k+1}, a_{k+2}, \ldots$, is $\frac{1}{x^k} \left(a(x) \sum_{i=0}^{k-1} a_i x^i\right)$.
 - For example, the generating function of the sequence

$$a_3, a_4, a_5, \dots$$
 is $\frac{1}{x^3} \Big(a(x) - (a_0 + a_1 x + a_2 x^2) \Big).$

- Let $\{a_n\}_{n=0}^{\infty}$ and $\{b_n\}_{n=0}^{\infty}$ be sequences with corresponding generating functions $a(x) = \sum_{n=0}^{\infty} a_n x^n$ and $b(x) = \sum_{n=0}^{\infty} b_n x^n$, and let α be a constant.
 - (4) For an integer $k \ge 1$, the generating function of the sequence $0, \ldots, 0, a_0, a_1, a_2, \ldots$ is $x^k a(x)$.
 - (5) For an integer $k \ge 1$, the generating function of the sequence $\{a_{n+k}\}_{n=0}^{\infty}$, i.e. the sequence $a_k, a_{k+1}, a_{k+2}, \dots$, is $\frac{1}{x^k} \left(a(x) \sum_{i=0}^{k-1} a_i x^i\right)$.

• For example, the generating function of the sequence a_3, a_4, a_5, \ldots is $\frac{1}{x^3} \left(a(x) - (a_0 + a_1x + a_2x^2) \right)$.

(6) The generating function of the sequence $\{\alpha^n a_n\}_{n=0}^{\infty}$ is $c(x) = a(\alpha x)$.

- Let $\{a_n\}_{n=0}^{\infty}$ and $\{b_n\}_{n=0}^{\infty}$ be sequences with corresponding generating functions $a(x) = \sum_{n=0}^{\infty} a_n x^n$ and $b(x) = \sum_{n=0}^{\infty} b_n x^n$, and let α be a constant.
 - (4) For an integer $k \ge 1$, the generating function of the sequence $\underbrace{0, \ldots, 0}_{0, a_1, a_2, \ldots}$ is $x^k a(x)$.
 - (5) For an integer $k \ge 1$, the generating function of the sequence $\{a_{n+k}\}_{n=0}^{\infty}$, i.e. the sequence $a_k, a_{k+1}, a_{k+2}, \dots$, is $\frac{1}{x^k} \left(a(x) \sum_{i=0}^{k-1} a_i x^i\right)$.

• For example, the generating function of the sequence

$$a_3, a_4, a_5, \ldots$$
 is $\frac{1}{x^3} \Big(a(x) - (a_0 + a_1 x + a_2 x^2) \Big).$

(6) The generating function of the sequence $\{\alpha^n a_n\}_{n=0}^{\infty}$ is $c(x) = a(\alpha x)$.

• For instance, since $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$ is the generating function of

1, 1, 1, 1, 1, ..., we see that
$$\frac{1}{1-2x} (= \sum_{n=0}^{\infty} 2^n x^n)$$
 is the generating function of 1, 2, 4, 8, 16, ...,

• Let $\{a_n\}_{n=0}^{\infty}$ and $\{b_n\}_{n=0}^{\infty}$ be sequences with corresponding generating functions $a(x) = \sum_{n=0}^{\infty} a_n x^n$ and $b(x) = \sum_{n=0}^{\infty} b_n x^n$, and let α be a constant.

- Let $\{a_n\}_{n=0}^{\infty}$ and $\{b_n\}_{n=0}^{\infty}$ be sequences with corresponding generating functions $a(x) = \sum_{n=0}^{\infty} a_n x^n$ and $b(x) = \sum_{n=0}^{\infty} b_n x^n$, and let α be a constant.
 - (7) For an integer $k \ge 1$, the generating function of the sequence

- Let $\{a_n\}_{n=0}^{\infty}$ and $\{b_n\}_{n=0}^{\infty}$ be sequences with corresponding generating functions $a(x) = \sum_{n=0}^{\infty} a_n x^n$ and $b(x) = \sum_{n=0}^{\infty} b_n x^n$, and let α be a constant.
 - (7) For an integer $k \ge 1$, the generating function of the sequence

$$a_{0}, \underbrace{0, \dots, 0}_{k}, a_{1}, \underbrace{0, \dots, 0}_{k}, a_{2}, \underbrace{0, \dots, 0}_{k}, a_{3}, \dots$$

is $a(x^{k+1})$.
• For instance, the generating function of the sequence
 $a_{0}, 0, 0, a_{1}, 0, 0, a_{2}, 0, 0, a_{3}, \dots$ is $a(x^{3}) (= \sum_{n=0}^{\infty} a_{n} x^{3n})$.

• Let $\{a_n\}_{n=0}^{\infty}$ and $\{b_n\}_{n=0}^{\infty}$ be sequences with corresponding generating functions $a(x) = \sum_{n=0}^{\infty} a_n x^n$ and $b(x) = \sum_{n=0}^{\infty} b_n x^n$, and let α be a constant.

- Let $\{a_n\}_{n=0}^{\infty}$ and $\{b_n\}_{n=0}^{\infty}$ be sequences with corresponding generating functions $a(x) = \sum_{n=0}^{\infty} a_n x^n$ and $b(x) = \sum_{n=0}^{\infty} b_n x^n$, and let α be a constant.
 - (8) The generating function of the sequence $\{(n+1)a_{n+1}\}_{n=0}^{\infty}$, i.e. the sequence $a_1, 2a_2, 3a_3, 4a_4, \ldots$, is a'(x).

The generating function for the sequence $0, a_0, \frac{1}{2}a_1, \frac{1}{3}a_2, \frac{1}{4}a_3, \dots$ is $\int_0^x a(t)dt$.

(We differentiate and integrate power series term-by-term.)

