NDMI011: Combinatorics and Graph Theory 1

Lecture \#3

Generating functions (part II)

Irena Penev

October 12, 2020

This lecture consists of three parts:

This lecture consists of three parts:
(1) Basic operations with generating functions;

This lecture consists of three parts:
(1) Basic operations with generating functions;
(2) Application $\# 1$: counting binary trees;

This lecture consists of three parts:
(1) Basic operations with generating functions;
(2) Application \#1: counting binary trees;
(3) Application \#2: random walks.

Part I: Basic operations with generating functions

Part I: Basic operations with generating functions

Definition

Suppose $\left\{a_{n}\right\}_{n=0}^{\infty}$ is some infinite sequence of real (or complex) numbers. The generating function of this sequence is the power series

$$
\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Part I: Basic operations with generating functions

Definition

Suppose $\left\{a_{n}\right\}_{n=0}^{\infty}$ is some infinite sequence of real (or complex) numbers. The generating function of this sequence is the power series

$$
\sum_{n=0}^{\infty} a_{n} x^{n}
$$

- Let $\left\{a_{n}\right\}_{n=0}^{\infty}$ and $\left\{b_{n}\right\}_{n=0}^{\infty}$ be sequences with corresponding generating functions $a(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ and $b(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$, and let α be a constant.

Part I: Basic operations with generating functions

Definition

Suppose $\left\{a_{n}\right\}_{n=0}^{\infty}$ is some infinite sequence of real (or complex) numbers. The generating function of this sequence is the power series

$$
\sum_{n=0}^{\infty} a_{n} x^{n}
$$

- Let $\left\{a_{n}\right\}_{n=0}^{\infty}$ and $\left\{b_{n}\right\}_{n=0}^{\infty}$ be sequences with corresponding generating functions $a(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ and $b(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$, and let α be a constant.
(1) The generating function of the sequence $\left\{a_{n}+b_{n}\right\}_{n=0}^{\infty}$ is $a(x)+b(x)$.

Part I: Basic operations with generating functions

Definition

Suppose $\left\{a_{n}\right\}_{n=0}^{\infty}$ is some infinite sequence of real (or complex) numbers. The generating function of this sequence is the power series

$$
\sum_{n=0}^{\infty} a_{n} x^{n}
$$

- Let $\left\{a_{n}\right\}_{n=0}^{\infty}$ and $\left\{b_{n}\right\}_{n=0}^{\infty}$ be sequences with corresponding generating functions $a(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ and $b(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$, and let α be a constant.
(1) The generating function of the sequence $\left\{a_{n}+b_{n}\right\}_{n=0}^{\infty}$ is $a(x)+b(x)$.
(2) The generating function of the sequence $\left\{a_{n}-b_{n}\right\}_{n=0}^{\infty}$ is $a(x)-b(x)$.

Part I: Basic operations with generating functions

Definition

Suppose $\left\{a_{n}\right\}_{n=0}^{\infty}$ is some infinite sequence of real (or complex) numbers. The generating function of this sequence is the power series

$$
\sum_{n=0}^{\infty} a_{n} x^{n}
$$

- Let $\left\{a_{n}\right\}_{n=0}^{\infty}$ and $\left\{b_{n}\right\}_{n=0}^{\infty}$ be sequences with corresponding generating functions $a(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ and $b(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$, and let α be a constant.
(1) The generating function of the sequence $\left\{a_{n}+b_{n}\right\}_{n=0}^{\infty}$ is $a(x)+b(x)$.
(2) The generating function of the sequence $\left\{a_{n}-b_{n}\right\}_{n=0}^{\infty}$ is $a(x)-b(x)$.
(3) The generating function of the sequence $\left\{\alpha a_{n}\right\}_{n=0}^{\infty}$ is $\alpha a(x)$.
- Let $\left\{a_{n}\right\}_{n=0}^{\infty}$ and $\left\{b_{n}\right\}_{n=0}^{\infty}$ be sequences with corresponding generating functions $a(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ and $b(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$, and let α be a constant.
- Let $\left\{a_{n}\right\}_{n=0}^{\infty}$ and $\left\{b_{n}\right\}_{n=0}^{\infty}$ be sequences with corresponding generating functions $a(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ and $b(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$, and let α be a constant.
(4) For an integer $k \geq 1$, the generating function of the sequence

$$
\underbrace{0, \ldots, 0}_{k}, a_{0}, a_{1}, a_{2}, \ldots \text { is } x^{k} a(x) .
$$

- Let $\left\{a_{n}\right\}_{n=0}^{\infty}$ and $\left\{b_{n}\right\}_{n=0}^{\infty}$ be sequences with corresponding generating functions $a(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ and $b(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$, and let α be a constant.
(4) For an integer $k \geq 1$, the generating function of the sequence $\underbrace{0, \ldots, 0}_{k}, a_{0}, a_{1}, a_{2}, \ldots$ is $x^{k} a(x)$.
(5) For an integer $k \geq 1$, the generating function of the sequence $\left\{a_{n+k}\right\}_{n=0}^{\infty}$, i.e. the sequence $a_{k}, a_{k+1}, a_{k+2}, \ldots$, is $\frac{1}{x^{k}}\left(a(x)-\sum_{i=0}^{k-1} a_{i} x^{i}\right)$.
- Let $\left\{a_{n}\right\}_{n=0}^{\infty}$ and $\left\{b_{n}\right\}_{n=0}^{\infty}$ be sequences with corresponding generating functions $a(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ and $b(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$, and let α be a constant.
(4) For an integer $k \geq 1$, the generating function of the sequence $\underbrace{0, \ldots, 0}_{k}, a_{0}, a_{1}, a_{2}, \ldots$ is $x^{k} a(x)$.
(5) For an integer $k \geq 1$, the generating function of the sequence $\left\{a_{n+k}\right\}_{n=0}^{\infty}$, i.e. the sequence $a_{k}, a_{k+1}, a_{k+2}, \ldots$, is $\frac{1}{x^{k}}\left(a(x)-\sum_{i=0}^{k-1} a_{i} x^{i}\right)$.
- For example, the generating function of the sequence

$$
a_{3}, a_{4}, a_{5}, \ldots \text { is } \frac{1}{x^{3}}\left(a(x)-\left(a_{0}+a_{1} x+a_{2} x^{2}\right)\right) .
$$

- Let $\left\{a_{n}\right\}_{n=0}^{\infty}$ and $\left\{b_{n}\right\}_{n=0}^{\infty}$ be sequences with corresponding generating functions $a(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ and $b(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$, and let α be a constant.
(4) For an integer $k \geq 1$, the generating function of the sequence $\underbrace{0, \ldots, 0}_{k}, a_{0}, a_{1}, a_{2}, \ldots$ is $x^{k} a(x)$.
(5) For an integer $k \geq 1$, the generating function of the sequence $\left\{a_{n+k}\right\}_{n=0}^{\infty}$, i.e. the sequence $a_{k}, a_{k+1}, a_{k+2}, \ldots$, is $\frac{1}{x^{k}}\left(a(x)-\sum_{i=0}^{k-1} a_{i} x^{i}\right)$.
- For example, the generating function of the sequence

$$
a_{3}, a_{4}, a_{5}, \ldots \text { is } \frac{1}{x^{3}}\left(a(x)-\left(a_{0}+a_{1} x+a_{2} x^{2}\right)\right) .
$$

(6) The generating function of the sequence $\left\{\alpha^{n} a_{n}\right\}_{n=0}^{\infty}$ is $c(x)=a(\alpha x)$.

