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This lecture consists of three parts:

1 Partial fractions;
2 A review of Taylor (and Maclaurin) series;
3 An introduction to generating functions.
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Part I: Partial fractions

It is easy to check that

1
x2(x − 1) = −1

x −
1

x2 + 1
x − 1 .

However, given the LHS, how do we compute the RHS?
The numerator of the rational expression 1

x2(x−1) is of strictly
smaller degree than the denominator.

This is important! Otherwise, the procedure fails.

So, we write

1
x2(x − 1) = A

x + B
x2 + C

x − 1 .
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Reminder:
1

x2(x − 1) = A
x + B

x2 + C
x − 1 .

This implies

1 = (A + C)x2 + (−A + B)x − B.

The LHS and the RHS are identical as polynomials, and so
they have exactly the same coefficients.
So, we get the following system of linear equations:

A + C = 0, −A + B = 0, −B = 1.

By solving the system, we get:

A = −1, B = −1, C = 1,

So,
1

x2(x − 1) = −1
x −

1
x2 + 1

x − 1 .
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In general, suppose p(x) and q(x) are polynomials with complex
coefficients such that deg p(x) < deg q(x), and such that

q(x) = c(x − α1)β1 . . . (x − αt)βt ,

where c is a non-zero complex number, α1, . . . , αt are pairwise
distinct complex numbers, and β1, . . . , βt are positive integers.

Then there exist complex numbers
A1,1, . . . ,A1,β1 , . . . ,At,1, . . . ,At,βt such that

p(x)
q(x) = A1,1

x − α1
+· · ·+ A1,β1

(x − α1)β1
+· · ·+ At,1

x − αt
+· · ·+ At,βt

(x − αt)βt
.

Finding A1,1, . . . ,A1,β1 , . . . ,At,1, . . . ,At,βt reduces to solving a
system of linear equations, as in the example that we considered.
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For example:

x5−7x+1
7(x−2)3(x+1)2(x+2)4 = A

x−2 + B
(x−2)2 + C

(x−2)3 + D
x+1 + E

(x+1)2 +

+ F
x+2 + G

(x+2)2 + H
(x+2)3 + I

(x+2)4 .

However, finding A,B, . . . , I would be computationally
messy...
See the Lecture Notes for another fully worked out example.
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What if we have p(x)
q(x) , where p(x), q(x) are polynomials such

that deg p(x) ≥ deg q(x)?

Then we first perform polynomial division, and then we
perform our procedure on the remainder.
For instance:

3x4−3x3+1
x2(x−1) = 3x + 1

x2(x−1)

= 3x − 1
x −

1
x2 + 1

x−1
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Part II: A review of Taylor (and Maclaurin) series

Definition
Let f : A ⊆ R→ R, let a ∈ A, and assume that A contains (as a
subset) some open neighborhood of a, and that f is infinitely
differentiable at a. Then the Taylor series of f centered at a is the
series

T f ,a(x) =
∞∑

n=0

f (n)(a)
n! (x − a)n.

The Taylor series T f ,0(x) (here, we have a = 0) is called the
Maclaurin series.
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Here are the Maclaurin series of some familiar functions (from
analysis):

(i) T exp(x),0(x) = 1 + x + x2

2! + · · ·+ xn

n! + . . . ;
(ii) T sin x ,0(x) = x − x3

3! + x5

5! − · · ·+ (−1)n−1 x2n−1

(2n−1)! + . . . ;

(iii) T cos x ,0(x) = 1− x2

2! + x4

4! − · · ·+ (−1)n x2n

(2n)! + . . . ;

(iv) T ln(1+x),0(x) = x − x2

2 + x3

3 − · · ·+ (−1)n−1 xn

n + . . . ;
(v) T (1+x)α,0(x) =

(α
0
)

+
(α

1
)
x +

(α
2
)
x2 + · · ·+

(α
n
)
xn + . . . , where

α is a fixed real number;
(vi) T

1
1−x ,0(x) = 1 + x + x2 + · · ·+ xn + . . . .