- Let $\{a_n\}_{n=0}^{\infty}$ and $\{b_n\}_{n=0}^{\infty}$ be sequences with corresponding generating functions $a(x) = \sum_{n=0}^{\infty} a_n x^n$ and $b(x) = \sum_{n=0}^{\infty} b_n x^n$, and let α be a constant.
 - (8) The generating function of the sequence $\{(n+1)a_{n+1}\}_{n=0}^{\infty}$, i.e. the sequence $a_1, 2a_2, 3a_3, 4a_4, \ldots$, is a'(x).

The generating function for the sequence $0, a_0, \frac{1}{2}a_1, \frac{1}{3}a_2, \frac{1}{4}a_3, \dots$ is $\int_0^x a(t)dt$.

(We differentiate and integrate power series term-by-term.)
 (9) The function c(x) = a(x)b(x) is the generating function of the sequence {c_n}_{n=0}[∞], where c_n = ∑_{i=0}ⁿ a_ib_{n-i} for each integer n ≥ 0.

• So,
$$c_0 = a_0 b_0$$
, $c_1 = a_0 b_1 + a_1 b_0$, $c_2 = a_0 b_2 + a_1 b_1 + a_2 b_0$, etc.

Example 1.1

Let $\{a_n\}_{n=0}^{\infty}$ be a sequence, and let a(x) be its generating function. Find the generating function of the sequence $a_0, 0, a_2, 0, a_4, \ldots$ in terms of the function a(x).

Example 1.1

Let $\{a_n\}_{n=0}^{\infty}$ be a sequence, and let a(x) be its generating function. Find the generating function of the sequence $a_0, 0, a_2, 0, a_4, \ldots$ in terms of the function a(x).

Solution. $a_0, 0, a_2, 0, a_4, ...$ is the sum of $\{\frac{a_n}{2}\}_{n=0}^{\infty}$ and $\{\frac{(-1)^n a_n}{2}\}_{n=0}^{\infty}$.

Example 1.1

Let $\{a_n\}_{n=0}^{\infty}$ be a sequence, and let a(x) be its generating function. Find the generating function of the sequence $a_0, 0, a_2, 0, a_4, \ldots$ in terms of the function a(x).

Solution. $a_0, 0, a_2, 0, a_4, \ldots$ is the sum of $\{\frac{a_n}{2}\}_{n=0}^{\infty}$ and $\{\frac{(-1)^n a_n}{2}\}_{n=0}^{\infty}$. The generating function of $\{\frac{a_n}{2}\}_{n=0}^{\infty}$ is $\frac{1}{2}a(x)$, and the generating function of $\{\frac{(-1)^n a_n}{2}\}_{n=0}^{\infty}$ is $\frac{1}{2}a(-x)$.

Example 1.1

Let $\{a_n\}_{n=0}^{\infty}$ be a sequence, and let a(x) be its generating function. Find the generating function of the sequence $a_0, 0, a_2, 0, a_4, \ldots$ in terms of the function a(x).

Solution. $a_0, 0, a_2, 0, a_4, \ldots$ is the sum of $\{\frac{a_n}{2}\}_{n=0}^{\infty}$ and $\{\frac{(-1)^n a_n}{2}\}_{n=0}^{\infty}$. The generating function of $\{\frac{a_n}{2}\}_{n=0}^{\infty}$ is $\frac{1}{2}a(x)$, and the generating function of $\{\frac{(-1)^n a_n}{2}\}_{n=0}^{\infty}$ is $\frac{1}{2}a(-x)$. So, the generating function of $a_0, 0, a_2, 0, a_4, \ldots$ is $\frac{a(x)+a(-x)}{2}$.

Example 1.1

Let $\{a_n\}_{n=0}^{\infty}$ be a sequence, and let a(x) be its generating function. Find the generating function of the sequence $a_0, 0, a_2, 0, a_4, \ldots$ in terms of the function a(x).

Solution. $a_0, 0, a_2, 0, a_4, \ldots$ is the sum of $\{\frac{a_n}{2}\}_{n=0}^{\infty}$ and $\{\frac{(-1)^n a_n}{2}\}_{n=0}^{\infty}$. The generating function of $\{\frac{a_n}{2}\}_{n=0}^{\infty}$ is $\frac{1}{2}a(x)$, and the generating function of $\{\frac{(-1)^n a_n}{2}\}_{n=0}^{\infty}$ is $\frac{1}{2}a(-x)$. So, the generating function of $a_0, 0, a_2, 0, a_4, \ldots$ is $\frac{a(x)+a(-x)}{2}$.

• There are two more examples in the Lecture Notes.

Part II: Application #1: counting binary trees

Part II: Application #1: counting binary trees

• We define binary trees recursively as follows: a binary tree is either empty (i.e. contains no nodes), or consists of designated node r (called the *root*), plus an ordered pair (T_L, T_R) of binary trees, where T_L and T_R (called the *left subtree* and the *right subtree*) have disjoint sets of nodes and do not contain the node r.

Remark: The empty binary tree has zero nodes, and if a binary tree T consists of a root r and an ordered pair (T_L, T_R) of binary trees, then the number of nodes of T is 1 + n_L + n_R, where n_L is the number of nodes of T_L, and n_R is the number of nodes of T_R.

r

- Remark: The empty binary tree has zero nodes, and if a binary tree T consists of a root r and an ordered pair (T_L, T_R) of binary trees, then the number of nodes of T is 1 + n_L + n_R, where n_L is the number of nodes of T_L, and n_R is the number of nodes of T_R.
- Goal: Count the number of binary trees on n nodes $(n \ge 0)$.

r

• For each integer $n \ge 0$, let b_n be the number of binary trees on n nodes, and let $b(x) = \sum_{n=0}^{\infty} b_n x^n$ be the generating function of the sequence $\{b_n\}_{n=0}^{\infty}$.