- Let $\left\{a_{n}\right\}_{n=0}^{\infty}$ and $\left\{b_{n}\right\}_{n=0}^{\infty}$ be sequences with corresponding generating functions $a(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ and $b(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$, and let α be a constant.
(4) For an integer $k \geq 1$, the generating function of the sequence $\underbrace{0, \ldots, 0}_{k}, a_{0}, a_{1}, a_{2}, \ldots$ is $x^{k} a(x)$.
(5) For an integer $k \geq 1$, the generating function of the sequence $\left\{a_{n+k}\right\}_{n=0}^{\infty}$, i.e. the sequence $a_{k}, a_{k+1}, a_{k+2}, \ldots$, is $\frac{1}{x^{k}}\left(a(x)-\sum_{i=0}^{k-1} a_{i} x^{i}\right)$.
- For example, the generating function of the sequence

$$
a_{3}, a_{4}, a_{5}, \ldots \text { is } \frac{1}{x^{3}}\left(a(x)-\left(a_{0}+a_{1} x+a_{2} x^{2}\right)\right) .
$$

(6) The generating function of the sequence $\left\{\alpha^{n} a_{n}\right\}_{n=0}^{\infty}$ is $c(x)=a(\alpha x)$.

- For instance, since $\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}$ is the generating function of $1,1,1,1,1, \ldots$, we see that $\frac{1}{1-2 x}\left(=\sum_{n=0}^{\infty} 2^{n} x^{n}\right)$ is the generating function of $1,2,4,8,16, \ldots$.
- Let $\left\{a_{n}\right\}_{n=0}^{\infty}$ and $\left\{b_{n}\right\}_{n=0}^{\infty}$ be sequences with corresponding generating functions $a(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ and $b(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$, and let α be a constant.
- Let $\left\{a_{n}\right\}_{n=0}^{\infty}$ and $\left\{b_{n}\right\}_{n=0}^{\infty}$ be sequences with corresponding generating functions $a(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ and $b(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$, and let α be a constant.
(7) For an integer $k \geq 1$, the generating function of the sequence

$$
a_{0}, \underbrace{0, \ldots, 0}_{k}, a_{1}, \underbrace{0, \ldots, 0}_{k}, a_{2}, \underbrace{0, \ldots, 0}_{k}, a_{3}, \ldots
$$

is $a\left(x^{k+1}\right)$.

- Let $\left\{a_{n}\right\}_{n=0}^{\infty}$ and $\left\{b_{n}\right\}_{n=0}^{\infty}$ be sequences with corresponding generating functions $a(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ and $b(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$, and let α be a constant.
(7) For an integer $k \geq 1$, the generating function of the sequence

$$
a_{0}, \underbrace{0, \ldots, 0}_{k}, a_{1}, \underbrace{0, \ldots, 0}_{k}, a_{2}, \underbrace{0, \ldots, 0}_{k}, a_{3}, \ldots
$$

is $a\left(x^{k+1}\right)$.

- For instance, the generating function of the sequence

$$
a_{0}, 0,0, a_{1}, 0,0, a_{2}, 0,0, a_{3}, \ldots \text { is } a\left(x^{3}\right)\left(=\sum_{n=0}^{\infty} a_{n} x^{3 n}\right)
$$

- Let $\left\{a_{n}\right\}_{n=0}^{\infty}$ and $\left\{b_{n}\right\}_{n=0}^{\infty}$ be sequences with corresponding generating functions $a(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ and $b(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$, and let α be a constant.
- Let $\left\{a_{n}\right\}_{n=0}^{\infty}$ and $\left\{b_{n}\right\}_{n=0}^{\infty}$ be sequences with corresponding generating functions $a(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ and $b(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$, and let α be a constant.
(8) The generating function of the sequence $\left\{(n+1) a_{n+1}\right\}_{n=0}^{\infty}$, i.e. the sequence $a_{1}, 2 a_{2}, 3 a_{3}, 4 a_{4}, \ldots$, is $a^{\prime}(x)$.
The generating function for the sequence $0, a_{0}, \frac{1}{2} a_{1}, \frac{1}{3} a_{2}, \frac{1}{4} a_{3}, \ldots$ is $\int_{0}^{x} a(t) d t$.
(We differentiate and integrate power series term-by-term.)
- Let $\left\{a_{n}\right\}_{n=0}^{\infty}$ and $\left\{b_{n}\right\}_{n=0}^{\infty}$ be sequences with corresponding generating functions $a(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ and $b(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$, and let α be a constant.
(8) The generating function of the sequence $\left\{(n+1) a_{n+1}\right\}_{n=0}^{\infty}$, i.e. the sequence $a_{1}, 2 a_{2}, 3 a_{3}, 4 a_{4}, \ldots$, is $a^{\prime}(x)$.
The generating function for the sequence
$0, a_{0}, \frac{1}{2} a_{1}, \frac{1}{3} a_{2}, \frac{1}{4} a_{3}, \ldots$ is $\int_{0}^{x} a(t) d t$.
(We differentiate and integrate power series term-by-term.)
(9) The function $c(x)=a(x) b(x)$ is the generating function of the sequence $\left\{c_{n}\right\}_{n=0}^{\infty}$, where $c_{n}=\sum_{i=0}^{n} a_{i} b_{n-i}$ for each integer $n \geq 0$.
- So, $c_{0}=a_{0} b_{0}, c_{1}=a_{0} b_{1}+a_{1} b_{0}, c_{2}=a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}$, etc.

Reminder: For a sequence $\left\{a_{n}\right\}_{n=0}^{\infty}$ with generating function $a(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ and a constant α :
(6) The generating function of the sequence $\left\{\alpha^{n} a_{n}\right\}_{n=0}^{\infty}$ is $c(x)=a(\alpha x)$.

Reminder: For a sequence $\left\{a_{n}\right\}_{n=0}^{\infty}$ with generating function $a(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ and a constant α :
(6) The generating function of the sequence $\left\{\alpha^{n} a_{n}\right\}_{n=0}^{\infty}$ is

$$
c(x)=a(\alpha x)
$$

Example 1.1

Let $\left\{a_{n}\right\}_{n=0}^{\infty}$ be a sequence, and let $a(x)$ be its generating function. Find the generating function of the sequence $a_{0}, 0, a_{2}, 0, a_{4}, \ldots$ in terms of the function $a(x)$.

Reminder: For a sequence $\left\{a_{n}\right\}_{n=0}^{\infty}$ with generating function $a(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ and a constant α :
(6) The generating function of the sequence $\left\{\alpha^{n} a_{n}\right\}_{n=0}^{\infty}$ is

$$
c(x)=a(\alpha x)
$$

Example 1.1

Let $\left\{a_{n}\right\}_{n=0}^{\infty}$ be a sequence, and let $a(x)$ be its generating function. Find the generating function of the sequence $a_{0}, 0, a_{2}, 0, a_{4}, \ldots$ in terms of the function $a(x)$.