Let’s verify (v).
Actually, what does

(α
k
)

mean when α is a real number?
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Definition
For a real number α and a non-negative integer k, we define(

α

k

)
= α(α− 1) . . . (α− k + 1)

k! .

In particular,
(α

0
)

= 1.



(v) T (1+x)α,0(x) =
(α

0
)

+
(α

1
)
x +

(α
2
)
x2 + · · ·+

(α
n
)
xn + . . . , where

α is a fixed real number.

By induction, for all integers k ≥ 0:

dk

dxk (1 + x)α = α(α− 1) . . . (α− k + 1)(1 + x)α−k .

So,

dk
dxk (1+x)α

∣∣∣
x=0

k! = α(α−1)...(α−k+1)
k! =

(α
k
)
.

And now (v) follows.
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The Maclaurin series of a function f (x) need not converge for
all values of x .

Even if does converge, it need not converge to f (x).
Nevertheless, we have the following:

(1) exp(x) = 1 + x + x2

2! + · · ·+ xn

n! + . . . for all x ∈ R;
(2) sin x = x − x3

3! + x5

5! − · · ·+ (−1)n−1 x2n−1

(2n−1)! + . . . for all x ∈ R;

(3) cos x = 1− x2

2! + x4

4! − · · ·+ (−1)
x2n
(2n)! + . . . for all x ∈ R;

(4) ln(1 + x) = x − x2

2 + x3

3 − · · ·+ (−1)n−1 xn

n + . . . for all
x ∈ (−1, 1];

(5) (1 + x)α =
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+
(α
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x +

(α
2
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x2 + · · ·+

(α
n
)
xn + . . . for

x ∈ (−1, 1), where α is a fixed real number;
(6) 1

1−x = 1 + x + x2 + · · ·+ xn + . . . for x ∈ (−1, 1).
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(5) is called the “Generalized Binomial Theorem.”
If α is a non-negative integer, then for integers k > α, we
have

(α
k
)

= 0, and so

(1 + x)α =
(α

0
)

+
(α

1
)
x + · · ·+

(α
α

)
xα,

which is what we also get via the (finite) Binomial Theorem.
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1−2x3 = 1 + 2x3 + 4x6 + · · ·+ 2nx3n + . . .

(6) follows from (5), with α = −1 and −x substituted for x .
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In working with generating functions, we will not worry about
exactly how small x needs to be to make our equations work.
We simply need that they work for values of x in some (no
matter how small) open neighborhood of zero.



Part III: Generating functions

Motivating example:
How many ways are there to pay 21 Kč, assuming
we have six 1 Kč coins, five 2 Kč coins, and four
5 Kč coins?

(Here, we treat all coins of the same value as the same. So, if
we happened to use three 1 Kč coins, we do not care which
particular three we chose.)



Part III: Generating functions

Motivating example:
How many ways are there to pay 21 Kč, assuming
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How many ways are there to pay 21 Kč, assuming we
have six 1 Kč coins, five 2 Kč coins, and four 5 Kč coins?

We are looking for the number of solutions to the equation
i1 + i2 + i5 = 21,

with i1 ∈ {0, 1, 2, 3, 4, 5, 6}, i2 ∈ {0, 2, 4, 6, 8, 10}, and
i5 ∈ {0, 5, 10, 15, 20}.
This is precisely the coefficient in front of x21 in the following
polynomial:

p(x) = (1 + x + x2 + x3 + x4 + x5 + x6)
×(1 + x2 + x4 + x6 + x8 + x10)
×(1 + x5 + x10 + x15 + x20)

Indeed, we obtain x21 by selecting some x i1 from the first
term of the product, some x i2 from the second, and some x i5

from the third, in such a way that i1 + i2 + i5 = 21.
The number of ways of selecting i1, i2, i5 is precisely the
coefficient in front of x21 in the polynomial p(x).
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p(x) = (1 + x + x2 + x3 + x4 + x5 + x6)
×(1 + x2 + x4 + x6 + x8 + x10)
×(1 + x5 + x10 + x15 + x20)

More generally, for each integer n ≥ 0, let an be the number
of ways to pay nKč using our coins.
Then an is precisely the coefficient in front of xn in the
polynomial p(x), i.e.

