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Lecture #2

Generating functions (part I)

Irena Penev

1 Partial fractions

We begin with an example, and then we explain the general principle. It is
easy to check that

1

x2(x− 1)
= −1

x
− 1

x2
+

1

x− 1
.

Verifying that the equality above is correct is quite easy; but how do we
compute the expression on the right, given the expression on the left? We
proceed as follows. The numerator is of smaller degree than the denominator,1

and the denominator is expressed as the product of linear terms. So, we
write

1

x2(x− 1)
=
A

x
+
B

x2
+

C

x− 1
.

By multiplying both sides by x2(x− 1), we obtain

1 = (A+ C)x2 + (−A+B)x−B.

The left-hand-side and the right-hand-side are identical as polynomials, and
so they have exactly the same coefficients. So, we get the following system
of linear equations:

A+ C = 0, −A+B = 0, −B = 1.

By solving the system, we obtain

A = −1, B = −1, C = 1,

1This is important! If the degree of the numerator is greater or equal to the degree of
the denominator, then this will not work.
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and we deduce that

1

x2(x− 1)
= −1

x
− 1

x2
+

1

x− 1
.

Now, let us try to generalize the example above. Suppose p(x) and q(x)
are polynomials with complex coefficients2 such that deg p(x) < deg q(x).
Next, suppose that q(x) can be factored as

q(x) = c(x− α1)
β1 . . . (x− αt)βt ,

where c is a non-zero complex number, α1, . . . , αt are pairwise distinct
complex numbers, and β1, . . . , βt are positive integers.3 In this case,4 there
exist complex numbers A1,1, . . . , A1,β1 , . . . , At,1, . . . , At,βt such that

p(x)

q(x)
=

A1,1

x− α1
+ · · ·+

A1,β1

(x− α1)β1
+ · · ·+ At,1

x− αt
+ · · ·+

At,βt
(x− αt)βt

.

We find the numbers A1,1, . . . , A1,β1 , . . . , At,1, . . . , At,βt by multiplying both
sides by q(x), then writing the resulting polynomials on both sides in the
standard form,5 and finally, setting corresponding coefficients equal to each
other. This yields a system of linear equations, and we obtain the coefficients
A1,1, . . . , A1,β1 , . . . , At,1, . . . , At,βt by solving this system.

For example, for the rational expression x5−7x+1
(x−2)3(x+1)2(x+2)4

, we would get

the equation

x5−7x+1
7(x−2)3(x+1)2(x+2)4

= A
x−2 + B

(x−2)2 + C
(x−2)3 + D

x+1 + E
(x+1)2

+ F
x+2 + G

(x+2)2
+ H

(x+2)3
+ I

(x+2)4
,

though computing A, . . . , I by hand would take quite some time.
Let us now consider a computationally easier example:

3x2 + 4

x3(x+ 1)2
.

The polynomial in the numerator is of smaller degree than the polynomial
in the denominator, and so there exist numbers A,B,C,D,E such that

3x2 + 4

x3(x+ 1)2
=
A

x
+
B

x2
+
C

x3
+

D

x+ 1
+

E

(x+ 1)2
.

2In examples that we consider, we will work only with real numbers. However, the
method works exactly the same way for complex numbers.

3Note that in the example from the beginning of the section, we have c = 1, t = 2,
α1 = 0, α2 = 1, β1 = 2, and β2 = 1.

4We omit the proof, but you can try to convince yourself that this is true.
5That is to say, in the form anx

n + an−1x
n−1 + · · · + a1x + a0, where an, . . . , a0 are

complex numbers.
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After multiplying both sides by x3(x+ 1)2, we get

3x2 + 4 = Ax2(x+ 1)2 +Bx(x+ 1)2 + C(x+ 1)2 +Dx3(x+ 1) + Ex3,

and after writing the polynomial on the right-hand-side in standard form,
we get

3x2+4 = (A+D)x4+(2A+B+D+E)x3+(A+2B+C)x2+(B+2C)x+C

The polynomial on the left-hand-side and the one on the right-hand-side have
the same coefficients, which yields the following system of linear equations:

A + D = 0

2A + B + D + E = 0

A + 2B + C = 3

B + 2C = 0

C = 4

By solving the system, we obtain

A = 15, B = −8, C = 4, D = −15, E = −7.