Solution. $a_{0}, 0, a_{2}, 0, a_{4}, \ldots$ is the sum of $\left\{\frac{a_{n}}{2}\right\}_{n=0}^{\infty}$ and $\left\{\frac{(-1)^{n} a_{n}}{2}\right\}_{n=0}^{\infty}$.

Reminder: For a sequence $\left\{a_{n}\right\}_{n=0}^{\infty}$ with generating function $a(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ and a constant α :
(6) The generating function of the sequence $\left\{\alpha^{n} a_{n}\right\}_{n=0}^{\infty}$ is

$$
c(x)=a(\alpha x)
$$

Example 1.1

Let $\left\{a_{n}\right\}_{n=0}^{\infty}$ be a sequence, and let $a(x)$ be its generating function. Find the generating function of the sequence $a_{0}, 0, a_{2}, 0, a_{4}, \ldots$ in terms of the function $a(x)$.

Solution. $a_{0}, 0, a_{2}, 0, a_{4}, \ldots$ is the sum of $\left\{\frac{a_{n}}{2}\right\}_{n=0}^{\infty}$ and $\left\{\frac{(-1)^{n} a_{n}}{2}\right\}_{n=0}^{\infty}$. The generating function of $\left\{\frac{a_{n}}{2}\right\}_{n=0}^{\infty}$ is $\frac{1}{2} a(x)$, and the generating function of $\left\{\frac{(-1)^{n} a_{n}}{2}\right\}_{n=0}^{\infty}$ is $\frac{1}{2} a(-x)$.

Reminder: For a sequence $\left\{a_{n}\right\}_{n=0}^{\infty}$ with generating function $a(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ and a constant α :
(6) The generating function of the sequence $\left\{\alpha^{n} a_{n}\right\}_{n=0}^{\infty}$ is

$$
c(x)=a(\alpha x)
$$

Example 1.1

Let $\left\{a_{n}\right\}_{n=0}^{\infty}$ be a sequence, and let $a(x)$ be its generating function. Find the generating function of the sequence $a_{0}, 0, a_{2}, 0, a_{4}, \ldots$ in terms of the function $a(x)$.

Solution. $a_{0}, 0, a_{2}, 0, a_{4}, \ldots$ is the sum of $\left\{\frac{a_{n}}{2}\right\}_{n=0}^{\infty}$ and $\left\{\frac{(-1)^{n} a_{n}}{2}\right\}_{n=0}^{\infty}$. The generating function of $\left\{\frac{a_{n}}{2}\right\}_{n=0}^{\infty}$ is $\frac{1}{2} a(x)$, and the generating function of $\left\{\frac{(-1)^{n} a_{n}}{2}\right\}_{n=0}^{\infty}$ is $\frac{1}{2} a(-x)$. So, the generating function of $a_{0}, 0, a_{2}, 0, a_{4}, \ldots$ is $\frac{a(x)+a(-x)}{2}$.

Reminder: For a sequence $\left\{a_{n}\right\}_{n=0}^{\infty}$ with generating function $a(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ and a constant α :
(6) The generating function of the sequence $\left\{\alpha^{n} a_{n}\right\}_{n=0}^{\infty}$ is

$$
c(x)=a(\alpha x)
$$

Example 1.1

Let $\left\{a_{n}\right\}_{n=0}^{\infty}$ be a sequence, and let $a(x)$ be its generating function. Find the generating function of the sequence $a_{0}, 0, a_{2}, 0, a_{4}, \ldots$ in terms of the function $a(x)$.

Solution. $a_{0}, 0, a_{2}, 0, a_{4}, \ldots$ is the sum of $\left\{\frac{a_{n}}{2}\right\}_{n=0}^{\infty}$ and $\left\{\frac{(-1)^{n} a_{n}}{2}\right\}_{n=0}^{\infty}$. The generating function of $\left\{\frac{a_{n}}{2}\right\}_{n=0}^{\infty}$ is $\frac{1}{2} a(x)$, and the generating function of $\left\{\frac{(-1)^{n} a_{n}}{2}\right\}_{n=0}^{\infty}$ is $\frac{1}{2} a(-x)$. So, the generating function of $a_{0}, 0, a_{2}, 0, a_{4}, \ldots$ is $\frac{a(x)+a(-x)}{2}$.

- There are two more examples in the Lecture Notes.

Part II: Application \#1: counting binary trees

Part II: Application \#1: counting binary trees

- We define binary trees recursively as follows: a binary tree is either empty (i.e. contains no nodes), or consists of designated node r (called the root), plus an ordered pair (T_{L}, T_{R}) of binary trees, where T_{L} and T_{R} (called the left subtree and the right subtree) have disjoint sets of nodes and do not contain the node r.

- Remark: The empty binary tree has zero nodes, and if a binary tree T consists of a root r and an ordered pair (T_{L}, T_{R}) of binary trees, then the number of nodes of T is $1+n_{L}+n_{R}$, where n_{L} is the number of nodes of T_{L}, and n_{R} is the number of nodes of T_{R}.

- Remark: The empty binary tree has zero nodes, and if a binary tree T consists of a root r and an ordered pair (T_{L}, T_{R}) of binary trees, then the number of nodes of T is $1+n_{L}+n_{R}$, where n_{L} is the number of nodes of T_{L}, and n_{R} is the number of nodes of T_{R}.
- Goal: Count the number of binary trees on n nodes $(n \geq 0)$.
- For each integer $n \geq 0$, let b_{n} be the number of binary trees on n nodes, and let $b(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$ be the generating function of the sequence $\left\{b_{n}\right\}_{n=0}^{\infty}$.
- For each integer $n \geq 0$, let b_{n} be the number of binary trees on n nodes, and let $b(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$ be the generating function of the sequence $\left\{b_{n}\right\}_{n=0}^{\infty}$.
- It is easy to check that $b_{0}=1, b_{1}=1, b_{2}=2$, and $b_{3}=5$.
- For each integer $n \geq 0$, let b_{n} be the number of binary trees on n nodes, and let $b(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$ be the generating function of the sequence $\left\{b_{n}\right\}_{n=0}^{\infty}$.
- It is easy to check that $b_{0}=1, b_{1}=1, b_{2}=2$, and $b_{3}=5$.
- Here are all the binary trees on three nodes:

- Reminder: b_{n} be the number of binary trees on n nodes $(n \geq 0)$, and $b(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$.
- Reminder: b_{n} be the number of binary trees on n nodes $(n \geq 0)$, and $b(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$.
- Let's find a recursive formula for $b_{n}(n \geq 1)$.
- Reminder: b_{n} be the number of binary trees on n nodes $(n \geq 0)$, and $b(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$.
- Let's find a recursive formula for $b_{n}(n \geq 1)$.
- The number of binary trees on $n \geq 1$ nodes is equal to the number of ordered pairs (T_{L}, T_{R}) of binary trees s.t. T_{L}, T_{R} together have $n-1$ nodes.
- Reminder: b_{n} be the number of binary trees on n nodes

$$
(n \geq 0), \text { and } b(x)=\sum_{n=0}^{\infty} b_{n} x^{n}
$$

- Let's find a recursive formula for $b_{n}(n \geq 1)$.
- The number of binary trees on $n \geq 1$ nodes is equal to the number of ordered pairs $\left(T_{L}, T_{R}\right)$ of binary trees s.t. T_{L}, T_{R} together have $n-1$ nodes.
- Thus, for all integers $n \geq 1$, we have that

$$
b_{n}=b_{0} b_{n-1}+b_{1} b_{n-2}+\cdots+b_{n-1} b_{0}=\sum_{k=0}^{n-1} b_{k} b_{n-k-1} .
$$