p(x) =
∞∑

n=0
anxn

We call p(x) the “generating function” of the sequence
{an}∞n=0.
In this case, it is a polynomial, but in general, it is a
(potentially infinite) series.
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of ways to pay nKč using our coins.
Then an is precisely the coefficient in front of xn in the
polynomial p(x), i.e.

p(x) =
∞∑

n=0
anxn

We call p(x) the “generating function” of the sequence
{an}∞n=0.
In this case, it is a polynomial, but in general, it is a
(potentially infinite) series.



p(x) = (1 + x + x2 + x3 + x4 + x5 + x6)
×(1 + x2 + x4 + x6 + x8 + x10)
×(1 + x5 + x10 + x15 + x20)

More generally, for each integer n ≥ 0, let an be the number
of ways to pay nKč using our coins.
Then an is precisely the coefficient in front of xn in the
polynomial p(x), i.e.

p(x) =
∞∑

n=0
anxn

We call p(x) the “generating function” of the sequence
{an}∞n=0.

In this case, it is a polynomial, but in general, it is a
(potentially infinite) series.



p(x) = (1 + x + x2 + x3 + x4 + x5 + x6)
×(1 + x2 + x4 + x6 + x8 + x10)
×(1 + x5 + x10 + x15 + x20)

More generally, for each integer n ≥ 0, let an be the number
of ways to pay nKč using our coins.
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Definition
Suppose {an}∞n=0 is some infinite sequence of real (or complex)
numbers. The generating function of this sequence is the power
series ∞∑

n=0
anxn.

For example, the generating function of the constant sequence
1, 1, 1, 1, 1, . . . is

1 + x + x2 + x3 + · · · =
∞∑

n=0
xn.

We recognize this as the Maclaurin series of the function 1
1−x .

So, the generating function of 1, 1, 1, 1, 1, . . . is 1
1−x .

An application of generating functions: difference equations.
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Definition
For a positive integer k, a homogeneous linear difference equation
of degree k is an equation of the form

yn+k = ak−1yn+k−1 + ak−2yn+k−2 + · · ·+ a1yn+1 + a0yn,

where ak−1, . . . , a0 are fixed constants.

Often, sequences are defined by specifying the values of the
first k terms, and by a homogeneous linear difference equation
of degree k.
One famous example of such a sequence is the Fibonacci
sequence {Fn}∞n=0, defined recursively as follows:

F0 = 0, F1 = 1;
Fn+2 = Fn + Fn+1 for all integers n ≥ 0.

So, we defined the Fibonacci sequence using a second degree
homogeneous linear difference equation.
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Often, we are interested in finding a closed formula of a
recursively defined sequence.

For example, suppose we are given a sequence {an}∞n=0,
defined recursively as follows:

a0 = 1
an+1 = 2an for all integers n ≥ 0.

Then a closed formula for the general term of the sequence
{an}∞n=0 is

an = 2n for all integers n ≥ 0.

This example was easy (we could simply guess the formula,
and verify by induction that it works).
But often, this isn’t so easy!
What is a closed formula for the n-th Fibonacci number Fn??
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Definition
For a positive integer k, a homogeneous linear difference equation
of degree k is an equation of the form

yn+k = ak−1yn+k−1 + ak−2yn+k−2 + · · ·+ a1yn+1 + a0yn,

where ak−1, . . . , a0 are fixed constants.

In theory, generating functions can be used to find the closed
formula of the general term of a sequence defined via any
homogeneous linear difference equation.

However, in practice, if our difference equation is of high
degree, this may be difficult or impossible to do due to
problems with factoring polynomials of high degree.
Let’s show how this can be done for sequences defined via
second degree homogeneous linear difference equations.
We do this for the Fibonacci sequence (and there is one more
worked out example in the Lecture Notes).
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Example
Find a closed formula of the general term of the Fibonacci
sequence {Fn}∞n=0, defined recursively as follows:

F0 = 0, F1 = 1;
Fn+2 = Fn + Fn+1 for all integers n ≥ 0.

Solution.

