NDMI011: Combinatorics and Graph Theory 1

Lecture \#2

Generating functions (part I)

Irena Penev

October 5, 2020

This lecture consists of three parts:

This lecture consists of three parts:
(1) Partial fractions;

This lecture consists of three parts:
(1) Partial fractions;
(2) A review of Taylor (and Maclaurin) series;

This lecture consists of three parts:
(1) Partial fractions;
(2) A review of Taylor (and Maclaurin) series;
(3) An introduction to generating functions.

Part I: Partial fractions

Part I: Partial fractions

It is easy to check that

$$
\frac{1}{x^{2}(x-1)}=-\frac{1}{x}-\frac{1}{x^{2}}+\frac{1}{x-1}
$$

Part I: Partial fractions

It is easy to check that

$$
\frac{1}{x^{2}(x-1)}=-\frac{1}{x}-\frac{1}{x^{2}}+\frac{1}{x-1} .
$$

However, given the LHS, how do we compute the RHS?

Part I: Partial fractions

It is easy to check that

$$
\frac{1}{x^{2}(x-1)}=-\frac{1}{x}-\frac{1}{x^{2}}+\frac{1}{x-1} .
$$

However, given the LHS, how do we compute the RHS?

- The numerator of the rational expression $\frac{1}{x^{2}(x-1)}$ is of strictly smaller degree than the denominator.

Part I: Partial fractions

It is easy to check that

$$
\frac{1}{x^{2}(x-1)}=-\frac{1}{x}-\frac{1}{x^{2}}+\frac{1}{x-1} .
$$

However, given the LHS, how do we compute the RHS?

- The numerator of the rational expression $\frac{1}{x^{2}(x-1)}$ is of strictly smaller degree than the denominator.
- This is important! Otherwise, the procedure fails.

Part I: Partial fractions

It is easy to check that

$$
\frac{1}{x^{2}(x-1)}=-\frac{1}{x}-\frac{1}{x^{2}}+\frac{1}{x-1} .
$$

However, given the LHS, how do we compute the RHS?

- The numerator of the rational expression $\frac{1}{x^{2}(x-1)}$ is of strictly smaller degree than the denominator.
- This is important! Otherwise, the procedure fails.
- So, we write

$$
\frac{1}{x^{2}(x-1)}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x-1} .
$$

- Reminder:

$$
\frac{1}{x^{2}(x-1)}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x-1} .
$$

- Reminder:

$$
\frac{1}{x^{2}(x-1)}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x-1} .
$$

- This implies

$$
1=(A+C) x^{2}+(-A+B) x-B
$$

- Reminder:

$$
\frac{1}{x^{2}(x-1)}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x-1} .
$$

- This implies

$$
1=(A+C) x^{2}+(-A+B) x-B
$$

- The LHS and the RHS are identical as polynomials, and so they have exactly the same coefficients.
- Reminder:

$$
\frac{1}{x^{2}(x-1)}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x-1}
$$

- This implies

$$
1=(A+C) x^{2}+(-A+B) x-B
$$

- The LHS and the RHS are identical as polynomials, and so they have exactly the same coefficients.
- So, we get the following system of linear equations:

$$
A+C=0, \quad-A+B=0, \quad-B=1
$$

- Reminder:

$$
\frac{1}{x^{2}(x-1)}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x-1} .
$$

- This implies

$$
1=(A+C) x^{2}+(-A+B) x-B
$$

- The LHS and the RHS are identical as polynomials, and so they have exactly the same coefficients.
- So, we get the following system of linear equations:

$$
A+C=0, \quad-A+B=0, \quad-B=1
$$

- By solving the system, we get:

$$
A=-1, \quad B=-1, \quad C=1
$$

- Reminder:

$$
\frac{1}{x^{2}(x-1)}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x-1} .
$$

- This implies

$$
1=(A+C) x^{2}+(-A+B) x-B
$$

- The LHS and the RHS are identical as polynomials, and so they have exactly the same coefficients.
- So, we get the following system of linear equations:

$$
A+C=0, \quad-A+B=0, \quad-B=1
$$

- By solving the system, we get:

$$
A=-1, \quad B=-1, \quad C=1
$$

- So,

$$
\frac{1}{x^{2}(x-1)}=-\frac{1}{x}-\frac{1}{x^{2}}+\frac{1}{x-1} .
$$

In general, suppose $p(x)$ and $q(x)$ are polynomials with complex coefficients such that $\operatorname{deg} p(x)<\operatorname{deg} q(x)$, and such that

$$
q(x)=c\left(x-\alpha_{1}\right)^{\beta_{1}} \ldots\left(x-\alpha_{t}\right)^{\beta_{t}}
$$

where c is a non-zero complex number, $\alpha_{1}, \ldots, \alpha_{t}$ are pairwise distinct complex numbers, and $\beta_{1}, \ldots, \beta_{t}$ are positive integers.

In general, suppose $p(x)$ and $q(x)$ are polynomials with complex coefficients such that $\operatorname{deg} p(x)<\operatorname{deg} q(x)$, and such that

$$
q(x)=c\left(x-\alpha_{1}\right)^{\beta_{1}} \ldots\left(x-\alpha_{t}\right)^{\beta_{t}}
$$

where c is a non-zero complex number, $\alpha_{1}, \ldots, \alpha_{t}$ are pairwise distinct complex numbers, and $\beta_{1}, \ldots, \beta_{t}$ are positive integers.
Then there exist complex numbers
$A_{1,1}, \ldots, A_{1, \beta_{1}}, \ldots, A_{t, 1}, \ldots, A_{t, \beta_{t}}$ such that
$\frac{p(x)}{q(x)}=\frac{A_{1,1}}{x-\alpha_{1}}+\cdots+\frac{A_{1, \beta_{1}}}{\left(x-\alpha_{1}\right)^{\beta_{1}}}+\cdots+\frac{A_{t, 1}}{x-\alpha_{t}}+\cdots+\frac{A_{t, \beta_{t}}}{\left(x-\alpha_{t}\right)^{\beta_{t}}}$.

In general, suppose $p(x)$ and $q(x)$ are polynomials with complex coefficients such that $\operatorname{deg} p(x)<\operatorname{deg} q(x)$, and such that

$$
q(x)=c\left(x-\alpha_{1}\right)^{\beta_{1}} \ldots\left(x-\alpha_{t}\right)^{\beta_{t}}
$$

where c is a non-zero complex number, $\alpha_{1}, \ldots, \alpha_{t}$ are pairwise distinct complex numbers, and $\beta_{1}, \ldots, \beta_{t}$ are positive integers.
Then there exist complex numbers
$A_{1,1}, \ldots, A_{1, \beta_{1}}, \ldots, A_{t, 1}, \ldots, A_{t, \beta_{t}}$ such that
$\frac{p(x)}{q(x)}=\frac{A_{1,1}}{x-\alpha_{1}}+\cdots+\frac{A_{1, \beta_{1}}}{\left(x-\alpha_{1}\right)^{\beta_{1}}}+\cdots+\frac{A_{t, 1}}{x-\alpha_{t}}+\cdots+\frac{A_{t, \beta_{t}}}{\left(x-\alpha_{t}\right)^{\beta_{t}}}$.

Finding $A_{1,1}, \ldots, A_{1, \beta_{1}}, \ldots, A_{t, 1}, \ldots, A_{t, \beta_{t}}$ reduces to solving a system of linear equations, as in the example that we considered.