- Reminder: b_{n} be the number of binary trees on n nodes

$$
(n \geq 0), \text { and } b(x)=\sum_{n=0}^{\infty} b_{n} x^{n}
$$

- Let's find a recursive formula for $b_{n}(n \geq 1)$.
- The number of binary trees on $n \geq 1$ nodes is equal to the number of ordered pairs $\left(T_{L}, T_{R}\right)$ of binary trees s.t. T_{L}, T_{R} together have $n-1$ nodes.
- Thus, for all integers $n \geq 1$, we have that

$$
b_{n}=b_{0} b_{n-1}+b_{1} b_{n-2}+\cdots+b_{n-1} b_{0}=\sum_{k=0}^{n-1} b_{k} b_{n-k-1} .
$$

- Since $b_{0}=1$, this implies that $b(x)=1+x b(x)^{2}$.
- Reminder: b_{n} be the number of binary trees on n nodes

$$
(n \geq 0), \text { and } b(x)=\sum_{n=0}^{\infty} b_{n} x^{n}
$$

- Let's find a recursive formula for $b_{n}(n \geq 1)$.
- The number of binary trees on $n \geq 1$ nodes is equal to the number of ordered pairs (T_{L}, T_{R}) of binary trees s.t. T_{L}, T_{R} together have $n-1$ nodes.
- Thus, for all integers $n \geq 1$, we have that

$$
b_{n}=b_{0} b_{n-1}+b_{1} b_{n-2}+\cdots+b_{n-1} b_{0}=\sum_{k=0}^{n-1} b_{k} b_{n-k-1} .
$$

- Since $b_{0}=1$, this implies that $b(x)=1+x b(x)^{2}$.
- By the quadratic equation (with $b(x)$ treated as a variable and x as a constant), either

$$
b(x)=\frac{1-\sqrt{1-4 x}}{2 x} \quad \text { or } \quad b(x)=\frac{1+\sqrt{1-4 x}}{2 x}
$$

- Reminder: b_{n} be the number of binary trees on n nodes

$$
(n \geq 0), \text { and } b(x)=\sum_{n=0}^{\infty} b_{n} x^{n}
$$

- Let's find a recursive formula for $b_{n}(n \geq 1)$.
- The number of binary trees on $n \geq 1$ nodes is equal to the number of ordered pairs $\left(T_{L}, T_{R}\right)$ of binary trees s.t. T_{L}, T_{R} together have $n-1$ nodes.
- Thus, for all integers $n \geq 1$, we have that

$$
b_{n}=b_{0} b_{n-1}+b_{1} b_{n-2}+\cdots+b_{n-1} b_{0}=\sum_{k=0}^{n-1} b_{k} b_{n-k-1} .
$$

- Since $b_{0}=1$, this implies that $b(x)=1+x b(x)^{2}$.
- By the quadratic equation (with $b(x)$ treated as a variable and x as a constant), either

$$
b(x)=\frac{1-\sqrt{1-4 x}}{2 x} \quad \text { or } \quad b(x)=\frac{1+\sqrt{1-4 x}}{2 x} .
$$

- Which formula is the correct one??
- Reminder: b_{n} be the number of binary trees on n nodes $(n \geq 0)$, and $b(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$ is its generating sequence.
- Reminder: Either

$$
b(x)=\frac{1-\sqrt{1-4 x}}{2 x} \quad \text { or } \quad b(x)=\frac{1+\sqrt{1-4 x}}{2 x}
$$

- Reminder: b_{n} be the number of binary trees on n nodes $(n \geq 0)$, and $b(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$ is its generating sequence.
- Reminder: Either

$$
b(x)=\frac{1-\sqrt{1-4 x}}{2 x} \quad \text { or } \quad b(x)=\frac{1+\sqrt{1-4 x}}{2 x}
$$

- Since $b_{0}=1$, we have that $\lim _{x \rightarrow 0^{+}} b(x)=1$.
- Reminder: b_{n} be the number of binary trees on n nodes ($n \geq 0$), and $b(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$ is its generating sequence.
- Reminder: Either

$$
b(x)=\frac{1-\sqrt{1-4 x}}{2 x} \quad \text { or } \quad b(x)=\frac{1+\sqrt{1-4 x}}{2 x}
$$

- Since $b_{0}=1$, we have that $\lim _{x \rightarrow 0^{+}} b(x)=1$.
- We can compute (check this!):

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} \frac{1-\sqrt{1-4 x}}{2 x}=1 \\
& \lim _{x \rightarrow 0^{+}} \frac{1+\sqrt{1-4 x}}{2 x}=\infty
\end{aligned}
$$

- Reminder: b_{n} be the number of binary trees on n nodes $(n \geq 0)$, and $b(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$ is its generating sequence.
- Reminder: Either

$$
b(x)=\frac{1-\sqrt{1-4 x}}{2 x} \quad \text { or } \quad b(x)=\frac{1+\sqrt{1-4 x}}{2 x}
$$

- Since $b_{0}=1$, we have that $\lim _{x \rightarrow 0^{+}} b(x)=1$.
- We can compute (check this!):

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} \frac{1-\sqrt{1-4 x}}{2 x}=1 \\
& \lim _{x \rightarrow 0^{+}} \frac{1+\sqrt{1-4 x}}{2 x}=\infty
\end{aligned}
$$

- So,

$$
b(x)=\frac{1-\sqrt{1-4 x}}{2 x}
$$

- Reminder: $b(x)=\frac{1-\sqrt{1-4 x}}{2 x}$.
- Reminder: $b(x)=\frac{1-\sqrt{1-4 x}}{2 x}$.
- By the Generalized Binomial Theorem:

$$
\begin{aligned}
\sqrt{1-4 x} & =\sum_{n=0}^{\infty}\binom{1 / 2}{n}(-4 x)^{n} \\
& =1+x \sum_{n=0}^{\infty}(-4)^{n+1}\binom{1 / 2}{n+1} x^{n} \quad \text { by algebra }
\end{aligned}
$$

- Reminder: $b(x)=\frac{1-\sqrt{1-4 x}}{2 x}$.
- By the Generalized Binomial Theorem:

$$
\begin{aligned}
\sqrt{1-4 x} & =\sum_{n=0}^{\infty}\binom{1 / 2}{n}(-4 x)^{n} \\
& =1+x \sum_{n=0}^{\infty}(-4)^{n+1}\binom{1 / 2}{n+1} x^{n} \quad \text { by algebra }
\end{aligned}
$$

- So,

$$
\begin{aligned}
b(x) & =\frac{1-\sqrt{1-4 x}}{2 x} \\
& =\frac{1-\left(1+x \sum_{n=0}^{\infty}(-4)^{n+1}\binom{1 / 2}{n+1} x^{n}\right)}{2 x} \\
& =\sum_{n=0}^{\infty}\left(-\frac{1}{2}\right)(-4)^{n+1}\binom{1 / 2}{n+1} x^{n}
\end{aligned}
$$