We consider the generating function

f (x) =
∞∑

n=0
Fnxn

for {Fn}∞n=0. We manipulate the above series as follows:
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Solution (continued). Reminder: F0 = 0, F1 = 1,
Fn+2 = Fn + Fn+1 ∀n ≥ 0.

f (x) =
∞∑

n=0
Fnxn

= F0 + F1x + x2
∞∑

n=0
Fn+2xn

= x + x2
∞∑

n=0
(Fn + Fn+1)xn

= x + (x2
∞∑

n=0
Fnxn) + (x2

∞∑
n=0

Fn+1xn)

= x + (x2
∞∑

n=0
Fnxn) + (x

∞∑
n=0

Fn+1xn+1)

= x + (x2
∞∑

n=0
Fnxn) + (x

∞∑
n=0

Fnxn) because F0 = 0

= x + x2f (x) + xf (x)

So, we got the equation f (x) = x + x2f (x) + xf (x), which yields

f (x) = − x
x2 + x − 1 .
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Solution (continued).
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Solution (continued). So:
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Fnxn

f (x) =
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√
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So, we get:
Fn = (1+

√
5)n−(1−

√
5)n

2n
√

5 .

for all integers n ≥ 0.

We can verify that this works by induction (see the Lecture Notes).
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We defined the Fibonacci sequence {Fn}∞n=0 recursively as
follows:

F0 = 0, F1 = 1;
Fn+2 = Fn + Fn+1 for all integers n ≥ 0.

We used generating functions to obtain the following closed
formula for the general term of the Fibonacci sequence:

Fn = (1+
√

5)n−(1−
√

5)n

2n
√

5 .

for all integers n ≥ 0.
The golden ratio is the number

ϕ = 1 +
√

5
2 .

We have (check this!) that:

Fn = ϕn−(1−ϕ)n
√

5 = ϕn−(−ϕ)−n
√

5 .
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See the Lecture Notes for another example of a sequence
defined via a homogeneous linear difference equation of degree
2.

Sometimes, generating functions can be used to find a closed
formula for the general term of a recursively defined sequence,
even if the recurrence is not given by a homogeneous linear
difference equation.

Example
Let {an}∞n=0 be a sequence defined recursively as follows:

a0 = 1;
an+1 = 7an + 6n+1 for all integers n ≥ 0.

Find a closed formula for an.

Solution. We consider the generating function a(x) =
∞∑

n=0
anxn for

the sequence {an}∞n=0. We manipulate a(x) as follows.
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Solution (continued). Reminder: a0 = 1, an+1 = 7an + 6n+1

∀n ≥ 0.

a(x) =
∞∑

n=0
anxn

= a0 +
∞∑

n=0
an+1xn+1

= 1 +
∞∑

n=0
(7an + 6n+1)xn+1

= 1 + 7x
( ∞∑

n=0
anxn

)
+
( ∞∑

n=1
6nxn

)

= 7x
( ∞∑

n=0
anxn

)
+
( ∞∑

n=0
6nxn

)
= 7xa(x) + 1

1−6x .



Solution(continued). So, we got:

a(x) = 7xa(x) + 1
1− 6x ,

which yields
a(x) = 1

(7x − 1)(6x − 1) .

We now compute

a(x) = 1
(7x−1)(6x−1)

= 7
1−7x −

6
1−6x via partial fractions

= (7
∞∑

n=0
7nxn)− (6

∞∑
n=0

6nxn)

=
∞∑

n=0
(7n+1 − 6n+1)xn.



Solution(continued). So, we got:

a(x) = 7xa(x) + 1
1− 6x ,

which yields
a(x) = 1

(7x − 1)(6x − 1) .

We now compute

a(x) = 1
(7x−1)(6x−1)

= 7
1−7x −

6
1−6x via partial fractions

= (7
∞∑

n=0
7nxn)− (6

∞∑
n=0

6nxn)

=
∞∑

n=0
(7n+1 − 6n+1)xn.



Solution (continued). So, we have
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an = 7n+1 − 6n+1

for all integers n ≥ 0.

We can check by induction that this is correct.
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