So, we have that

3x2 + 4

x3(x+ 1)2
=

15

x
− 8

x2
+

4

x3
− 15

x+ 1
− 7

(x+ 1)2
.

As pointed out earlier in the section, we can perform the procedure
described above only on rational expressions of the form p(x)

q(x) , where p(x)

has strictly smaller degree than q(x). If deg p(x) ≥ deg q(x), then we first
perform polynomial division, and then we perform the procedure on the
remainder. For instance,

3x4−3x3+1
x2(x−1)

(∗)
= 3x+ 1

x2(x−1)

(∗∗)
= 3x− 1

x −
1
x2

+ 1
x−1

where (*) is obtained by dividing polynomials, and (**) is from the calculation
performed at the beginning of the section.
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2 The Taylor series: a review

Let f : A ⊆ R → R, let a ∈ A, and assume that A contains (as a subset)
some open neighborhood of a.6 Assume furthermore that f is infinitely
differentiable at a.7 Then the Taylor series of f centered at a is the series

T f,a(x) =
∞∑
n=0

f (n)(a)
n! (x− a)n.

The Taylor series T f,0(x) (here, we have a = 0) is called the Maclaurin series.
For a real number α and a non-negative integer k, we define(

α

k

)
=
α(α− 1) . . . (α− k + 1)

k!
.

In particular,
(
α
0

)
= 1.

Here are the Maclaurin series of some familiar functions:

(i) T exp(x),0(x) = 1 + x+ x2

2! + · · ·+ xn

n! + . . . ;

(ii) T sinx,0(x) = x− x3

3! + x5

5! − · · ·+ (−1)n−1 x2n−1

(2n−1)! + . . . ;

(iii) T cosx,0(x) = 1− x2

2! + x4

4! − · · ·+ (−1)n x2n

(2n)! + . . . ;

(iv) T ln(1+x),0(x) = x− x2

2 + x3

3 − · · ·+ (−1)n−1 x
n

n + . . . ;

(v) T (1+x)α,0(x) =
(
α
0

)
+
(
α
1

)
x +

(
α
2

)
x2 + · · · +

(
α
n

)
xn + . . . , where α is a

fixed real number;

(vi) T
1

1−x ,0(x) = 1 + x+ x2 + · · ·+ xn + . . . .

Let us verify (v). Fix a real number α. It is easy to verify by induction8

that for all positive integers k, we have that

dk

dxk
(1 + x)α = α(α− 1) . . . (α− k + 1)(1 + x)α−k,

and consequently,

dk

dxk
(1+x)α

∣∣∣
x=0

k! = α(α−1)...(α−k+1)
k! =

(
α
k

)
,

where as usual, dk

dxk
(1 + x)α denotes the k-th derivative of the function

(1 + x)α,9 and dk

dxk
(1 + x)α

∣∣∣
x=0

is the k-th derivative of (1 + x)α evaluated at

x = 0. So, (v) holds.

6So, there exists some δ > 0 such that (a− δ, a+ δ) ⊆ A.
7f is infinitely differentiable at a if f (n)(a) exists for all n ≥ 0. (In particular, f is

differentiable, and therefore continuous, at a.)
8Check this!
9The zeroth derivative of a function is simply the function itself.
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We remark that these series do not necessarily converge for all values of
x. Furthermore, in general, it is possible that T f,a(x) converges, but does
not converge to f(x). Nonetheless, we do have the following:

(1) exp(x) = 1 + x+ x2

2! + · · ·+ xn

n! + . . . for all x ∈ R;

(2) sinx = x− x3

3! + x5

5! − · · ·+ (−1)n−1 x2n−1

(2n−1)! + . . . for all x ∈ R;

(3) cosx = 1− x2

2! + x4

4! − · · ·+ (−1)
x2n

(2n)! + . . . for all x ∈ R;

(4) ln(1 + x) = x− x2

2 + x3

3 − · · ·+ (−1)n−1 x
n

n + . . . for all x ∈ (−1, 1];

(5) (1 + x)α =
(
α
0

)
+
(
α
1

)
x+

(
α
2

)
x2 + · · ·+

(
α
n

)
xn + . . . for x ∈ (−1, 1), where

α is a fixed real number;

(6) 1
1−x = 1 + x+ x2 + · · ·+ xn + . . . for x ∈ (−1, 1).