- For each integer n ≥ 0, let b_n be the number of binary trees on n nodes, and let b(x) = ∑ b_nxⁿ be the generating function of the sequence {b_n}_{n=0}[∞].
- It is easy to check that $b_0 = 1$, $b_1 = 1$, $b_2 = 2$, and $b_3 = 5$.

- For each integer n ≥ 0, let b_n be the number of binary trees on n nodes, and let b(x) = ∑ b_nxⁿ be the generating function of the sequence {b_n}_{n=0}[∞].
- It is easy to check that $b_0 = 1$, $b_1 = 1$, $b_2 = 2$, and $b_3 = 5$.
- Here are all the binary trees on three nodes:

• Reminder: b_n be the number of binary trees on n nodes $(n \ge 0)$, and $b(x) = \sum_{n=0}^{\infty} b_n x^n$.

- Reminder: b_n be the number of binary trees on n nodes $(n \ge 0)$, and $b(x) = \sum_{n=0}^{\infty} b_n x^n$.
- Let's find a recursive formula for b_n $(n \ge 1)$.

- Reminder: b_n be the number of binary trees on n nodes $(n \ge 0)$, and $b(x) = \sum_{n=0}^{\infty} b_n x^n$.
- Let's find a recursive formula for b_n $(n \ge 1)$.
- The number of binary trees on $n \ge 1$ nodes is equal to the number of ordered pairs (T_L, T_R) of binary trees s.t. T_L, T_R together have n 1 nodes.

- Reminder: b_n be the number of binary trees on n nodes $(n \ge 0)$, and $b(x) = \sum_{n=0}^{\infty} b_n x^n$.
- Let's find a recursive formula for b_n $(n \ge 1)$.
- The number of binary trees on $n \ge 1$ nodes is equal to the number of ordered pairs (T_L, T_R) of binary trees s.t. T_L, T_R together have n 1 nodes.
- Thus, for all integers $n \ge 1$, we have that

$$b_n = b_0 b_{n-1} + b_1 b_{n-2} + \cdots + b_{n-1} b_0 = \sum_{k=0}^{n-1} b_k b_{n-k-1}.$$

- Reminder: b_n be the number of binary trees on n nodes $(n \ge 0)$, and $b(x) = \sum_{n=0}^{\infty} b_n x^n$.
- Let's find a recursive formula for b_n $(n \ge 1)$.
- The number of binary trees on n ≥ 1 nodes is equal to the number of ordered pairs (T_L, T_R) of binary trees s.t. T_L, T_R together have n − 1 nodes.
- Thus, for all integers $n \ge 1$, we have that

$$b_n = b_0 b_{n-1} + b_1 b_{n-2} + \cdots + b_{n-1} b_0 = \sum_{k=0}^{n-1} b_k b_{n-k-1}.$$

• Since $b_0 = 1$, this implies that $b(x) = 1 + xb(x)^2$.

- Reminder: b_n be the number of binary trees on n nodes $(n \ge 0)$, and $b(x) = \sum_{n=0}^{\infty} b_n x^n$.
- Let's find a recursive formula for b_n $(n \ge 1)$.
- The number of binary trees on n ≥ 1 nodes is equal to the number of ordered pairs (T_L, T_R) of binary trees s.t. T_L, T_R together have n − 1 nodes.
- Thus, for all integers $n \ge 1$, we have that

$$b_n = b_0 b_{n-1} + b_1 b_{n-2} + \cdots + b_{n-1} b_0 = \sum_{k=0}^{n-1} b_k b_{n-k-1}.$$

- Since $b_0 = 1$, this implies that $b(x) = 1 + xb(x)^2$.
- By the quadratic equation (with b(x) treated as a variable and x as a constant), either

$$b(x) = \frac{1 - \sqrt{1 - 4x}}{2x}$$
 or $b(x) = \frac{1 + \sqrt{1 - 4x}}{2x}$.

- Reminder: b_n be the number of binary trees on n nodes $(n \ge 0)$, and $b(x) = \sum_{n=0}^{\infty} b_n x^n$.
- Let's find a recursive formula for b_n $(n \ge 1)$.
- The number of binary trees on n ≥ 1 nodes is equal to the number of ordered pairs (T_L, T_R) of binary trees s.t. T_L, T_R together have n − 1 nodes.
- Thus, for all integers $n \ge 1$, we have that

$$b_n = b_0 b_{n-1} + b_1 b_{n-2} + \cdots + b_{n-1} b_0 = \sum_{k=0}^{n-1} b_k b_{n-k-1}.$$

- Since $b_0 = 1$, this implies that $b(x) = 1 + xb(x)^2$.
- By the quadratic equation (with b(x) treated as a variable and x as a constant), either

$$b(x) = \frac{1 - \sqrt{1 - 4x}}{2x}$$
 or $b(x) = \frac{1 + \sqrt{1 - 4x}}{2x}$.

• Which formula is the correct one??

- Reminder: b_n be the number of binary trees on n nodes $(n \ge 0)$, and $b(x) = \sum_{n=0}^{\infty} b_n x^n$ is its generating sequence.
- Reminder: Either

$$b(x) = \frac{1 - \sqrt{1 - 4x}}{2x}$$
 or $b(x) = \frac{1 + \sqrt{1 - 4x}}{2x}$

- Reminder: b_n be the number of binary trees on n nodes $(n \ge 0)$, and $b(x) = \sum_{n=0}^{\infty} b_n x^n$ is its generating sequence.
- Reminder: Either

$$b(x) = \frac{1 - \sqrt{1 - 4x}}{2x}$$
 or $b(x) = \frac{1 + \sqrt{1 - 4x}}{2x}$.

• Since $b_0 = 1$, we have that $\lim_{x \to 0^+} b(x) = 1$.