- For example:

$$
\begin{aligned}
\frac{x^{5}-7 x+1}{7(x-2)^{3}(x+1)^{2}(x+2)^{4}}= & \frac{A}{x-2}+\frac{B}{(x-2)^{2}}+\frac{C}{(x-2)^{3}}+\frac{D}{x+1}+\frac{E}{(x+1)^{2}}+ \\
& +\frac{F}{x+2}+\frac{G}{(x+2)^{2}}+\frac{H}{(x+2)^{3}}+\frac{1}{(x+2)^{4}} .
\end{aligned}
$$

- For example:

$$
\begin{aligned}
\frac{x^{5}-7 x+1}{7(x-2)^{3}(x+1)^{2}(x+2)^{4}}= & \frac{A}{x-2}+\frac{B}{(x-2)^{2}}+\frac{C}{(x-2)^{3}}+\frac{D}{x+1}+\frac{E}{(x+1)^{2}}+ \\
& +\frac{F}{x+2}+\frac{G}{(x+2)^{2}}+\frac{H}{(x+2)^{3}}+\frac{1}{(x+2)^{4}} .
\end{aligned}
$$

- However, finding A, B, \ldots, I would be computationally messy...
- For example:

$$
\begin{aligned}
\frac{x^{5}-7 x+1}{7(x-2)^{3}(x+1)^{2}(x+2)^{4}}= & \frac{A}{x-2}+\frac{B}{(x-2)^{2}}+\frac{C}{(x-2)^{3}}+\frac{D}{x+1}+\frac{E}{(x+1)^{2}}+ \\
& +\frac{F}{x+2}+\frac{G}{(x+2)^{2}}+\frac{H}{(x+2)^{3}}+\frac{I}{(x+2)^{4}} .
\end{aligned}
$$

- However, finding A, B, \ldots, I would be computationally messy...
- See the Lecture Notes for another fully worked out example.
- What if we have $\frac{p(x)}{q(x)}$, where $p(x), q(x)$ are polynomials such that $\operatorname{deg} p(x) \geq \operatorname{deg} q(x)$?
- What if we have $\frac{p(x)}{q(x)}$, where $p(x), q(x)$ are polynomials such that $\operatorname{deg} p(x) \geq \operatorname{deg} q(x)$?
- Then we first perform polynomial division, and then we perform our procedure on the remainder.
- What if we have $\frac{p(x)}{q(x)}$, where $p(x), q(x)$ are polynomials such that $\operatorname{deg} p(x) \geq \operatorname{deg} q(x)$?
- Then we first perform polynomial division, and then we perform our procedure on the remainder.
- For instance:

$$
\begin{aligned}
\frac{3 x^{4}-3 x^{3}+1}{x^{2}(x-1)} & =3 x+\frac{1}{x^{2}(x-1)} \\
& =3 x-\frac{1}{x}-\frac{1}{x^{2}}+\frac{1}{x-1}
\end{aligned}
$$

Part II: A review of Taylor (and Maclaurin) series

Part II: A review of Taylor (and Maclaurin) series

Definition

Let $f: A \subseteq \mathbb{R} \rightarrow \mathbb{R}$, let $a \in A$, and assume that A contains (as a subset) some open neighborhood of a, and that f is infinitely differentiable at a. Then the Taylor series of f centered at a is the series

$$
T^{f, a}(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

Part II: A review of Taylor (and Maclaurin) series

Definition

Let $f: A \subseteq \mathbb{R} \rightarrow \mathbb{R}$, let $a \in A$, and assume that A contains (as a subset) some open neighborhood of a, and that f is infinitely differentiable at a. Then the Taylor series of f centered at a is the series

$$
T^{f, a}(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

- The Taylor series $T^{f, 0}(x)$ (here, we have $a=0$) is called the Maclaurin series.

Here are the Maclaurin series of some familiar functions (from analysis):
(i) $T^{\exp (x), 0}(x)=1+x+\frac{x^{2}}{2!}+\cdots+\frac{x^{n}}{n!}+\ldots$;
(ii) $T^{\sin x, 0}(x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots+(-1)^{n-1} \frac{x^{2 n-1}}{(2 n-1)!}+\ldots$;
(iii) $T^{\cos x, 0}(x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots+(-1)^{n} \frac{x^{2 n}}{(2 n)!}+\ldots$;
(iv) $T^{\ln (1+x), 0}(x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots+(-1)^{n-1} \frac{x^{n}}{n}+\ldots$;
(v) $T^{(1+x)^{\alpha}, 0}(x)=\binom{\alpha}{0}+\binom{\alpha}{1} x+\binom{\alpha}{2} x^{2}+\cdots+\binom{\alpha}{n} x^{n}+\ldots$, where α is a fixed real number;
(vi) $T^{\frac{1}{1-x}, 0}(x)=1+x+x^{2}+\cdots+x^{n}+\ldots$.

Here are the Maclaurin series of some familiar functions (from analysis):
(i) $T^{\exp (x), 0}(x)=1+x+\frac{x^{2}}{2!}+\cdots+\frac{x^{n}}{n!}+\ldots$;
(ii) $T^{\sin x, 0}(x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots+(-1)^{n-1} \frac{x^{2 n-1}}{(2 n-1)!}+\ldots$;
(iii) $T^{\cos x, 0}(x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots+(-1)^{n} \frac{x^{2 n}}{(2 n)!}+\ldots$;
(iv) $T^{\ln (1+x), 0}(x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots+(-1)^{n-1} \frac{x^{n}}{n}+\ldots$;
(v) $T^{(1+x)^{\alpha}, 0}(x)=\binom{\alpha}{0}+\binom{\alpha}{1} x+\binom{\alpha}{2} x^{2}+\cdots+\binom{\alpha}{n} x^{n}+\ldots$, where α is a fixed real number;
(vi) $T^{\frac{1}{1-x}, 0}(x)=1+x+x^{2}+\cdots+x^{n}+\ldots$.

- Let's verify (v).

Here are the Maclaurin series of some familiar functions (from analysis):
(i) $T^{\exp (x), 0}(x)=1+x+\frac{x^{2}}{2!}+\cdots+\frac{x^{n}}{n!}+\ldots$;
(ii) $T^{\sin x, 0}(x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots+(-1)^{n-1} \frac{x^{2 n-1}}{(2 n-1)!}+\ldots$;
(iii) $T^{\cos x, 0}(x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots+(-1)^{n} \frac{x^{2 n}}{(2 n)!}+\ldots$;
(iv) $T^{\ln (1+x), 0}(x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots+(-1)^{n-1} \frac{x^{n}}{n}+\ldots$;
(v) $T^{(1+x)^{\alpha}, 0}(x)=\binom{\alpha}{0}+\binom{\alpha}{1} x+\binom{\alpha}{2} x^{2}+\cdots+\binom{\alpha}{n} x^{n}+\ldots$, where α is a fixed real number;
(vi) $T^{\frac{1}{1-x}, 0}(x)=1+x+x^{2}+\cdots+x^{n}+\ldots$.

- Let's verify (v).
- Actually, what does $\binom{\alpha}{k}$ mean when α is a real number?

Definition

For a real number α and a non-negative integer k, we define

$$
\binom{\alpha}{k}=\frac{\alpha(\alpha-1) \ldots(\alpha-k+1)}{k!} .
$$

In particular, $\binom{\alpha}{0}=1$.
(v) $T^{(1+x)^{\alpha}, 0}(x)=\binom{\alpha}{0}+\binom{\alpha}{1} x+\binom{\alpha}{2} x^{2}+\cdots+\binom{\alpha}{n} x^{n}+\ldots$, where α is a fixed real number.
(v) $T^{(1+x)^{\alpha}, 0}(x)=\binom{\alpha}{0}+\binom{\alpha}{1} x+\binom{\alpha}{2} x^{2}+\cdots+\binom{\alpha}{n} x^{n}+\ldots$, where α is a fixed real number.