For a non-zero constant a, a positive integer t, and a sufficiently small value
of x, we can substitute axt for x in the above equations. So, for example, by
substituting 2x3 for x in (6), we get that

1
1−2x3 = 1 + 2x3 + 4x6 + · · ·+ 2nx3n + . . .

(as long as x is sufficiently small). In working with generating functions (see
the section 3 below), we will not worry about exactly how small x needs to
be to make our equations work; we simply need that they work for values of
x in some (no matter how small) open neighborhood of zero. We also note
that (6) follows from (5) for α = −1, with −x substituted for x; indeed,

1
1−x = (1− (−x))−1

=
∞∑
n=0

(−1
n

)
(−x)n by (5)

=
∞∑
n=0

(−1)(−2)...(−1−n+1)
n! (−x)n

=
∞∑
n=0

(−1)nn!
n! (−1)nxn

=
∞∑
n=0

xn,

which is precisely (6).
Finally, we remark that the identity from (5) is sometimes called the

“Generalized Binomial Theorem.” Note that if α is a non-negative integer,
then

(
α
k

)
= 0 for all integers k > α, and we get that

(1 + x)α =
(
α
0

)
+
(
α
1

)
x+ · · ·+

(
α
α

)
xα,
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which is what we also get from the usual (finite) Binomial Theorem. However,
if α is negative or not an integer, then the series from (5) is indeed infinite.

3 Generating functions

3.1 A motivating example

We motivate our study of generating function with the following question:
How many ways are there to pay 21 Kč, assuming we have six 1 Kč coins,
five 2 Kč coins, and four 5 Kč coins?10 Here, we are looking for the number
of solutions to the equation i1 + i2 + i5 = 21, with i1 ∈ {0, 1, 2, 3, 4, 5, 6},
i2 ∈ {0, 2, 4, 6, 8, 10}, and i5 ∈ {0, 5, 10, 15, 20}. Indeed, i1 is the amount paid
with 1 Kč coins, i2 is the sum paid with 2 Kč coins, and i5 is the amount
paid with 5 Kč coins. Now, we note that the number of solutions is precisely
the coefficient in front of x21 in the following polynomial:

p(x) = (1 + x+ x2 + x3 + x4 + x5 + x6)× (1 + x2 + x4 + x6 + x8 + x10)
×(1 + x5 + x10 + x15 + x20)

Indeed, we obtain x21 by selecting some xi1 from the first term of the product,
some xi2 from the second, and some xi5 from the third, in such a way that
i1 + i2 + i5 = 21. The number of ways of selecting i1, i2, i5 is precisely
the coefficient in front of x21 in the polynomial p(x). By using computer
software,11 we see that this coefficient is 9. So, there are 9 ways to make
our payment. More generally, for each non-negative integer n, let an be
the number of ways to pay nKč using our coins; then an is precisely the
coefficient in front of xn in the polynomial p(x), i.e.

p(x) =
∞∑
n=0

anx
n

We call p(x) the “generating function” of the sequence {an}∞n=0. In this case,
it is a polynomial,12 but in general, it is a (potentially infinite) series. (A
formal definition of a generating function is given in section 3.2 below).

It might seem that the use of polynomials in the example above does not
simplify the problem. Indeed, if you compute by hand, it is easier to simply
enumerate all the solutions. However, polynomials are more convenient if
we wish to use a computer. More importantly, we can use a similar idea to
solve more complicated problems.

10Here, we assume that all coins of the same value are the same. So, if we happened to
use three 1 Kč coins, we do not care which particular three we chose.

11Or by hand, if you are in the mood to compute.
12This is because we only have 36 Kč, and so an = 0 for all integers n ≥ 37.
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3.2 Generating functions as power series

Suppose {an}∞n=0 is some infinite sequence of real numbers.13 The generating
function of this sequence is the power series

∞∑
n=0

anx
n.

For example, the generating function of the constant sequence 1, 1, 1, 1, 1, . . .
is

1 + x+ x2 + x3 + · · · =
∞∑
n=0

xn

We recognize the above sequence as the Maclaurin series of the function 1
1−x .

So, the generating function of 1, 1, 1, 1, 1, . . . is 1
1−x .

3.3 Generating functions and recursively defined sequences

For a positive integer k, a homogeneous linear difference equation of degree
k is an equation of the form

yn+k = ak−1yn+k−1 + ak−2yn+k−2 + · · ·+ a1yn+1 + a0yn,

where ak−1, . . . , a0 are fixed constants. Often, sequences are defined by
specifying the values of the first k terms, and by a homogeneous linear
difference equation of degree k. One famous example of such a sequence is
the Fibonacci sequence {Fn}∞n=0, defined recursively as follows:

• F0 = 0, F1 = 1;

• Fn+2 = Fn + Fn+1 for all integers n ≥ 0.