- Reminder: b_{n} be the number of binary trees on n nodes $(n \geq 0)$, and $b(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$ is its generating sequence.
- Reminder: $b(x)=\sum_{n=0}^{\infty}\left(-\frac{1}{2}\right)(-4)^{n+1}\binom{1 / 2}{n+1} x^{n}$.
- Reminder: b_{n} be the number of binary trees on n nodes $(n \geq 0)$, and $b(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$ is its generating sequence.
- Reminder: $b(x)=\sum_{n=0}^{\infty}\left(-\frac{1}{2}\right)(-4)^{n+1}\binom{1 / 2}{n+1} x^{n}$.
- So, for all non-negative integers n, we have that

$$
b_{n}=\left(-\frac{1}{2}\right)(-4)^{n+1}\binom{1 / 2}{n+1}
$$

- Reminder: b_{n} be the number of binary trees on n nodes $(n \geq 0)$, and $b(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$ is its generating sequence.
- Reminder: $b(x)=\sum_{n=0}^{\infty}\left(-\frac{1}{2}\right)(-4)^{n+1}\binom{1 / 2}{n+1} x^{n}$.
- So, for all non-negative integers n, we have that

$$
b_{n}=\left(-\frac{1}{2}\right)(-4)^{n+1}\binom{1 / 2}{n+1}
$$

- After a bit of algebra (see the Lecture Notes), we can get a nicer formula:

$$
b_{n}=\frac{1}{n+1}\binom{2 n}{n}
$$

for all integers $n \geq 0$.

- Reminder: b_{n} be the number of binary trees on n nodes $(n \geq 0)$, and $b(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$ is its generating sequence.
- Reminder: $b(x)=\sum_{n=0}^{\infty}\left(-\frac{1}{2}\right)(-4)^{n+1}\binom{1 / 2}{n+1} x^{n}$.
- So, for all non-negative integers n, we have that

$$
b_{n}=\left(-\frac{1}{2}\right)(-4)^{n+1}\binom{1 / 2}{n+1}
$$

- After a bit of algebra (see the Lecture Notes), we can get a nicer formula:

$$
b_{n}=\frac{1}{n+1}\binom{2 n}{n}
$$

for all integers $n \geq 0$.

- Numbers $\frac{1}{n+1}\binom{2 n}{n}$ are called the Catalan numbers.

Part III: Application \#2: random walks

Part III: Application \#2: random walks

- We consider the following infinite random walk on the integer line \mathbb{Z} : we begin our walk at 1 , and at each step, we move at random either two units to the right $(+2)$ or one unit to the left (-1).

Part III: Application \#2: random walks

- We consider the following infinite random walk on the integer line \mathbb{Z} : we begin our walk at 1 , and at each step, we move at random either two units to the right $(+2)$ or one unit to the left (-1).

- We would like to determine the probability that we reach the origin at some point in our walk.

Part III: Application \#2: random walks

- We consider the following infinite random walk on the integer line \mathbb{Z} : we begin our walk at 1 , and at each step, we move at random either two units to the right $(+2)$ or one unit to the left (-1).

- We would like to determine the probability that we reach the origin at some point in our walk.
- For each integer $n \geq 0$, let P_{n} be the probability that we reach the origin after at most n steps.

Part III: Application \#2: random walks

- We consider the following infinite random walk on the integer line \mathbb{Z} : we begin our walk at 1 , and at each step, we move at random either two units to the right $(+2)$ or one unit to the left (-1).

- We would like to determine the probability that we reach the origin at some point in our walk.
- For each integer $n \geq 0$, let P_{n} be the probability that we reach the origin after at most n steps.
- Obviously, $\left\{P_{n}\right\}_{n=0}^{\infty}$ is a non-decreasing sequence, and it is bounded above by 1 . So, by the Monotone Sequence Theorem, it converges.

Part III: Application \#2: random walks

- We consider the following infinite random walk on the integer line \mathbb{Z} : we begin our walk at 1 , and at each step, we move at random either two units to the right $(+2)$ or one unit to the left (-1).

- We would like to determine the probability that we reach the origin at some point in our walk.
- For each integer $n \geq 0$, let P_{n} be the probability that we reach the origin after at most n steps.
- Obviously, $\left\{P_{n}\right\}_{n=0}^{\infty}$ is a non-decreasing sequence, and it is bounded above by 1 . So, by the Monotone Sequence Theorem, it converges.
- Let $P=\lim _{n \rightarrow \infty} P_{n}$.

Part III: Application \#2: random walks

- We consider the following infinite random walk on the integer line \mathbb{Z} : we begin our walk at 1 , and at each step, we move at random either two units to the right $(+2)$ or one unit to the left (-1).

- We would like to determine the probability that we reach the origin at some point in our walk.
- For each integer $n \geq 0$, let P_{n} be the probability that we reach the origin after at most n steps.
- Obviously, $\left\{P_{n}\right\}_{n=0}^{\infty}$ is a non-decreasing sequence, and it is bounded above by 1 . So, by the Monotone Sequence Theorem, it converges.
- Let $P=\lim _{n \rightarrow \infty} P_{n}$.
- Then P is the probability that we need to compute.
start here

- For each integer $n \geq 0$, let a_{n} be the number of n-step walks in which we reach the origin for the first time after precisely n steps.

- For each integer $n \geq 0$, let a_{n} be the number of n-step walks in which we reach the origin for the first time after precisely n steps.
- The total number of n-step walks is 2^{n}.

- For each integer $n \geq 0$, let a_{n} be the number of n-step walks in which we reach the origin for the first time after precisely n steps.
- The total number of n-step walks is 2^{n}.
- So, $P_{n}=\sum_{i=0}^{n} \frac{a_{i}}{2^{i}}=a_{0}+\frac{a_{1}}{2}+\frac{a_{2}}{4}+\cdots+\frac{a_{n}}{2^{n}}$.

- For each integer $n \geq 0$, let a_{n} be the number of n-step walks in which we reach the origin for the first time after precisely n steps.
- The total number of n-step walks is 2^{n}.
- So, $P_{n}=\sum_{i=0}^{n} \frac{a_{i}}{2^{i}}=a_{0}+\frac{a_{1}}{2}+\frac{a_{2}}{4}+\cdots+\frac{a_{n}}{2^{n}}$.
- Therefore, $P=\sum_{n=0}^{\infty} \frac{a_{n}}{2^{n}}$.

- For each integer $n \geq 0$, let a_{n} be the number of n-step walks in which we reach the origin for the first time after precisely n steps.
- The total number of n-step walks is 2^{n}.
- So, $P_{n}=\sum_{i=0}^{n} \frac{a_{i}}{2^{i}}=a_{0}+\frac{a_{1}}{2}+\frac{a_{2}}{4}+\cdots+\frac{a_{n}}{2^{n}}$.
- Therefore, $P=\sum_{n=0}^{\infty} \frac{a_{n}}{2^{n}}$.
- Let $a(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ be the generating function for $\left\{a_{n}\right\}_{n=0}^{\infty}$.