- By induction, for all integers $k \geq 0$:

$$
\frac{d^{k}}{d x^{k}}(1+x)^{\alpha}=\alpha(\alpha-1) \ldots(\alpha-k+1)(1+x)^{\alpha-k}
$$

(v) $T^{(1+x)^{\alpha}, 0}(x)=\binom{\alpha}{0}+\binom{\alpha}{1} x+\binom{\alpha}{2} x^{2}+\cdots+\binom{\alpha}{n} x^{n}+\ldots$, where α is a fixed real number.

- By induction, for all integers $k \geq 0$:

$$
\frac{d^{k}}{d x^{k}}(1+x)^{\alpha}=\alpha(\alpha-1) \ldots(\alpha-k+1)(1+x)^{\alpha-k}
$$

- So,

$$
\frac{\left.\frac{d^{k}}{d x^{k}}(1+x)^{\alpha}\right|_{x=0}}{k!}=\frac{\alpha(\alpha-1) \ldots(\alpha-k+1)}{k!}=\binom{\alpha}{k} .
$$

(v) $T^{(1+x)^{\alpha}, 0}(x)=\binom{\alpha}{0}+\binom{\alpha}{1} x+\binom{\alpha}{2} x^{2}+\cdots+\binom{\alpha}{n} x^{n}+\ldots$, where α is a fixed real number.

- By induction, for all integers $k \geq 0$:

$$
\frac{d^{k}}{d x^{k}}(1+x)^{\alpha}=\alpha(\alpha-1) \ldots(\alpha-k+1)(1+x)^{\alpha-k}
$$

- So,

$$
\frac{\left.\frac{d^{k}}{d x^{k}}(1+x)^{\alpha}\right|_{x=0}}{k!}=\frac{\alpha(\alpha-1) \ldots(\alpha-k+1)}{k!}=\binom{\alpha}{k} .
$$

- And now (v) follows.
- The Maclaurin series of a function $f(x)$ need not converge for all values of x.
- The Maclaurin series of a function $f(x)$ need not converge for all values of x.
- Even if does converge, it need not converge to $f(x)$.
- The Maclaurin series of a function $f(x)$ need not converge for all values of x.
- Even if does converge, it need not converge to $f(x)$.
- Nevertheless, we have the following:
(1) $\exp (x)=1+x+\frac{x^{2}}{2!}+\cdots+\frac{x^{n}}{n!}+\ldots$ for all $x \in \mathbb{R}$;
(2) $\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots+(-1)^{n-1} \frac{x^{2 n-1}}{(2 n-1)!}+\ldots$ for all $x \in \mathbb{R}$;
(3) $\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots+(-1)^{\frac{x^{2 n}}{(2 n)!}}+\ldots$ for all $x \in \mathbb{R}$;
(4) $\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots+(-1)^{n-1} \frac{x^{n}}{n}+\ldots$ for all $x \in(-1,1]$;
(5) $(1+x)^{\alpha}=\binom{\alpha}{0}+\binom{\alpha}{1} x+\binom{\alpha}{2} x^{2}+\cdots+\binom{\alpha}{n} x^{n}+\ldots$ for $x \in(-1,1)$, where α is a fixed real number;
(6) $\frac{1}{1-x}=1+x+x^{2}+\cdots+x^{n}+\ldots$ for $x \in(-1,1)$.
(1) $\exp (x)=1+x+\frac{x^{2}}{2!}+\cdots+\frac{x^{n}}{n!}+\ldots$ for all $x \in \mathbb{R}$;
(2) $\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots+(-1)^{n-1} \frac{x^{2 n-1}}{(2 n-1)!}+\ldots$ for all $x \in \mathbb{R}$;
(3) $\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots+(-1)^{\frac{x^{2 n}}{2^{2 n)!}}}+\ldots$ for all $x \in \mathbb{R}$;
(4) $\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots+(-1)^{n-1} \frac{x^{n}}{n}+\ldots$ for all $x \in(-1,1]$;
(5) $(1+x)^{\alpha}=\binom{\alpha}{0}+\binom{\alpha}{1} x+\binom{\alpha}{2} x^{2}+\cdots+\binom{\alpha}{n} x^{n}+\ldots$ for $x \in(-1,1)$, where α is a fixed real number;
(6) $\frac{1}{1-x}=1+x+x^{2}+\cdots+x^{n}+\ldots$ for $x \in(-1,1)$.
(1) $\exp (x)=1+x+\frac{x^{2}}{2!}+\cdots+\frac{x^{n}}{n!}+\ldots$ for all $x \in \mathbb{R}$;
(2) $\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots+(-1)^{n-1} \frac{x^{2 n-1}}{(2 n-1)!}+\ldots$ for all $x \in \mathbb{R}$;
(3) $\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots+(-1)^{\frac{x^{2 n}}{(2 n)!}}+\ldots$ for all $x \in \mathbb{R}$;
(4) $\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots+(-1)^{n-1} \frac{x^{n}}{n}+\ldots$ for all $x \in(-1,1]$;
(5) $(1+x)^{\alpha}=\binom{\alpha}{0}+\binom{\alpha}{1} x+\binom{\alpha}{2} x^{2}+\cdots+\binom{\alpha}{n} x^{n}+\ldots$ for $x \in(-1,1)$, where α is a fixed real number;
(6) $\frac{1}{1-x}=1+x+x^{2}+\cdots+x^{n}+\ldots$ for $x \in(-1,1)$.
- (5) is called the "Generalized Binomial Theorem."
(1) $\exp (x)=1+x+\frac{x^{2}}{2!}+\cdots+\frac{x^{n}}{n!}+\ldots$ for all $x \in \mathbb{R}$;
(2) $\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots+(-1)^{n-1} \frac{x^{2 n-1}}{(2 n-1)!}+\ldots$ for all $x \in \mathbb{R}$;
(3) $\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots+(-1)^{\frac{x^{2 n}}{(2 n)!}}+\ldots$ for all $x \in \mathbb{R}$;
(4) $\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots+(-1)^{n-1} \frac{x^{n}}{n}+\ldots$ for all $x \in(-1,1]$;
(5) $(1+x)^{\alpha}=\binom{\alpha}{0}+\binom{\alpha}{1} x+\binom{\alpha}{2} x^{2}+\cdots+\binom{\alpha}{n} x^{n}+\ldots$ for $x \in(-1,1)$, where α is a fixed real number;
(6) $\frac{1}{1-x}=1+x+x^{2}+\cdots+x^{n}+\ldots$ for $x \in(-1,1)$.
- (5) is called the "Generalized Binomial Theorem."
- If α is a non-negative integer, then for integers $k>\alpha$, we have $\binom{\alpha}{k}=0$, and so

$$
(1+x)^{\alpha}=\binom{\alpha}{0}+\binom{\alpha}{1} x+\cdots+\binom{\alpha}{\alpha} x^{\alpha}
$$