- Reminder: b_n be the number of binary trees on n nodes $(n \ge 0)$, and $b(x) = \sum_{n=0}^{\infty} b_n x^n$ is its generating sequence.
- Reminder: Either

$$b(x) = \frac{1 - \sqrt{1 - 4x}}{2x}$$
 or $b(x) = \frac{1 + \sqrt{1 - 4x}}{2x}$.

- Since $b_0 = 1$, we have that $\lim_{x \to 0^+} b(x) = 1$.
- We can compute (check this!):

$$\lim_{x \to 0^+} \frac{1 - \sqrt{1 - 4x}}{2x} = 1;$$

$$\lim_{x \to 0^+} \frac{1 + \sqrt{1 - 4x}}{2x} = \infty.$$

- Reminder: b_n be the number of binary trees on n nodes $(n \ge 0)$, and $b(x) = \sum_{n=0}^{\infty} b_n x^n$ is its generating sequence.
- Reminder: Either

$$b(x) = \frac{1 - \sqrt{1 - 4x}}{2x}$$
 or $b(x) = \frac{1 + \sqrt{1 - 4x}}{2x}$.

- Since $b_0 = 1$, we have that $\lim_{x \to 0^+} b(x) = 1$.
- We can compute (check this!):

$$\lim_{x \to 0^+} \frac{1 - \sqrt{1 - 4x}}{2x} = 1;$$

$$\lim_{x\to 0^+}\frac{1+\sqrt{1-4x}}{2x} = \infty.$$

So,

$$b(x)=\frac{1-\sqrt{1-4x}}{2x}.$$

• Reminder:
$$b(x) = \frac{1 - \sqrt{1 - 4x}}{2x}$$
.

- Reminder: $b(x) = \frac{1-\sqrt{1-4x}}{2x}$.
- By the Generalized Binomial Theorem:

$$\begin{array}{lll} \sqrt{1-4x} & = & \sum\limits_{n=0}^{\infty} {\binom{1/2}{n}} (-4x)^n \\ & = & 1+x \sum\limits_{n=0}^{\infty} {(-4)^{n+1}} {\binom{1/2}{n+1}} x^n & \text{ by algebra} \end{array}$$

- Reminder: $b(x) = \frac{1-\sqrt{1-4x}}{2x}$.
- By the Generalized Binomial Theorem:

$$\begin{array}{lll} \sqrt{1-4x} & = & \sum\limits_{n=0}^{\infty} {\binom{1/2}{n}} (-4x)^n \\ & = & 1+x \sum\limits_{n=0}^{\infty} {(-4)^{n+1}} {\binom{1/2}{n+1}} x^n & \text{ by algebra} \end{array}$$

)
)

$$b(x) = \frac{1 - \sqrt{1 - 4x}}{2x}$$
$$= \frac{1 - \left(1 + x \sum_{n=0}^{\infty} (-4)^{n+1} {\binom{1/2}{n+1}} x^n\right)}{2x}$$
$$= \sum_{n=0}^{\infty} (-\frac{1}{2}) (-4)^{n+1} {\binom{1/2}{n+1}} x^n.$$

• Reminder:
$$b(x) = \sum_{n=0}^{\infty} (-\frac{1}{2})(-4)^{n+1} {\binom{1/2}{n+1}} x^n$$
.

• Reminder:
$$b(x) = \sum_{n=0}^{\infty} (-\frac{1}{2})(-4)^{n+1} {\binom{1/2}{n+1}} x^n$$
.

• So, for all non-negative integers *n*, we have that

$$b_n = (-\frac{1}{2})(-4)^{n+1} {\binom{1/2}{n+1}}.$$

• Reminder:
$$b(x) = \sum_{n=0}^{\infty} (-\frac{1}{2})(-4)^{n+1} {\binom{1/2}{n+1}} x^n$$
.

• So, for all non-negative integers n, we have that

$$b_n = (-\frac{1}{2})(-4)^{n+1} {\binom{1/2}{n+1}}.$$

 After a bit of algebra (see the Lecture Notes), we can get a nicer formula:

$$b_n = \frac{1}{n+1} \binom{2n}{n}$$

for all integers $n \ge 0$.

• Reminder:
$$b(x) = \sum_{n=0}^{\infty} (-\frac{1}{2})(-4)^{n+1} {\binom{1/2}{n+1}} x^n$$
.

• So, for all non-negative integers n, we have that

$$b_n = (-\frac{1}{2})(-4)^{n+1} {\binom{1/2}{n+1}}.$$

 After a bit of algebra (see the Lecture Notes), we can get a nicer formula:

$$b_n = \frac{1}{n+1} \binom{2n}{n}$$

for all integers $n \ge 0$.

• Numbers $\frac{1}{n+1}\binom{2n}{n}$ are called the *Catalan numbers*.

 We consider the following infinite random walk on the integer line Z: we begin our walk at 1, and at each step, we move at random either two units to the right (+2) or one unit to the left (-1).

• We would like to determine the probability that we reach the origin at some point in our walk.

- We would like to determine the probability that we reach the origin at some point in our walk.
- For each integer n ≥ 0, let P_n be the probability that we reach the origin after at most n steps.

- We would like to determine the probability that we reach the origin at some point in our walk.
- For each integer n ≥ 0, let P_n be the probability that we reach the origin after at most n steps.
- Obviously, {P_n}[∞]_{n=0} is a non-decreasing sequence, and it is bounded above by 1. So, by the Monotone Sequence Theorem, it converges.

- We would like to determine the probability that we reach the origin at some point in our walk.
- For each integer n ≥ 0, let P_n be the probability that we reach the origin after at most n steps.
- Obviously, {P_n}[∞]_{n=0} is a non-decreasing sequence, and it is bounded above by 1. So, by the Monotone Sequence Theorem, it converges.

• Let
$$P = \lim_{n \to \infty} P_n$$
.