- For each integer $n \geq 0$, let a_{n} be the number of n-step walks in which we reach the origin for the first time after precisely n steps.
- The total number of n-step walks is 2^{n}.
- So, $P_{n}=\sum_{i=0}^{n} \frac{a_{i}}{2^{i}}=a_{0}+\frac{a_{1}}{2}+\frac{a_{2}}{4}+\cdots+\frac{a_{n}}{2^{n}}$.
- Therefore, $P=\sum_{n=0}^{\infty} \frac{a_{n}}{2^{n}}$.
- Let $a(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ be the generating function for $\left\{a_{n}\right\}_{n=0}^{\infty}$.
- Then $P=a\left(\frac{1}{2}\right)$.

- For our solution, it will be useful to consider random walks that start at points other than 1, but still proceed according to the same rules:
- at each step, we move at random either two units to the right $(+2)$ or one unit to the left (-1).

- For an integer $n \geq 0$, let b_{n} be the number of n-step random walks (following our rules) starting at 2 and ending at the origin, without reaching the origin at any point during the walk (except at the very end).

start here

- For an integer $n \geq 0$, let b_{n} be the number of n-step random walks (following our rules) starting at 2 and ending at the origin, without reaching the origin at any point during the walk (except at the very end).
- In such a walk, we cannot reach the origin without first reaching 1, and then reaching the origin from there.

start here

- For an integer $n \geq 0$, let b_{n} be the number of n-step random walks (following our rules) starting at 2 and ending at the origin, without reaching the origin at any point during the walk (except at the very end).
- In such a walk, we cannot reach the origin without first reaching 1 , and then reaching the origin from there.
- There must be some $k \in\{1, \ldots, n-1\}$ s.t.:
- we reach 1 for the first time after precisely k steps (there are a_{k} ways to do that),
- and then starting at 1 , we reach the origin for the first time after $n-k$ steps (there are a_{n-k} ways to do that).

start here

- For an integer $n \geq 0$, let b_{n} be the number of n-step random walks (following our rules) starting at 2 and ending at the origin, without reaching the origin at any point during the walk (except at the very end).
- In such a walk, we cannot reach the origin without first reaching 1 , and then reaching the origin from there.
- There must be some $k \in\{1, \ldots, n-1\}$ s.t.:
- we reach 1 for the first time after precisely k steps (there are a_{k} ways to do that),
- and then starting at 1 , we reach the origin for the first time after $n-k$ steps (there are a_{n-k} ways to do that).
- So, $b_{n}=\sum_{k=1}^{n-1} a_{k} a_{n-k} \stackrel{a_{0}=0}{=} \sum_{k=0}^{n} a_{k} a_{n-k}$.

start here

- Reminder: For an integer $n \geq 0, b_{n}$ is the number of n-step random walks (following our rules) starting at 2 and ending at the origin, without reaching the origin at any point during the walk (except at the very end).
- Reminder: $b_{n}=\sum_{k=1}^{n-1} a_{k} a_{n-k} \stackrel{a_{0}=0}{=} \sum_{k=0}^{n} a_{k} a_{n-k}$ for all integers $n \geq 0$.

start here

- Reminder: For an integer $n \geq 0, b_{n}$ is the number of n-step random walks (following our rules) starting at 2 and ending at the origin, without reaching the origin at any point during the walk (except at the very end).
- Reminder: $b_{n}=\sum_{k=1}^{n-1} a_{k} a_{n-k} \stackrel{a_{0}=0}{=} \sum_{k=0}^{n} a_{k} a_{n-k}$ for all integers $n \geq 0$.
- So, if $b(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$ is the generating function for the sequence $\left\{b_{n}\right\}_{n=0}^{\infty}$, then we get that

$$
b(x)=a(x)^{2}
$$

start here

- For an integer $n \geq 0$, let c_{n} be the number of n-step random walks (following our rules) starting at 3 and ending at the origin, without reaching the origin at any point during the walk (except at the very end).

start here

- For an integer $n \geq 0$, let c_{n} be the number of n-step random walks (following our rules) starting at 3 and ending at the origin, without reaching the origin at any point during the walk (except at the very end).
- Let $c(x)=\sum_{n=0}^{\infty} c_{n} x^{n}$ be the generating function for the sequence $\left\{c_{n}\right\}_{n=0}^{\infty}$.

start here

- For an integer $n \geq 0$, let c_{n} be the number of n-step random walks (following our rules) starting at 3 and ending at the origin, without reaching the origin at any point during the walk (except at the very end).
- Let $c(x)=\sum_{n=0}^{\infty} c_{n} x^{n}$ be the generating function for the sequence $\left\{c_{n}\right\}_{n=0}^{\infty}$.
- Similarly to the above: $c(x)=a(x) b(x)$.
- Details: Lecture Notes.

start here

- For an integer $n \geq 0$, let c_{n} be the number of n-step random walks (following our rules) starting at 3 and ending at the origin, without reaching the origin at any point during the walk (except at the very end).
- Let $c(x)=\sum_{n=0}^{\infty} c_{n} x^{n}$ be the generating function for the sequence $\left\{c_{n}\right\}_{n=0}^{\infty}$.
- Similarly to the above: $c(x)=a(x) b(x)$.
- Details: Lecture Notes.
- Since $b(x)=a(x)^{2}$, we get

$$
c(x)=a(x)^{3} .
$$

- Reminder: For an integer $n \geq 0$:
- a_{n} is the number of ways to reach the origin for the first time after precisely n steps, starting from 1.
- c_{n} is the number of ways to reach the origin for the first time after precisely n steps, starting from 3.

- Reminder: For an integer $n \geq 0$:
- a_{n} is the number of ways to reach the origin for the first time after precisely n steps, starting from 1 .
- c_{n} is the number of ways to reach the origin for the first time after precisely n steps, starting from 3 .
- Obviously, $a_{0}=0$ and $a_{1}=1$.

- Reminder: For an integer $n \geq 0$:
- a_{n} is the number of ways to reach the origin for the first time after precisely n steps, starting from 1.
- c_{n} is the number of ways to reach the origin for the first time after precisely n steps, starting from 3.
- Obviously, $a_{0}=0$ and $a_{1}=1$.
- If we start at 1 , then for an integer $n \geq 2$, there are precisely c_{n-1} ways to reach the origin for the first time after precisely n steps: we must first move two units to the right, and then reach the origin from 3 for the first time after precisely $n-1$ steps.
- Thus, $a_{n}=c_{n-1}$ for all integers $n \geq 2$.