which is what we also get via the (finite) Binomial Theorem.
(1) $\exp (x)=1+x+\frac{x^{2}}{2!}+\cdots+\frac{x^{n}}{n!}+\ldots$ for all $x \in \mathbb{R}$;
(2) $\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots+(-1)^{n-1} \frac{x^{2 n-1}}{(2 n-1)!}+\ldots$ for all $x \in \mathbb{R}$;
(3) $\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots+(-1)^{\frac{x^{2 n}}{(2 n)!}}+\ldots$ for all $x \in \mathbb{R}$;
(4) $\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots+(-1)^{n-1} \frac{x^{n}}{n}+\ldots$ for all $x \in(-1,1]$;
(5) $(1+x)^{\alpha}=\binom{\alpha}{0}+\binom{\alpha}{1} x+\binom{\alpha}{2} x^{2}+\cdots+\binom{\alpha}{n} x^{n}+\ldots$ for $x \in(-1,1)$, where α is a fixed real number;
(6) $\frac{1}{1-x}=1+x+x^{2}+\cdots+x^{n}+\ldots$ for $x \in(-1,1)$.
(1) $\exp (x)=1+x+\frac{x^{2}}{2!}+\cdots+\frac{x^{n}}{n!}+\ldots$ for all $x \in \mathbb{R}$;
(2) $\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots+(-1)^{n-1} \frac{x^{2 n-1}}{(2 n-1)!}+\ldots$ for all $x \in \mathbb{R}$;
(3) $\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots+(-1)^{\frac{x^{2 n}}{(2 n)!}}+\ldots$ for all $x \in \mathbb{R}$;
(4) $\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots+(-1)^{n-1} \frac{x^{n}}{n}+\ldots$ for all $x \in(-1,1]$;
(5) $(1+x)^{\alpha}=\binom{\alpha}{0}+\binom{\alpha}{1} x+\binom{\alpha}{2} x^{2}+\cdots+\binom{\alpha}{n} x^{n}+\ldots$ for $x \in(-1,1)$, where α is a fixed real number;
(6) $\frac{1}{1-x}=1+x+x^{2}+\cdots+x^{n}+\ldots$ for $x \in(-1,1)$.

- For a constant $a \neq 0$, an integer $t \geq 1$, and a sufficiently small value of x, we can substitute $a x^{t}$ for x in the above equations.
(1) $\exp (x)=1+x+\frac{x^{2}}{2!}+\cdots+\frac{x^{n}}{n!}+\ldots$ for all $x \in \mathbb{R}$;
(2) $\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots+(-1)^{n-1} \frac{x^{2 n-1}}{(2 n-1)!}+\ldots$ for all $x \in \mathbb{R}$;
(3) $\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots+(-1)^{\frac{x^{2 n}}{(2 n)!}}+\ldots$ for all $x \in \mathbb{R}$;
(4) $\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots+(-1)^{n-1} \frac{x^{n}}{n}+\ldots$ for all $x \in(-1,1]$;
(5) $(1+x)^{\alpha}=\binom{\alpha}{0}+\binom{\alpha}{1} x+\binom{\alpha}{2} x^{2}+\cdots+\binom{\alpha}{n} x^{n}+\ldots$ for $x \in(-1,1)$, where α is a fixed real number;
(6) $\frac{1}{1-x}=1+x+x^{2}+\cdots+x^{n}+\ldots$ for $x \in(-1,1)$.
- For a constant $a \neq 0$, an integer $t \geq 1$, and a sufficiently small value of x, we can substitute $a x^{t}$ for x in the above equations.
- For example, by substituting $2 x^{3}$ for x in (6), we get that

$$
\frac{1}{1-2 x^{3}}=1+2 x^{3}+4 x^{6}+\cdots+2^{n} x^{3 n}+\ldots
$$

(1) $\exp (x)=1+x+\frac{x^{2}}{2!}+\cdots+\frac{x^{n}}{n!}+\ldots$ for all $x \in \mathbb{R}$;
(2) $\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots+(-1)^{n-1} \frac{x^{2 n-1}}{(2 n-1)!}+\ldots$ for all $x \in \mathbb{R}$;
(3) $\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots+(-1)^{\frac{x^{2 n}}{(2 n)!}}+\ldots$ for all $x \in \mathbb{R}$;
(4) $\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots+(-1)^{n-1} \frac{x^{n}}{n}+\ldots$ for all $x \in(-1,1]$;
(5) $(1+x)^{\alpha}=\binom{\alpha}{0}+\binom{\alpha}{1} x+\binom{\alpha}{2} x^{2}+\cdots+\binom{\alpha}{n} x^{n}+\ldots$ for $x \in(-1,1)$, where α is a fixed real number;
(6) $\frac{1}{1-x}=1+x+x^{2}+\cdots+x^{n}+\ldots$ for $x \in(-1,1)$.

- For a constant $a \neq 0$, an integer $t \geq 1$, and a sufficiently small value of x, we can substitute $a x^{t}$ for x in the above equations.
- For example, by substituting $2 x^{3}$ for x in (6), we get that

$$
\frac{1}{1-2 x^{3}}=1+2 x^{3}+4 x^{6}+\cdots+2^{n} x^{3 n}+\ldots
$$

- (6) follows from (5), with $\alpha=-1$ and $-x$ substituted for x.
(1) $\exp (x)=1+x+\frac{x^{2}}{2!}+\cdots+\frac{x^{n}}{n!}+\ldots$ for all $x \in \mathbb{R}$;
(2) $\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots+(-1)^{n-1} \frac{x^{2 n-1}}{(2 n-1)!}+\ldots$ for all $x \in \mathbb{R}$;
(3) $\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots+(-1)^{\frac{x^{2 n}}{(2 n)!}}+\ldots$ for all $x \in \mathbb{R}$;
(4) $\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots+(-1)^{n-1} \frac{x^{n}}{n}+\ldots$ for all $x \in(-1,1]$;
(5) $(1+x)^{\alpha}=\binom{\alpha}{0}+\binom{\alpha}{1} x+\binom{\alpha}{2} x^{2}+\cdots+\binom{\alpha}{n} x^{n}+\ldots$ for $x \in(-1,1)$, where α is a fixed real number;
(6) $\frac{1}{1-x}=1+x+x^{2}+\cdots+x^{n}+\ldots$ for $x \in(-1,1)$.
- In working with generating functions, we will not worry about exactly how small x needs to be to make our equations work.
- We simply need that they work for values of x in some (no matter how small) open neighborhood of zero.

Part III: Generating functions

Part III: Generating functions

- Motivating example:

How many ways are there to pay 21 Kč, assuming we have six 1 Kč coins, five 2 Kč coins, and four 5 Kč coins?
(Here, we treat all coins of the same value as the same. So, if we happened to use three $1 \mathrm{Kčcoins}$, particular three we chose.)

How many ways are there to pay 21 Kč, assuming we have six 1 Kč coins, five 2 Kč coins, and four 5 Kč coins?

How many ways are there to pay 21 Kč, assuming we have six 1 Kč coins, five 2 Kč coins, and four 5 Kč coins?

- We are looking for the number of solutions to the equation

$$
i_{1}+i_{2}+i_{5}=21
$$

with $i_{1} \in\{0,1,2,3,4,5,6\}, i_{2} \in\{0,2,4,6,8,10\}$, and $i_{5} \in\{0,5,10,15,20\}$.

How many ways are there to pay 21 Kč, assuming we have six 1 Kč coins, five 2 Kč coins, and four 5 Kč coins?

- We are looking for the number of solutions to the equation

$$
i_{1}+i_{2}+i_{5}=21
$$

with $i_{1} \in\{0,1,2,3,4,5,6\}, i_{2} \in\{0,2,4,6,8,10\}$, and $i_{5} \in\{0,5,10,15,20\}$.