- We would like to determine the probability that we reach the origin at some point in our walk.
- For each integer n ≥ 0, let P_n be the probability that we reach the origin after at most n steps.
- Obviously, {P_n}[∞]_{n=0} is a non-decreasing sequence, and it is bounded above by 1. So, by the Monotone Sequence Theorem, it converges.
- Let $P = \lim_{n \to \infty} P_n$.
- Then *P* is the probability that we need to compute.

 For each integer n ≥ 0, let a_n be the number of n-step walks in which we reach the origin for the first time after precisely n steps.

- For each integer n ≥ 0, let a_n be the number of n-step walks in which we reach the origin for the first time after precisely n steps.
- The total number of *n*-step walks is 2^n .

- For each integer n ≥ 0, let a_n be the number of n-step walks in which we reach the origin for the first time after precisely n steps.
- The total number of *n*-step walks is 2^n .

-

• So,
$$P_n = \sum_{i=0}^{n} \frac{a_i}{2^i} = a_0 + \frac{a_1}{2} + \frac{a_2}{4} + \dots + \frac{a_n}{2^n}$$
.

- For each integer n ≥ 0, let a_n be the number of n-step walks in which we reach the origin for the first time after precisely n steps.
- The total number of *n*-step walks is 2^n .

• So,
$$P_n = \sum_{i=0}^n \frac{a_i}{2^i} = a_0 + \frac{a_1}{2} + \frac{a_2}{4} + \dots + \frac{a_n}{2^n}$$

• Therefore,
$$P = \sum_{n=0}^{\infty} \frac{a_n}{2^n}$$
.

- For each integer n ≥ 0, let a_n be the number of n-step walks in which we reach the origin for the first time after precisely n steps.
- The total number of *n*-step walks is 2^n .

~

• So,
$$P_n = \sum_{i=0}^{n} \frac{a_i}{2^i} = a_0 + \frac{a_1}{2} + \frac{a_2}{4} + \dots + \frac{a_n}{2^n}$$
.

• Therefore,
$$P = \sum_{n=0}^{\infty} \frac{a_n}{2^n}$$
.

• Let $a(x) = \sum_{n=0}^{\infty} a_n x^n$ be the generating function for $\{a_n\}_{n=0}^{\infty}$.

- For each integer n ≥ 0, let a_n be the number of n-step walks in which we reach the origin for the first time after precisely n steps.
- The total number of *n*-step walks is 2^n .

• So,
$$P_n = \sum_{i=0}^{n} \frac{a_i}{2^i} = a_0 + \frac{a_1}{2} + \frac{a_2}{4} + \dots + \frac{a_n}{2^n}$$
.

• Therefore,
$$P = \sum_{n=0}^{\infty} \frac{a_n}{2^n}$$
.

• Let $a(x) = \sum_{n=0}^{\infty} a_n x^n$ be the generating function for $\{a_n\}_{n=0}^{\infty}$.

• Then
$$P = a\left(\frac{1}{2}\right)$$

- For our solution, it will be useful to consider random walks that start at points other than 1, but still proceed according to the same rules:
 - at each step, we move at random either two units to the right (+2) or one unit to the left (-1).

For an integer n ≥ 0, let b_n be the number of n-step random walks (following our rules) starting at 2 and ending at the origin, without reaching the origin at any point during the walk (except at the very end).

- For an integer n ≥ 0, let b_n be the number of n-step random walks (following our rules) starting at 2 and ending at the origin, without reaching the origin at any point during the walk (except at the very end).
- In such a walk, we cannot reach the origin without first reaching 1, and then reaching the origin from there.

- For an integer n ≥ 0, let b_n be the number of n-step random walks (following our rules) starting at 2 and ending at the origin, without reaching the origin at any point during the walk (except at the very end).
- In such a walk, we cannot reach the origin without first reaching 1, and then reaching the origin from there.
- There must be some $k \in \{1, \ldots, n-1\}$ s.t.:
 - we reach 1 for the first time after precisely k steps (there are a_k ways to do that),
 - and then starting at 1, we reach the origin for the first time after n k steps (there are a_{n-k} ways to do that).

- For an integer n ≥ 0, let b_n be the number of n-step random walks (following our rules) starting at 2 and ending at the origin, without reaching the origin at any point during the walk (except at the very end).
- In such a walk, we cannot reach the origin without first reaching 1, and then reaching the origin from there.
- There must be some $k \in \{1, \ldots, n-1\}$ s.t.:
 - we reach 1 for the first time after precisely k steps (there are a_k ways to do that),
 - and then starting at 1, we reach the origin for the first time after n k steps (there are a_{n-k} ways to do that).

• So,
$$b_n = \sum_{k=1}^{n-1} a_k a_{n-k} \stackrel{a_0=0}{=} \sum_{k=0}^n a_k a_{n-k}.$$

- Reminder: For an integer $n \ge 0$, b_n is the number of *n*-step random walks (following our rules) starting at 2 and ending at the origin, without reaching the origin at any point during the walk (except at the very end).
- Reminder: $b_n = \sum_{k=1}^{n-1} a_k a_{n-k} \stackrel{a_0=0}{=} \sum_{k=0}^n a_k a_{n-k}$ for all integers $n \ge 0$.

- Reminder: For an integer $n \ge 0$, b_n is the number of *n*-step random walks (following our rules) starting at 2 and ending at the origin, without reaching the origin at any point during the walk (except at the very end).
- Reminder: $b_n = \sum_{k=1}^{n-1} a_k a_{n-k} \stackrel{a_0=0}{=} \sum_{k=0}^n a_k a_{n-k}$ for all integers $n \ge 0$.
- So, if $b(x) = \sum_{n=0}^{\infty} b_n x^n$ is the generating function for the sequence $\{b_n\}_{n=0}^{\infty}$, then we get that

$$b(x)=a(x)^2.$$

 For an integer n ≥ 0, let c_n be the number of n-step random walks (following our rules) starting at 3 and ending at the origin, without reaching the origin at any point during the walk (except at the very end).