- Reminder: For an integer $n \geq 0$:
- a_{n} is the number of ways to reach the origin for the first time after precisely n steps, starting from 1.
- c_{n} is the number of ways to reach the origin for the first time after precisely n steps, starting from 3.
- Obviously, $a_{0}=0$ and $a_{1}=1$.
- If we start at 1 , then for an integer $n \geq 2$, there are precisely c_{n-1} ways to reach the origin for the first time after precisely n steps: we must first move two units to the right, and then reach the origin from 3 for the first time after precisely $n-1$ steps.
- Thus, $a_{n}=c_{n-1}$ for all integers $n \geq 2$.
- We now compute...

$$
\begin{array}{rlrl}
a(x) & =a_{0}+a_{1} x+\sum_{n=2}^{\infty} a_{n} x^{n} & \\
& =x+x \sum_{n=2}^{\infty} a_{n} x^{n-1} & & \text { because } a_{0}=0 \text { and } a_{1}=1 \\
& =x+x \sum_{n=2}^{\infty} c_{n-1} x^{n-1} & & \text { because } a_{n}=c_{n-1} \text { for } n \geq 2 \\
& =x+x \sum_{n=1}^{\infty} c_{n} x^{n} & & \\
& =x+x \sum_{n=0}^{\infty} c_{n} x^{n} & & \text { because } c_{0}=0 \text { (obvious) } \\
& =x+x c(x) . & &
\end{array}
$$

- We now have the following two equations:

$$
\begin{aligned}
& c(x)=a(x)^{3} \\
& a(x)=x+x c(x)
\end{aligned}
$$

- We now have the following two equations:

$$
\begin{aligned}
& c(x)=a(x)^{3} \\
& a(x)=x+x c(x)
\end{aligned}
$$

- So, $a(x)=x+x a(x)^{3}$.
- We now have the following two equations:

$$
\begin{aligned}
& c(x)=a(x)^{3} \\
& a(x)=x+x c(x)
\end{aligned}
$$

- So, $a(x)=x+x a(x)^{3}$.
- Reminder: $P=a\left(\frac{1}{2}\right)$.
- We now have the following two equations:

$$
\begin{aligned}
& c(x)=a(x)^{3} \\
& a(x)=x+x c(x)
\end{aligned}
$$

- So, $a(x)=x+x a(x)^{3}$.
- Reminder: $P=a\left(\frac{1}{2}\right)$.
- So, $P=\frac{1}{2}+\frac{1}{2} P^{3}$.
- We now have the following two equations:

$$
\begin{aligned}
& c(x)=a(x)^{3} \\
& a(x)=x+x c(x)
\end{aligned}
$$

- So, $a(x)=x+x a(x)^{3}$.
- Reminder: $P=a\left(\frac{1}{2}\right)$.
- So, $P=\frac{1}{2}+\frac{1}{2} P^{3}$.
- The equation above has three solutions: $1, \frac{-1+\sqrt{5}}{2}, \frac{-1-\sqrt{5}}{2}$.
- We now have the following two equations:

$$
\begin{aligned}
& c(x)=a(x)^{3} \\
& a(x)=x+x c(x)
\end{aligned}
$$

- So, $a(x)=x+x a(x)^{3}$.
- Reminder: $P=a\left(\frac{1}{2}\right)$.
- So, $P=\frac{1}{2}+\frac{1}{2} P^{3}$.
- The equation above has three solutions: $1, \frac{-1+\sqrt{5}}{2}, \frac{-1-\sqrt{5}}{2}$.
- Reminder: $\varphi:=\frac{-1+\sqrt{5}}{2}$ is called the golden ratio.
- We now have the following two equations:

$$
\begin{aligned}
& c(x)=a(x)^{3} \\
& a(x)=x+x c(x)
\end{aligned}
$$

- So, $a(x)=x+x a(x)^{3}$.
- Reminder: $P=a\left(\frac{1}{2}\right)$.
- So, $P=\frac{1}{2}+\frac{1}{2} P^{3}$.
- The equation above has three solutions: $1, \frac{-1+\sqrt{5}}{2}, \frac{-1-\sqrt{5}}{2}$.
- Reminder: $\varphi:=\frac{-1+\sqrt{5}}{2}$ is called the golden ratio.
- So, our equation has three solutions: $1, \varphi, \frac{-1-\sqrt{5}}{2}$.
- We now have the following two equations:

$$
\begin{aligned}
& c(x)=a(x)^{3} \\
& a(x)=x+x c(x)
\end{aligned}
$$

- So, $a(x)=x+x a(x)^{3}$.
- Reminder: $P=a\left(\frac{1}{2}\right)$.
- So, $P=\frac{1}{2}+\frac{1}{2} P^{3}$.
- The equation above has three solutions: $1, \frac{-1+\sqrt{5}}{2}, \frac{-1-\sqrt{5}}{2}$.
- Reminder: $\varphi:=\frac{-1+\sqrt{5}}{2}$ is called the golden ratio.
- So, our equation has three solutions: $1, \varphi, \frac{-1-\sqrt{5}}{2}$.
- Obviously, $P \geq 0$, and so $P \neq \frac{-1-\sqrt{5}}{2}$.
- We now have the following two equations:

$$
\begin{aligned}
& c(x)=a(x)^{3} \\
& a(x)=x+x c(x)
\end{aligned}
$$

- So, $a(x)=x+x a(x)^{3}$.
- Reminder: $P=a\left(\frac{1}{2}\right)$.
- So, $P=\frac{1}{2}+\frac{1}{2} P^{3}$.
- The equation above has three solutions: $1, \frac{-1+\sqrt{5}}{2}, \frac{-1-\sqrt{5}}{2}$.
- Reminder: $\varphi:=\frac{-1+\sqrt{5}}{2}$ is called the golden ratio.
- So, our equation has three solutions: $1, \varphi, \frac{-1-\sqrt{5}}{2}$.
- Obviously, $P \geq 0$, and so $P \neq \frac{-1-\sqrt{5}}{2}$.
- Let's show that $P \neq 1$, so that $P=\varphi$.
- Reminder: $a(x)=\sum_{n=0}^{\infty} a_{n} x^{n} ; a(x)=x+x a(x)^{3} ; P=a\left(\frac{1}{2}\right)$.
- Reminder: $a(x)=\sum_{n=0}^{\infty} a_{n} x^{n} ; a(x)=x+x a(x)^{3} ; P=a\left(\frac{1}{2}\right)$.
- Suppose $P=1$, i.e. $a\left(\frac{1}{2}\right)=1$.
- Reminder: $a(x)=\sum_{n=0}^{\infty} a_{n} x^{n} ; a(x)=x+x a(x)^{3} ; P=a\left(\frac{1}{2}\right)$.
- Suppose $P=1$, i.e. $a\left(\frac{1}{2}\right)=1$.
- $a(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ has non-negative coefficients and converges for $x=\frac{1}{2}$.
- Reminder: $a(x)=\sum_{n=0}^{\infty} a_{n} x^{n} ; a(x)=x+x a(x)^{3} ; P=a\left(\frac{1}{2}\right)$.
- Suppose $P=1$, i.e. $a\left(\frac{1}{2}\right)=1$.
- $a(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ has non-negative coefficients and converges for $x=\frac{1}{2}$.
- So, the function a is continuous and increasing on $\left[0, \frac{1}{2}\right]$.
- Reminder: $a(x)=\sum_{n=0}^{\infty} a_{n} x^{n} ; a(x)=x+x a(x)^{3} ; P=a\left(\frac{1}{2}\right)$.
- Suppose $P=1$, i.e. $a\left(\frac{1}{2}\right)=1$.
- $a(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ has non-negative coefficients and converges for $x=\frac{1}{2}$.
- So, the function a is continuous and increasing on $\left[0, \frac{1}{2}\right]$.
- We have that $a(0)=a_{0}=0$ and $a\left(\frac{1}{2}\right)=1$, and we have that $0<\varphi<1$.
- Reminder: $a(x)=\sum_{n=0}^{\infty} a_{n} x^{n} ; a(x)=x+x a(x)^{3} ; P=a\left(\frac{1}{2}\right)$.
- Suppose $P=1$, i.e. $a\left(\frac{1}{2}\right)=1$.
- $a(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ has non-negative coefficients and converges for $x=\frac{1}{2}$.
- So, the function a is continuous and increasing on $\left[0, \frac{1}{2}\right]$.
- We have that $a(0)=a_{0}=0$ and $a\left(\frac{1}{2}\right)=1$, and we have that $0<\varphi<1$.
- So, by the Intermediate Value Theorem, there exists some $x_{0} \in\left(0, \frac{1}{2}\right)$ s.t. $a\left(x_{0}\right)=\varphi$.
- Reminder: $a(x)=\sum_{n=0}^{\infty} a_{n} x^{n} ; a(x)=x+x a(x)^{3} ; P=a\left(\frac{1}{2}\right)$.
- Suppose $P=1$, i.e. $a\left(\frac{1}{2}\right)=1$.
- $a(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ has non-negative coefficients and converges for $x=\frac{1}{2}$.
- So, the function a is continuous and increasing on $\left[0, \frac{1}{2}\right]$.
- We have that $a(0)=a_{0}=0$ and $a\left(\frac{1}{2}\right)=1$, and we have that $0<\varphi<1$.
- So, by the Intermediate Value Theorem, there exists some $x_{0} \in\left(0, \frac{1}{2}\right)$ s.t. $a\left(x_{0}\right)=\varphi$.
- But $a\left(x_{0}\right)=x_{0}+x_{0} a\left(x_{0}\right)^{3}$, and so $\varphi=x_{0}+x_{0} \varphi^{3}$.
- Reminder: $a(x)=\sum_{n=0}^{\infty} a_{n} x^{n} ; a(x)=x+x a(x)^{3} ; P=a\left(\frac{1}{2}\right)$.
- Suppose $P=1$, i.e. $a\left(\frac{1}{2}\right)=1$.
- $a(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ has non-negative coefficients and converges for $x=\frac{1}{2}$.
- So, the function a is continuous and increasing on $\left[0, \frac{1}{2}\right]$.
- We have that $a(0)=a_{0}=0$ and $a\left(\frac{1}{2}\right)=1$, and we have that $0<\varphi<1$.
- So, by the Intermediate Value Theorem, there exists some $x_{0} \in\left(0, \frac{1}{2}\right)$ s.t. $a\left(x_{0}\right)=\varphi$.
- But $a\left(x_{0}\right)=x_{0}+x_{0} a\left(x_{0}\right)^{3}$, and so $\varphi=x_{0}+x_{0} \varphi^{3}$.
- But also, $\varphi=\frac{1}{2}+\frac{1}{2} \varphi^{3}$.
- Reminder: $a(x)=\sum_{n=0}^{\infty} a_{n} x^{n} ; a(x)=x+x a(x)^{3} ; P=a\left(\frac{1}{2}\right)$.
- Suppose $P=1$, i.e. $a\left(\frac{1}{2}\right)=1$.
- $a(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ has non-negative coefficients and converges for $x=\frac{1}{2}$.
- So, the function a is continuous and increasing on $\left[0, \frac{1}{2}\right]$.
- We have that $a(0)=a_{0}=0$ and $a\left(\frac{1}{2}\right)=1$, and we have that $0<\varphi<1$.
- So, by the Intermediate Value Theorem, there exists some $x_{0} \in\left(0, \frac{1}{2}\right)$ s.t. $a\left(x_{0}\right)=\varphi$.
- But $a\left(x_{0}\right)=x_{0}+x_{0} a\left(x_{0}\right)^{3}$, and so $\varphi=x_{0}+x_{0} \varphi^{3}$.
- But also, $\varphi=\frac{1}{2}+\frac{1}{2} \varphi^{3}$.
- Thus, $\frac{1}{2}+\frac{1}{2} \varphi^{3}=x_{0}+x_{0} \varphi^{3}$, and so $\left(x_{0}-\frac{1}{2}\right)\left(\varphi^{3}+1\right)=0$, a contradiction.
- Reminder: $a(x)=\sum_{n=0}^{\infty} a_{n} x^{n} ; a(x)=x+x a(x)^{3} ; P=a\left(\frac{1}{2}\right)$.
- Suppose $P=1$, i.e. $a\left(\frac{1}{2}\right)=1$.
- $a(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ has non-negative coefficients and converges for $x=\frac{1}{2}$.
- So, the function a is continuous and increasing on $\left[0, \frac{1}{2}\right]$.
- We have that $a(0)=a_{0}=0$ and $a\left(\frac{1}{2}\right)=1$, and we have that $0<\varphi<1$.
- So, by the Intermediate Value Theorem, there exists some $x_{0} \in\left(0, \frac{1}{2}\right)$ s.t. $a\left(x_{0}\right)=\varphi$.
- But $a\left(x_{0}\right)=x_{0}+x_{0} a\left(x_{0}\right)^{3}$, and so $\varphi=x_{0}+x_{0} \varphi^{3}$.
- But also, $\varphi=\frac{1}{2}+\frac{1}{2} \varphi^{3}$.
- Thus, $\frac{1}{2}+\frac{1}{2} \varphi^{3}=x_{0}+x_{0} \varphi^{3}$, and so $\left(x_{0}-\frac{1}{2}\right)\left(\varphi^{3}+1\right)=0$, a contradiction.
- So, $P \neq 1$.
- Reminder:
- We proved that P satisfies $P=\frac{1}{2}+\frac{1}{2} P^{3}$.
- Reminder:
- We proved that P satisfies $P=\frac{1}{2}+\frac{1}{2} P^{3}$.
- This equation has exactly three solutions: $1, \frac{-1+\sqrt{5}}{2}(=: \varphi)$, $\frac{-1-\sqrt{5}}{2}$.
- Reminder:
- We proved that P satisfies $P=\frac{1}{2}+\frac{1}{2} P^{3}$.
- This equation has exactly three solutions: $1, \frac{-1+\sqrt{5}}{2}(=: \varphi)$, $\frac{-1-\sqrt{5}}{2}$.
- We proved that $P \neq \frac{-1-\sqrt{5}}{2}$ and $P \neq 1$.
- Reminder:
- We proved that P satisfies $P=\frac{1}{2}+\frac{1}{2} P^{3}$.
- This equation has exactly three solutions: $1, \frac{-1+\sqrt{5}}{2}(=: \varphi)$, $\frac{-1-\sqrt{5}}{2}$.
- We proved that $P \neq \frac{-1-\sqrt{5}}{2}$ and $P \neq 1$.
- So, $P=\varphi$, i.e.

$$
P=\frac{-1+\sqrt{5}}{2}
$$

- Reminder:
- We proved that P satisfies $P=\frac{1}{2}+\frac{1}{2} P^{3}$.
- This equation has exactly three solutions: $1, \frac{-1+\sqrt{5}}{2}(=: \varphi)$, $\frac{-1-\sqrt{5}}{2}$.
- We proved that $P \neq \frac{-1-\sqrt{5}}{2}$ and $P \neq 1$.
- So, $P=\varphi$, i.e.

$$
P=\frac{-1+\sqrt{5}}{2}
$$

- Thus, the probability that we ever reach the origin in our walk is $\frac{-1+\sqrt{5}}{2}$ (the golden ratio).