- This is precisely the coefficient in front of x^{21} in the following polynomial:

$$
\begin{aligned}
p(x)= & \left(1+x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}\right) \\
& \times\left(1+x^{2}+x^{4}+x^{6}+x^{8}+x^{10}\right) \\
& \times\left(1+x^{5}+x^{10}+x^{15}+x^{20}\right)
\end{aligned}
$$

How many ways are there to pay 21 Kč, assuming we have six 1 Kč coins, five 2 Kč coins, and four 5 Kč coins?

- We are looking for the number of solutions to the equation

$$
i_{1}+i_{2}+i_{5}=21
$$

with $i_{1} \in\{0,1,2,3,4,5,6\}, i_{2} \in\{0,2,4,6,8,10\}$, and $i_{5} \in\{0,5,10,15,20\}$.

- This is precisely the coefficient in front of x^{21} in the following polynomial:

$$
\begin{aligned}
p(x)= & \left(1+x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}\right) \\
& \times\left(1+x^{2}+x^{4}+x^{6}+x^{8}+x^{10}\right) \\
& \times\left(1+x^{5}+x^{10}+x^{15}+x^{20}\right)
\end{aligned}
$$

- Indeed, we obtain x^{21} by selecting some $x^{i_{1}}$ from the first term of the product, some $x^{i_{2}}$ from the second, and some $x^{i_{5}}$ from the third, in such a way that $i_{1}+i_{2}+i_{5}=21$.

How many ways are there to pay 21 Kč, assuming we have six 1 Kč coins, five 2 Kč coins, and four 5 Kč coins?

- We are looking for the number of solutions to the equation

$$
i_{1}+i_{2}+i_{5}=21
$$

with $i_{1} \in\{0,1,2,3,4,5,6\}, i_{2} \in\{0,2,4,6,8,10\}$, and $i_{5} \in\{0,5,10,15,20\}$.

- This is precisely the coefficient in front of x^{21} in the following polynomial:

$$
\begin{aligned}
p(x)= & \left(1+x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}\right) \\
& \times\left(1+x^{2}+x^{4}+x^{6}+x^{8}+x^{10}\right) \\
& \times\left(1+x^{5}+x^{10}+x^{15}+x^{20}\right)
\end{aligned}
$$

- Indeed, we obtain x^{21} by selecting some $x^{i_{1}}$ from the first term of the product, some $x^{i_{2}}$ from the second, and some $x^{i_{5}}$ from the third, in such a way that $i_{1}+i_{2}+i_{5}=21$.
- The number of ways of selecting i_{1}, i_{2}, i_{5} is precisely the coefficient in front of x^{21} in the polynomial $p(x)$.

$$
\begin{aligned}
p(x)= & \left(1+x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}\right) \\
& \times\left(1+x^{2}+x^{4}+x^{6}+x^{8}+x^{10}\right) \\
& \times\left(1+x^{5}+x^{10}+x^{15}+x^{20}\right)
\end{aligned}
$$

$$
\begin{aligned}
p(x)= & \left(1+x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}\right) \\
& \times\left(1+x^{2}+x^{4}+x^{6}+x^{8}+x^{10}\right) \\
& \times\left(1+x^{5}+x^{10}+x^{15}+x^{20}\right)
\end{aligned}
$$

- More generally, for each integer $n \geq 0$, let a_{n} be the number of ways to pay $n K$ č using our coins.

$$
\begin{aligned}
p(x)= & \left(1+x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}\right) \\
& \times\left(1+x^{2}+x^{4}+x^{6}+x^{8}+x^{10}\right) \\
& \times\left(1+x^{5}+x^{10}+x^{15}+x^{20}\right)
\end{aligned}
$$

- More generally, for each integer $n \geq 0$, let a_{n} be the number of ways to pay $n \mathrm{~K}$ č using our coins.
- Then a_{n} is precisely the coefficient in front of x^{n} in the polynomial $p(x)$, i.e.

$$
p(x)=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

$$
\begin{aligned}
p(x)= & \left(1+x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}\right) \\
& \times\left(1+x^{2}+x^{4}+x^{6}+x^{8}+x^{10}\right) \\
& \times\left(1+x^{5}+x^{10}+x^{15}+x^{20}\right)
\end{aligned}
$$

- More generally, for each integer $n \geq 0$, let a_{n} be the number of ways to pay $n K$ č using our coins.
- Then a_{n} is precisely the coefficient in front of x^{n} in the polynomial $p(x)$, i.e.

$$
p(x)=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

- We call $p(x)$ the "generating function" of the sequence $\left\{a_{n}\right\}_{n=0}^{\infty}$.

$$
\begin{aligned}
p(x)= & \left(1+x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}\right) \\
& \times\left(1+x^{2}+x^{4}+x^{6}+x^{8}+x^{10}\right) \\
& \times\left(1+x^{5}+x^{10}+x^{15}+x^{20}\right)
\end{aligned}
$$

- More generally, for each integer $n \geq 0$, let a_{n} be the number of ways to pay $n \mathrm{~K}$ č using our coins.
- Then a_{n} is precisely the coefficient in front of x^{n} in the polynomial $p(x)$, i.e.

$$
p(x)=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

- We call $p(x)$ the "generating function" of the sequence $\left\{a_{n}\right\}_{n=0}^{\infty}$.
- In this case, it is a polynomial, but in general, it is a (potentially infinite) series.

Definition

Suppose $\left\{a_{n}\right\}_{n=0}^{\infty}$ is some infinite sequence of real (or complex) numbers. The generating function of this sequence is the power series

$$
\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Definition

Suppose $\left\{a_{n}\right\}_{n=0}^{\infty}$ is some infinite sequence of real (or complex) numbers. The generating function of this sequence is the power series

$$
\sum_{n=0}^{\infty} a_{n} x^{n}
$$

- For example, the generating function of the constant sequence $1,1,1,1,1, \ldots$ is

$$
1+x+x^{2}+x^{3}+\cdots=\sum_{n=0}^{\infty} x^{n}
$$

Definition

Suppose $\left\{a_{n}\right\}_{n=0}^{\infty}$ is some infinite sequence of real (or complex) numbers. The generating function of this sequence is the power series

$$
\sum_{n=0}^{\infty} a_{n} x^{n}
$$

- For example, the generating function of the constant sequence $1,1,1,1,1, \ldots$ is

$$
1+x+x^{2}+x^{3}+\cdots=\sum_{n=0}^{\infty} x^{n}
$$

- We recognize this as the Maclaurin series of the function $\frac{1}{1-x}$.

Definition

Suppose $\left\{a_{n}\right\}_{n=0}^{\infty}$ is some infinite sequence of real (or complex) numbers. The generating function of this sequence is the power series

$$
\sum_{n=0}^{\infty} a_{n} x^{n}
$$

- For example, the generating function of the constant sequence $1,1,1,1,1, \ldots$ is

$$
1+x+x^{2}+x^{3}+\cdots=\sum_{n=0}^{\infty} x^{n}
$$

- We recognize this as the Maclaurin series of the function $\frac{1}{1-x}$.
- So, the generating function of $1,1,1,1,1, \ldots$ is $\frac{1}{1-x}$.