- For an integer n ≥ 0, let c_n be the number of n-step random walks (following our rules) starting at 3 and ending at the origin, without reaching the origin at any point during the walk (except at the very end).
- Let $c(x) = \sum_{n=0}^{\infty} c_n x^n$ be the generating function for the sequence $\{c_n\}_{n=0}^{\infty}$.

- For an integer n ≥ 0, let c_n be the number of n-step random walks (following our rules) starting at 3 and ending at the origin, without reaching the origin at any point during the walk (except at the very end).
- Let $c(x) = \sum_{n=0}^{\infty} c_n x^n$ be the generating function for the sequence $\{c_n\}_{n=0}^{\infty}$.
- Similarly to the above: c(x) = a(x)b(x).
 - Details: Lecture Notes.

- For an integer n ≥ 0, let c_n be the number of n-step random walks (following our rules) starting at 3 and ending at the origin, without reaching the origin at any point during the walk (except at the very end).
- Let $c(x) = \sum_{\substack{n=0\\n=0}}^{\infty} c_n x^n$ be the generating function for the sequence $\{c_n\}_{n=0}^{\infty}$.
- Similarly to the above: c(x) = a(x)b(x).
 - Details: Lecture Notes.
- Since $b(x) = a(x)^2$, we get

$$c(x)=a(x)^3.$$

- Reminder: For an integer $n \ge 0$:
 - *a_n* is the number of ways to reach the origin for the first time after precisely *n* steps, starting from 1.
 - *c_n* is the number of ways to reach the origin for the first time after precisely *n* steps, starting from 3.

• Reminder: For an integer $n \ge 0$:

- *a_n* is the number of ways to reach the origin for the first time after precisely *n* steps, starting from 1.
- *c_n* is the number of ways to reach the origin for the first time after precisely *n* steps, starting from 3.
- Obviously, $a_0 = 0$ and $a_1 = 1$.

• Reminder: For an integer $n \ge 0$:

- *a_n* is the number of ways to reach the origin for the first time after precisely *n* steps, starting from 1.
- *c_n* is the number of ways to reach the origin for the first time after precisely *n* steps, starting from 3.
- Obviously, $a_0 = 0$ and $a_1 = 1$.
- If we start at 1, then for an integer $n \ge 2$, there are precisely c_{n-1} ways to reach the origin for the first time after precisely n steps: we must first move two units to the right, and then reach the origin from 3 for the first time after precisely n-1 steps.
 - Thus, $a_n = c_{n-1}$ for all integers $n \ge 2$.

• Reminder: For an integer $n \ge 0$:

- *a_n* is the number of ways to reach the origin for the first time after precisely *n* steps, starting from 1.
- *c_n* is the number of ways to reach the origin for the first time after precisely *n* steps, starting from 3.
- Obviously, $a_0 = 0$ and $a_1 = 1$.
- If we start at 1, then for an integer $n \ge 2$, there are precisely c_{n-1} ways to reach the origin for the first time after precisely n steps: we must first move two units to the right, and then reach the origin from 3 for the first time after precisely n-1 steps.

• Thus, $a_n = c_{n-1}$ for all integers $n \ge 2$.

• We now compute...

$$a(x) = a_0 + a_1 x + \sum_{n=2}^{\infty} a_n x^n$$

$$= x + x \sum_{n=2}^{\infty} a_n x^{n-1}$$

because $a_0 = 0$ and $a_1 = 1$

$$x + x \sum_{n=2}^{\infty} c_{n-1} x^{n-1}$$
 bec

because $a_n = c_{n-1}$ for $n \ge 2$

$$= x + x \sum_{n=1}^{\infty} c_n x^n$$

=

$$= x + x \sum_{n=0}^{\infty} c_n x^n$$

because $c_0 = 0$ (obvious)

= x + xc(x).

$$c(x) = a(x)^3;$$

$$a(x) = x + xc(x).$$

$$c(x) = a(x)^{3};$$
$$a(x) = x + xc(x).$$

• So, $a(x) = x + xa(x)^3$.

$$c(x) = a(x)^{3};$$

 $a(x) = x + xc(x).$

• So,
$$a(x) = x + xa(x)^3$$
.

• Reminder:
$$P = a\left(\frac{1}{2}\right)$$
.

$$c(x) = a(x)^3;$$

 $a(x) = x + xc(x).$

- So, $a(x) = x + xa(x)^3$.
- Reminder: $P = a\left(\frac{1}{2}\right)$.
- So, $P = \frac{1}{2} + \frac{1}{2}P^3$.

$$c(x) = a(x)^3;$$

 $a(x) = x + xc(x).$

• So,
$$a(x) = x + xa(x)^3$$
.

- Reminder: $P = a\left(\frac{1}{2}\right)$.
- So, $P = \frac{1}{2} + \frac{1}{2}P^3$.
- The equation above has three solutions: 1, $\frac{-1+\sqrt{5}}{2}$, $\frac{-1-\sqrt{5}}{2}$.

$$c(x) = a(x)^3;$$

 $a(x) = x + xc(x).$

- So, $a(x) = x + xa(x)^3$.
- Reminder: $P = a\left(\frac{1}{2}\right)$.
- So, $P = \frac{1}{2} + \frac{1}{2}P^3$.
- The equation above has three solutions: 1, -1+√5/2, -1-√5/2.
 Reminder: φ := -1+√5/2 is called the golden ratio.

$$c(x) = a(x)^3;$$

 $a(x) = x + xc(x).$

- So, $a(x) = x + xa(x)^3$.
- Reminder: $P = a\left(\frac{1}{2}\right)$.
- So, $P = \frac{1}{2} + \frac{1}{2}P^3$.
- The equation above has three solutions: 1, $\frac{-1+\sqrt{5}}{2}$, $\frac{-1-\sqrt{5}}{2}$.
 - Reminder: $\varphi := \frac{-1+\sqrt{5}}{2}$ is called the *golden ratio*.
 - So, our equation has three solutions: $1, \varphi, \frac{-1-\sqrt{5}}{2}$.

$$c(x) = a(x)^3;$$

 $a(x) = x + xc(x).$

- So, $a(x) = x + xa(x)^3$.
- Reminder: $P = a\left(\frac{1}{2}\right)$.
- So, $P = \frac{1}{2} + \frac{1}{2}P^3$.
- The equation above has three solutions: 1, $\frac{-1+\sqrt{5}}{2}$, $\frac{-1-\sqrt{5}}{2}$.
 - Reminder: $\varphi := \frac{-1+\sqrt{5}}{2}$ is called the *golden ratio*.
 - So, our equation has three solutions: $1, \varphi, \frac{-1-\sqrt{5}}{2}$.
- Obviously, $P \ge 0$, and so $P \ne \frac{-1-\sqrt{5}}{2}$.

$$c(x) = a(x)^3;$$

 $a(x) = x + xc(x).$

- So, $a(x) = x + xa(x)^3$.
- Reminder: $P = a\left(\frac{1}{2}\right)$.
- So, $P = \frac{1}{2} + \frac{1}{2}P^3$.
- The equation above has three solutions: 1, $\frac{-1+\sqrt{5}}{2}$, $\frac{-1-\sqrt{5}}{2}$.
 - Reminder: $\varphi := \frac{-1+\sqrt{5}}{2}$ is called the *golden ratio*.
 - So, our equation has three solutions: $1, \varphi, \frac{-1-\sqrt{5}}{2}$.
- Obviously, $P \ge 0$, and so $P \ne \frac{-1-\sqrt{5}}{2}$.
- Let's show that $P \neq 1$, so that $P = \varphi$.

• Reminder:
$$a(x) = \sum_{n=0}^{\infty} a_n x^n$$
; $a(x) = x + xa(x)^3$; $P = a(\frac{1}{2})$.

• Reminder:
$$a(x) = \sum_{n=0}^{\infty} a_n x^n$$
; $a(x) = x + xa(x)^3$; $P = a(\frac{1}{2})$.

• Suppose P = 1, i.e. $a\left(\frac{1}{2}\right) = 1$.

• Reminder:
$$a(x) = \sum_{n=0}^{\infty} a_n x^n$$
; $a(x) = x + xa(x)^3$; $P = a(\frac{1}{2})$.

• Suppose
$$P = 1$$
, i.e. $a\left(\frac{1}{2}\right) = 1$.

•
$$a(x) = \sum_{n=0}^{\infty} a_n x^n$$
 has non-negative coefficients and converges for $x = \frac{1}{2}$.

• Reminder:
$$a(x) = \sum_{n=0}^{\infty} a_n x^n$$
; $a(x) = x + xa(x)^3$; $P = a(\frac{1}{2})$.

• Suppose
$$P = 1$$
, i.e. $a\left(\frac{1}{2}\right) = 1$.

- $a(x) = \sum_{n=0}^{\infty} a_n x^n$ has non-negative coefficients and converges for $x = \frac{1}{2}$.
- So, the function *a* is continuous and increasing on $[0, \frac{1}{2}]$.

• Reminder:
$$a(x) = \sum_{n=0}^{\infty} a_n x^n$$
; $a(x) = x + xa(x)^3$; $P = a(\frac{1}{2})$.

• Suppose
$$P = 1$$
, i.e. $a\left(\frac{1}{2}\right) = 1$.

- $a(x) = \sum_{n=0}^{\infty} a_n x^n$ has non-negative coefficients and converges for $x = \frac{1}{2}$.
- So, the function *a* is continuous and increasing on $[0, \frac{1}{2}]$.
- We have that $a(0) = a_0 = 0$ and $a\left(\frac{1}{2}\right) = 1$, and we have that $0 < \varphi < 1$.

• Reminder:
$$a(x) = \sum_{n=0}^{\infty} a_n x^n$$
; $a(x) = x + xa(x)^3$; $P = a(\frac{1}{2})$.

• Suppose
$$P = 1$$
, i.e. $a\left(\frac{1}{2}\right) = 1$.

- $a(x) = \sum_{n=0}^{\infty} a_n x^n$ has non-negative coefficients and converges for $x = \frac{1}{2}$.
- So, the function *a* is continuous and increasing on $[0, \frac{1}{2}]$.
- We have that $a(0) = a_0 = 0$ and $a\left(\frac{1}{2}\right) = 1$, and we have that $0 < \varphi < 1$.
- So, by the Intermediate Value Theorem, there exists some $x_0 \in (0, \frac{1}{2})$ s.t. $a(x_0) = \varphi$.

• Reminder:
$$a(x) = \sum_{n=0}^{\infty} a_n x^n$$
; $a(x) = x + xa(x)^3$; $P = a(\frac{1}{2})$.

• Suppose
$$P = 1$$
, i.e. $a\left(\frac{1}{2}\right) = 1$.

- $a(x) = \sum_{n=0}^{\infty} a_n x^n$ has non-negative coefficients and converges for $x = \frac{1}{2}$.
- So, the function *a* is continuous and increasing on $[0, \frac{1}{2}]$.
- We have that $a(0) = a_0 = 0$ and $a\left(\frac{1}{2}\right) = 1$, and we have that $0 < \varphi < 1$.
- So, by the Intermediate Value Theorem, there exists some $x_0 \in (0, \frac{1}{2})$ s.t. $a(x_0) = \varphi$.
- But $a(x_0) = x_0 + x_0 a(x_0)^3$, and so $\varphi = x_0 + x_0 \varphi^3$.