Definition

Suppose $\left\{a_{n}\right\}_{n=0}^{\infty}$ is some infinite sequence of real (or complex) numbers. The generating function of this sequence is the power series

$$
\sum_{n=0}^{\infty} a_{n} x^{n}
$$

- For example, the generating function of the constant sequence $1,1,1,1,1, \ldots$ is

$$
1+x+x^{2}+x^{3}+\cdots=\sum_{n=0}^{\infty} x^{n}
$$

- We recognize this as the Maclaurin series of the function $\frac{1}{1-x}$.
- So, the generating function of $1,1,1,1,1, \ldots$ is $\frac{1}{1-x}$.
- An application of generating functions: difference equations.

Definition

For a positive integer k, a homogeneous linear difference equation of degree k is an equation of the form

$$
y_{n+k}=a_{k-1} y_{n+k-1}+a_{k-2} y_{n+k-2}+\cdots+a_{1} y_{n+1}+a_{0} y_{n}
$$

where a_{k-1}, \ldots, a_{0} are fixed constants.

Definition

For a positive integer k, a homogeneous linear difference equation of degree k is an equation of the form

$$
y_{n+k}=a_{k-1} y_{n+k-1}+a_{k-2} y_{n+k-2}+\cdots+a_{1} y_{n+1}+a_{0} y_{n}
$$

where a_{k-1}, \ldots, a_{0} are fixed constants.

- Often, sequences are defined by specifying the values of the first k terms, and by a homogeneous linear difference equation of degree k.

Definition

For a positive integer k, a homogeneous linear difference equation of degree k is an equation of the form

$$
y_{n+k}=a_{k-1} y_{n+k-1}+a_{k-2} y_{n+k-2}+\cdots+a_{1} y_{n+1}+a_{0} y_{n},
$$

where a_{k-1}, \ldots, a_{0} are fixed constants.

- Often, sequences are defined by specifying the values of the first k terms, and by a homogeneous linear difference equation of degree k.
- One famous example of such a sequence is the Fibonacci sequence $\left\{F_{n}\right\}_{n=0}^{\infty}$, defined recursively as follows:
- $F_{0}=0, F_{1}=1$;
- $F_{n+2}=F_{n}+F_{n+1}$ for all integers $n \geq 0$.

Definition

For a positive integer k, a homogeneous linear difference equation of degree k is an equation of the form

$$
y_{n+k}=a_{k-1} y_{n+k-1}+a_{k-2} y_{n+k-2}+\cdots+a_{1} y_{n+1}+a_{0} y_{n},
$$

where a_{k-1}, \ldots, a_{0} are fixed constants.

- Often, sequences are defined by specifying the values of the first k terms, and by a homogeneous linear difference equation of degree k.
- One famous example of such a sequence is the Fibonacci sequence $\left\{F_{n}\right\}_{n=0}^{\infty}$, defined recursively as follows:
- $F_{0}=0, F_{1}=1$;
- $F_{n+2}=F_{n}+F_{n+1}$ for all integers $n \geq 0$.
- So, we defined the Fibonacci sequence using a second degree homogeneous linear difference equation.
- Often, we are interested in finding a closed formula of a recursively defined sequence.
- Often, we are interested in finding a closed formula of a recursively defined sequence.
- For example, suppose we are given a sequence $\left\{a_{n}\right\}_{n=0}^{\infty}$, defined recursively as follows:
- $a_{0}=1$
- $a_{n+1}=2 a_{n}$ for all integers $n \geq 0$.
- Often, we are interested in finding a closed formula of a recursively defined sequence.
- For example, suppose we are given a sequence $\left\{a_{n}\right\}_{n=0}^{\infty}$, defined recursively as follows:
- $a_{0}=1$
- $a_{n+1}=2 a_{n}$ for all integers $n \geq 0$.
- Then a closed formula for the general term of the sequence $\left\{a_{n}\right\}_{n=0}^{\infty}$ is

$$
a_{n}=2^{n} \quad \text { for all integers } n \geq 0
$$

- Often, we are interested in finding a closed formula of a recursively defined sequence.
- For example, suppose we are given a sequence $\left\{a_{n}\right\}_{n=0}^{\infty}$, defined recursively as follows:
- $a_{0}=1$
- $a_{n+1}=2 a_{n}$ for all integers $n \geq 0$.
- Then a closed formula for the general term of the sequence $\left\{a_{n}\right\}_{n=0}^{\infty}$ is

$$
a_{n}=2^{n} \quad \text { for all integers } n \geq 0
$$

- This example was easy (we could simply guess the formula, and verify by induction that it works).
- Often, we are interested in finding a closed formula of a recursively defined sequence.
- For example, suppose we are given a sequence $\left\{a_{n}\right\}_{n=0}^{\infty}$, defined recursively as follows:
- $a_{0}=1$
- $a_{n+1}=2 a_{n}$ for all integers $n \geq 0$.
- Then a closed formula for the general term of the sequence $\left\{a_{n}\right\}_{n=0}^{\infty}$ is

$$
a_{n}=2^{n} \quad \text { for all integers } n \geq 0
$$

- This example was easy (we could simply guess the formula, and verify by induction that it works).
- But often, this isn't so easy!
- Often, we are interested in finding a closed formula of a recursively defined sequence.
- For example, suppose we are given a sequence $\left\{a_{n}\right\}_{n=0}^{\infty}$, defined recursively as follows:
- $a_{0}=1$
- $a_{n+1}=2 a_{n}$ for all integers $n \geq 0$.
- Then a closed formula for the general term of the sequence $\left\{a_{n}\right\}_{n=0}^{\infty}$ is

$$
a_{n}=2^{n} \quad \text { for all integers } n \geq 0
$$

- This example was easy (we could simply guess the formula, and verify by induction that it works).
- But often, this isn't so easy!
- What is a closed formula for the n-th Fibonacci number F_{n} ??

Definition

For a positive integer k, a homogeneous linear difference equation of degree k is an equation of the form

$$
y_{n+k}=a_{k-1} y_{n+k-1}+a_{k-2} y_{n+k-2}+\cdots+a_{1} y_{n+1}+a_{0} y_{n},
$$

where a_{k-1}, \ldots, a_{0} are fixed constants.

- In theory, generating functions can be used to find the closed formula of the general term of a sequence defined via any homogeneous linear difference equation.

Definition

For a positive integer k, a homogeneous linear difference equation of degree k is an equation of the form

$$
y_{n+k}=a_{k-1} y_{n+k-1}+a_{k-2} y_{n+k-2}+\cdots+a_{1} y_{n+1}+a_{0} y_{n},
$$

where a_{k-1}, \ldots, a_{0} are fixed constants.

- In theory, generating functions can be used to find the closed formula of the general term of a sequence defined via any homogeneous linear difference equation.
- However, in practice, if our difference equation is of high degree, this may be difficult or impossible to do due to problems with factoring polynomials of high degree.

Definition

For a positive integer k, a homogeneous linear difference equation of degree k is an equation of the form

$$
y_{n+k}=a_{k-1} y_{n+k-1}+a_{k-2} y_{n+k-2}+\cdots+a_{1} y_{n+1}+a_{0} y_{n},
$$

where a_{k-1}, \ldots, a_{0} are fixed constants.

- In theory, generating functions can be used to find the closed formula of the general term of a sequence defined via any homogeneous linear difference equation.
- However, in practice, if our difference equation is of high degree, this may be difficult or impossible to do due to problems with factoring polynomials of high degree.
- Let's show how this can be done for sequences defined via second degree homogeneous linear difference equations.

Definition

For a positive integer k, a homogeneous linear difference equation of degree k is an equation of the form

$$
y_{n+k}=a_{k-1} y_{n+k-1}+a_{k-2} y_{n+k-2}+\cdots+a_{1} y_{n+1}+a_{0} y_{n},
$$

where a_{k-1}, \ldots, a_{0} are fixed constants.

- In theory, generating functions can be used to find the closed formula of the general term of a sequence defined via any homogeneous linear difference equation.
- However, in practice, if our difference equation is of high degree, this may be difficult or impossible to do due to problems with factoring polynomials of high degree.
- Let's show how this can be done for sequences defined via second degree homogeneous linear difference equations.
- We do this for the Fibonacci sequence (and there is one more worked out example in the Lecture Notes).

Example

Find a closed formula of the general term of the Fibonacci sequence $\left\{F_{n}\right\}_{n=0}^{\infty}$, defined recursively as follows:

- $F_{0}=0, F_{1}=1$;
- $F_{n+2}=F_{n}+F_{n+1}$ for all integers $n \geq 0$.

Solution.

Example

Find a closed formula of the general term of the Fibonacci sequence $\left\{F_{n}\right\}_{n=0}^{\infty}$, defined recursively as follows:

- $F_{0}=0, F_{1}=1$;
- $F_{n+2}=F_{n}+F_{n+1}$ for all integers $n \geq 0$.

Solution. We consider the generating function

$$
f(x)=\sum_{n=0}^{\infty} F_{n} x^{n}
$$

for $\left\{F_{n}\right\}_{n=0}^{\infty}$.

Example

Find a closed formula of the general term of the Fibonacci sequence $\left\{F_{n}\right\}_{n=0}^{\infty}$, defined recursively as follows:

- $F_{0}=0, F_{1}=1$;
- $F_{n+2}=F_{n}+F_{n+1}$ for all integers $n \geq 0$.

Solution. We consider the generating function

$$
f(x)=\sum_{n=0}^{\infty} F_{n} x^{n}
$$

for $\left\{F_{n}\right\}_{n=0}^{\infty}$. We manipulate the above series as follows:

Solution (continued). Reminder: $F_{0}=0, F_{1}=1$, $F_{n+2}=F_{n}+F_{n+1} \forall n \geq 0$.

Solution (continued). Reminder: $F_{0}=0, F_{1}=1$, $F_{n+2}=F_{n}+F_{n+1} \forall n \geq 0$.

$$
\begin{aligned}
f(x) & =\sum_{n=0}^{\infty} F_{n} x^{n} \\
& =F_{0}+F_{1} x+x^{2} \sum_{n=0}^{\infty} F_{n+2} x^{n} \\
& =x+x^{2} \sum_{n=0}^{\infty}\left(F_{n}+F_{n+1}\right) x^{n} \\
& =x+\left(x^{2} \sum_{n=0}^{\infty} F_{n} x^{n}\right)+\left(x^{2} \sum_{n=0}^{\infty} F_{n+1} x^{n}\right) \\
& =x+\left(x^{2} \sum_{n=0}^{\infty} F_{n} x^{n}\right)+\left(x \sum_{n=0}^{\infty} F_{n+1} x^{n+1}\right) \\
& =x+\left(x^{2} \sum_{n=0}^{\infty} F_{n} x^{n}\right)+\left(x \sum_{n=0}^{\infty} F_{n} x^{n}\right) \\
& =x+x^{2} f^{n}(x)+x f(x)
\end{aligned}
$$

Solution (continued). Reminder: $F_{0}=0, F_{1}=1$, $F_{n+2}=F_{n}+F_{n+1} \forall n \geq 0$.

$$
\begin{array}{rlr}
f(x) & =\sum_{n=0}^{\infty} F_{n} x^{n} \\
& =F_{0}+F_{1} x+x^{2} \sum_{n=0}^{\infty} F_{n+2} x^{n} \\
& =x+x^{2} \sum_{n=0}^{\infty}\left(F_{n}+F_{n+1}\right) x^{n} \\
& =x+\left(x^{2} \sum_{n=0}^{\infty} F_{n} x^{n}\right)+\left(x^{2} \sum_{n=0}^{\infty} F_{n+1} x^{n}\right) \\
& =x+\left(x^{2} \sum_{n=0}^{\infty} F_{n} x^{n}\right)+\left(x \sum_{n=0}^{\infty} F_{n+1} x^{n+1}\right) \\
& =x+\left(x^{2} \sum_{n=0}^{\infty} F_{n} x^{n}\right)+\left(x \sum_{n=0}^{\infty} F_{n} x^{n}\right) \quad \text { because } F_{0}=0 \\
& =x+x^{2} f(x)+x f(x) &
\end{array}
$$

So, we got the equation $f(x)=x+x^{2} f(x)+x f(x)$, which yields

$$
f(x)=-\frac{x}{x^{2}+x-1}
$$

Solution (continued).

$$
\begin{aligned}
f(x) & =-\frac{x}{x^{2}+x-1} \\
& =-\frac{x}{\left(x-\frac{-1-\sqrt{5}}{2}\right)\left(x-\frac{-1+\sqrt{5}}{2}\right)} \\
& =-\frac{\frac{1+\sqrt{5}}{2 \sqrt{5}}}{x-\frac{-1-\sqrt{5}}{2}}-\frac{\frac{-1+\sqrt{5}}{2 \sqrt{5}}}{x-\frac{-1+\sqrt{5}}{2}}
\end{aligned}
$$

via quad. eq.
via partial
fractions
$=-\frac{1}{\sqrt{5}}\left(\frac{1}{1-x \frac{1-\sqrt{5}}{2}}-\frac{1}{1-x \frac{1+\sqrt{5}}{2}}\right)$
$=\frac{1}{\sqrt{5}}\left(\left(-\sum_{n=0}^{\infty}\left(\frac{1-\sqrt{5}}{2}\right)^{n} x^{n}\right)+\left(\sum_{n=0}^{\infty}\left(\frac{1+\sqrt{5}}{2}\right)^{n} x^{n}\right)\right)$
via Maclaurin expansion
$=\sum_{n=0}^{\infty} \frac{(1+\sqrt{5})^{n}-(1-\sqrt{5})^{n}}{2^{n} \sqrt{5}} x^{n}$

Solution (continued). So:

$$
\begin{aligned}
& f(x)=\sum_{n=0}^{\infty} F_{n} x^{n} \\
& f(x)=\sum_{n=0}^{\infty} \frac{(1+\sqrt{5})^{n}-(1-\sqrt{5})^{n}}{2^{n} \sqrt{5}} x^{n}
\end{aligned}
$$

Solution (continued). So:

$$
\begin{aligned}
& f(x)=\sum_{n=0}^{\infty} F_{n} x^{n} \\
& f(x)=\sum_{n=0}^{\infty} \frac{(1+\sqrt{5})^{n}-(1-\sqrt{5})^{n}}{2^{n} \sqrt{5}} x^{n}
\end{aligned}
$$

So, we get:

$$
F_{n}=\frac{(1+\sqrt{5})^{n}-(1-\sqrt{5})^{n}}{2^{n} \sqrt{5}} .
$$

for all integers $n \geq 0$.

Solution (continued). So:

$$
\begin{aligned}
& f(x)=\sum_{n=0}^{\infty} F_{n} x^{n} \\
& f(x)=\sum_{n=0}^{\infty} \frac{(1+\sqrt{5})^{n}-(1-\sqrt{5})^{n}}{2^{n} \sqrt{5}} x^{n}
\end{aligned}
$$

So, we get:

$$
F_{n}=\frac{(1+\sqrt{5})^{n}-(1-\sqrt{5})^{n}}{2^{n} \sqrt{5}} .
$$

for all integers $n \geq 0$.
We can verify that this works by induction (see the Lecture Notes).