• Reminder:
$$a(x) = \sum_{n=0}^{\infty} a_n x^n$$
; $a(x) = x + xa(x)^3$; $P = a(\frac{1}{2})$.

• Suppose
$$P = 1$$
, i.e. $a\left(\frac{1}{2}\right) = 1$.

- $a(x) = \sum_{n=0}^{\infty} a_n x^n$ has non-negative coefficients and converges for $x = \frac{1}{2}$.
- So, the function *a* is continuous and increasing on $[0, \frac{1}{2}]$.
- We have that $a(0) = a_0 = 0$ and $a\left(\frac{1}{2}\right) = 1$, and we have that $0 < \varphi < 1$.
- So, by the Intermediate Value Theorem, there exists some $x_0 \in (0, \frac{1}{2})$ s.t. $a(x_0) = \varphi$.
- But $a(x_0) = x_0 + x_0 a(x_0)^3$, and so $\varphi = x_0 + x_0 \varphi^3$.

• But also,
$$\varphi = \frac{1}{2} + \frac{1}{2}\varphi^3$$
.

• Reminder:
$$a(x) = \sum_{n=0}^{\infty} a_n x^n$$
; $a(x) = x + xa(x)^3$; $P = a(\frac{1}{2})$.

• Suppose
$$P = 1$$
, i.e. $a\left(\frac{1}{2}\right) = 1$.

- $a(x) = \sum_{n=0}^{\infty} a_n x^n$ has non-negative coefficients and converges for $x = \frac{1}{2}$.
- So, the function *a* is continuous and increasing on $[0, \frac{1}{2}]$.
- We have that $a(0) = a_0 = 0$ and $a\left(\frac{1}{2}\right) = 1$, and we have that $0 < \varphi < 1$.
- So, by the Intermediate Value Theorem, there exists some $x_0 \in (0, \frac{1}{2})$ s.t. $a(x_0) = \varphi$.
- But $a(x_0) = x_0 + x_0 a(x_0)^3$, and so $\varphi = x_0 + x_0 \varphi^3$.
- But also, $\varphi = \frac{1}{2} + \frac{1}{2}\varphi^3$.
- Thus, $\frac{1}{2} + \frac{1}{2}\varphi^3 = x_0 + x_0\varphi^3$, and so $(x_0 \frac{1}{2})(\varphi^3 + 1) = 0$, a contradiction.

• Reminder:
$$a(x) = \sum_{n=0}^{\infty} a_n x^n$$
; $a(x) = x + xa(x)^3$; $P = a(\frac{1}{2})$.

• Suppose
$$P = 1$$
, i.e. $a\left(\frac{1}{2}\right) = 1$.

•
$$a(x) = \sum_{n=0}^{\infty} a_n x^n$$
 has non-negative coefficients and converges for $x = \frac{1}{2}$.

- So, the function *a* is continuous and increasing on $[0, \frac{1}{2}]$.
- We have that $a(0) = a_0 = 0$ and $a(\frac{1}{2}) = 1$, and we have that $0 < \varphi < 1$.
- So, by the Intermediate Value Theorem, there exists some $x_0 \in (0, \frac{1}{2})$ s.t. $a(x_0) = \varphi$.
- But $a(x_0) = x_0 + x_0 a(x_0)^3$, and so $\varphi = x_0 + x_0 \varphi^3$.
- But also, $\varphi = \frac{1}{2} + \frac{1}{2}\varphi^3$.
- Thus, $\frac{1}{2} + \frac{1}{2}\varphi^3 = x_0 + x_0\varphi^3$, and so $(x_0 \frac{1}{2})(\varphi^3 + 1) = 0$, a contradiction.

• So,
$$P \neq 1$$
.

• Reminder:

• We proved that P satisfies
$$P = \frac{1}{2} + \frac{1}{2}P^3$$
.

- Reminder:
 - We proved that P satisfies $P = \frac{1}{2} + \frac{1}{2}P^3$.

• This equation has exactly three solutions: 1, $\frac{-1+\sqrt{5}}{2}$ (=: φ), $\frac{-1-\sqrt{5}}{2}$.

- Reminder:
 - We proved that P satisfies $P = \frac{1}{2} + \frac{1}{2}P^3$.
 - This equation has exactly three solutions: 1, $\frac{-1+\sqrt{5}}{2}$ (=: φ), $\frac{-1-\sqrt{5}}{2}.$
 - We proved that $P \neq \frac{-1-\sqrt{5}}{2}$ and $P \neq 1$.

- Reminder:
 - We proved that P satisfies $P = \frac{1}{2} + \frac{1}{2}P^3$.
 - This equation has exactly three solutions: 1, $\frac{-1+\sqrt{5}}{2}$ (=: φ), $\frac{-1-\sqrt{5}}{2}.$
 - We proved that $P \neq \frac{-1-\sqrt{5}}{2}$ and $P \neq 1$.

• So,
$$P = \varphi$$
, i.e.

$$P=\frac{-1+\sqrt{5}}{2}.$$

- Reminder:
 - We proved that P satisfies $P = \frac{1}{2} + \frac{1}{2}P^3$.
 - This equation has exactly three solutions: 1, $\frac{-1+\sqrt{5}}{2}$ (=: φ), $\frac{-1-\sqrt{5}}{2}$.
 - We proved that $P \neq \frac{-1-\sqrt{5}}{2}$ and $P \neq 1$.

• So,
$$P = \varphi$$
, i.e.
$$P = \frac{-1 + \sqrt{5}}{2}.$$

• Thus, the probability that we ever reach the origin in our walk is $\frac{-1+\sqrt{5}}{2}$ (the golden ratio).