- We defined the Fibonacci sequence $\left\{F_{n}\right\}_{n=0}^{\infty}$ recursively as follows:
- $F_{0}=0, F_{1}=1$;
- $F_{n+2}=F_{n}+F_{n+1}$ for all integers $n \geq 0$.
- We defined the Fibonacci sequence $\left\{F_{n}\right\}_{n=0}^{\infty}$ recursively as follows:
- $F_{0}=0, F_{1}=1$;
- $F_{n+2}=F_{n}+F_{n+1}$ for all integers $n \geq 0$.
- We used generating functions to obtain the following closed formula for the general term of the Fibonacci sequence:

$$
F_{n}=\frac{(1+\sqrt{5})^{n}-(1-\sqrt{5})^{n}}{2^{n} \sqrt{5}}
$$

for all integers $n \geq 0$.

- We defined the Fibonacci sequence $\left\{F_{n}\right\}_{n=0}^{\infty}$ recursively as follows:
- $F_{0}=0, F_{1}=1$;
- $F_{n+2}=F_{n}+F_{n+1}$ for all integers $n \geq 0$.
- We used generating functions to obtain the following closed formula for the general term of the Fibonacci sequence:

$$
F_{n}=\frac{(1+\sqrt{5})^{n}-(1-\sqrt{5})^{n}}{2^{n} \sqrt{5}}
$$

for all integers $n \geq 0$.

- The golden ratio is the number

$$
\varphi=\frac{1+\sqrt{5}}{2}
$$

- We defined the Fibonacci sequence $\left\{F_{n}\right\}_{n=0}^{\infty}$ recursively as follows:
- $F_{0}=0, F_{1}=1$;
- $F_{n+2}=F_{n}+F_{n+1}$ for all integers $n \geq 0$.
- We used generating functions to obtain the following closed formula for the general term of the Fibonacci sequence:

$$
F_{n}=\frac{(1+\sqrt{5})^{n}-(1-\sqrt{5})^{n}}{2^{n} \sqrt{5}}
$$

for all integers $n \geq 0$.

- The golden ratio is the number

$$
\varphi=\frac{1+\sqrt{5}}{2}
$$

- We have (check this!) that:

$$
F_{n}=\frac{\varphi^{n}-(1-\varphi)^{n}}{\sqrt{5}}=\frac{\varphi^{n}-(-\varphi)^{-n}}{\sqrt{5}} .
$$

- See the Lecture Notes for another example of a sequence defined via a homogeneous linear difference equation of degree 2.
- See the Lecture Notes for another example of a sequence defined via a homogeneous linear difference equation of degree 2.
- Sometimes, generating functions can be used to find a closed formula for the general term of a recursively defined sequence, even if the recurrence is not given by a homogeneous linear difference equation.
- See the Lecture Notes for another example of a sequence defined via a homogeneous linear difference equation of degree 2.
- Sometimes, generating functions can be used to find a closed formula for the general term of a recursively defined sequence, even if the recurrence is not given by a homogeneous linear difference equation.

Example

Let $\left\{a_{n}\right\}_{n=0}^{\infty}$ be a sequence defined recursively as follows:

- $a_{0}=1$;
- $a_{n+1}=7 a_{n}+6^{n+1}$ for all integers $n \geq 0$.

Find a closed formula for a_{n}.

- See the Lecture Notes for another example of a sequence defined via a homogeneous linear difference equation of degree 2.
- Sometimes, generating functions can be used to find a closed formula for the general term of a recursively defined sequence, even if the recurrence is not given by a homogeneous linear difference equation.

Example

Let $\left\{a_{n}\right\}_{n=0}^{\infty}$ be a sequence defined recursively as follows:

- $a_{0}=1$;
- $a_{n+1}=7 a_{n}+6^{n+1}$ for all integers $n \geq 0$.

Find a closed formula for a_{n}.
Solution. We consider the generating function $a(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ for the sequence $\left\{a_{n}\right\}_{n=0}^{\infty}$.

- See the Lecture Notes for another example of a sequence defined via a homogeneous linear difference equation of degree 2.
- Sometimes, generating functions can be used to find a closed formula for the general term of a recursively defined sequence, even if the recurrence is not given by a homogeneous linear difference equation.

Example

Let $\left\{a_{n}\right\}_{n=0}^{\infty}$ be a sequence defined recursively as follows:

- $a_{0}=1$;
- $a_{n+1}=7 a_{n}+6^{n+1}$ for all integers $n \geq 0$.

Find a closed formula for a_{n}.
Solution. We consider the generating function $a(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ for the sequence $\left\{a_{n}\right\}_{n=0}^{\infty}$. We manipulate $a(x)$ as follows.

Solution (continued). Reminder: $a_{0}=1, a_{n+1}=7 a_{n}+6^{n+1}$ $\forall n \geq 0$.

$$
\begin{aligned}
a(x) & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{0}+\sum_{n=0}^{\infty} a_{n+1} x^{n+1} \\
& =1+\sum_{n=0}^{\infty}\left(7 a_{n}+6^{n+1}\right) x^{n+1} \\
& =1+7 x\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)+\left(\sum_{n=1}^{\infty} 6^{n} x^{n}\right) \\
& =7 x\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)+\left(\sum_{n=0}^{\infty} 6^{n} x^{n}\right) \\
& =7 x a(x)+\frac{1}{1-6 x} .
\end{aligned}
$$

Solution(continued). So, we got:

$$
a(x)=7 x a(x)+\frac{1}{1-6 x},
$$

which yields

$$
a(x)=\frac{1}{(7 x-1)(6 x-1)}
$$

Solution(continued). So, we got:

$$
a(x)=7 x a(x)+\frac{1}{1-6 x},
$$

which yields

$$
a(x)=\frac{1}{(7 x-1)(6 x-1)}
$$

We now compute

$$
\begin{array}{rlr}
a(x) & =\frac{1}{(7 x-1)(6 x-1)} & \\
& =\frac{7}{1-7 x}-\frac{6}{1-6 x} & \text { via partial fractions } \\
& =\left(7 \sum_{n=0}^{\infty} 7^{n} x^{n}\right)-\left(6 \sum_{n=0}^{\infty} 6^{n} x^{n}\right) & \\
& =\sum_{n=0}^{\infty}\left(7^{n+1}-6^{n+1}\right) x^{n} . &
\end{array}
$$

Solution (continued). So, we have

$$
\begin{aligned}
& a(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \\
& a(x)=\sum_{n=0}^{\infty}\left(7^{n+1}-6^{n+1}\right) x^{n}
\end{aligned}
$$

Solution (continued). So, we have

$$
\begin{aligned}
& a(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \\
& a(x)=\sum_{n=0}^{\infty}\left(7^{n+1}-6^{n+1}\right) x^{n}
\end{aligned}
$$

We deduce that

$$
a_{n}=7^{n+1}-6^{n+1}
$$

for all integers $n \geq 0$.

Solution (continued). So, we have

$$
\begin{aligned}
& a(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \\
& a(x)=\sum_{n=0}^{\infty}\left(7^{n+1}-6^{n+1}\right) x^{n}
\end{aligned}
$$

We deduce that

$$
a_{n}=7^{n+1}-6^{n+1}
$$

for all integers $n \geq 0$.
We can check by induction that this is correct.