(Numbers Fn are called the Fibonacci numbers.) So, we defined the Fibonacci
sequence using a second degree homogeneous linear difference equation.

In theory, generating functions can be used to find the closed formula of
the general term of a sequence defined via any homogeneous linear difference
equation. However, in practice, if our difference equation is of high degree,
this may be difficult or impossible to do due to problems with factoring
polynomials of high degree.14 Here, we show how this can be done for
sequences defined via second degree homogeneous linear difference equations.
We begin with the Fibonacci sequence.

Example 3.1. Find a closed formula for Fn (n ≥ 0), where Fn is the n-th
Fibonacci number.

13Actually, this also works for complex numbers.
14The quadratic equation allows us to easily factor second degree polynomials. There

are also formulas for factoring third and fourth degree polynomials. However, there is no
general formula for factoring fifth (and higher) degree polynomials.
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Solution. We consider the generating function

f(x) =
∞∑
n=0

Fnx
n

for {Fn}∞n=0. We now manipulate this function as follows:

f(x) =
∞∑
n=0

Fnx
n

= F0 + F1x+ x2
∞∑
n=0

Fn+2x
n

= x+ x2
∞∑
n=0

(Fn + Fn+1)x
n

= x+ (x2
∞∑
n=0

Fnx
n) + (x2

∞∑
n=0

Fn+1x
n)

= x+ (x2
∞∑
n=0

Fnx
n) + (x

∞∑
n=0

Fn+1x
n+1)

= x+ (x2
∞∑
n=0

Fnx
n) + (x

∞∑
n=0

Fnx
n) because F0 = 0

= x+ x2f(x) + xf(x)

So, we have obtained the equation

f(x) = x+ x2f(x) + xf(x),

which, in turn, yields

f(x) = − x

x2 + x− 1
.
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We now compute:

f(x) = − x
x2+x−1

= − x

(x−−1−
√

5
2

)(x−−1+
√
5

2
)

via the quadratic

equation

= −
1+
√

5
2
√
5

x−−1−
√

5
2

−
−1+

√
5

2
√
5

x−−1+
√
5

2

via partial

fractions

= − 1√
5

( 1+
√
5

2

x−−1−
√

5
2

+
−1+

√
5

2

x−−1+
√
5

2

)
= − 1√

5

(
1

1+x 2
1+
√
5

− 1
1+x 2

1−
√
5

)
= − 1√

5

(
1

1−x 1−
√
5

2

− 1

1−x 1+
√
5

2

)
= 1√

5

(
(−

∞∑
n=0

(1−
√
5

2 )nxn) + (
∞∑
n=0

(1+
√
5

2 )nxn)
)

via Maclaurin

expansion

=
∞∑
n=0

(1+
√
5)n−(1−

√
5)n

2n
√
5

xn

Recall that f(x) =
∞∑
n=0

Fnx
n. So, for all nonnegative integers n, we have that

Fn = (1+
√
5)n−(1−

√
5)n

2n
√
5

.

We can easily check that the answer is correct by induction. Indeed,

(1+
√
5)0−(1−

√
5)0

20
√
5

= 0 = F0

(1+
√
5)1−(1−

√
5)1

21
√
5

= 1 = F1

and so the formula is correct for n = 0 and n = 1. For the induction step,
we fix an integer n ≥ 0, and we assume that

Fn = (1+
√
5)n−(1−

√
5)n

2n
√
5

;

Fn+1 = (1+
√
5)n+1−(1−

√
5)n+1

2n+1
√
5

.
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Then

Fn+2 = Fn + Fn+1

= (1+
√
5)n−(1−

√
5)n

2n
√
5

+ (1+
√
5)n+1−(1−

√
5)n+1

2n+1
√
5

= 1√
5

(
(1+
√
5

2 )n(1 + 1+
√
5

2 )− (1−
√
5

2 )n(1 + 1−
√
5

2 )
)

= 1√
5

(
(1+
√
5

2 )n 3+
√
5

2 − (1−
√
5

2 )n 3−
√
5

2

)
= 1√

5

(
(1+
√
5

2 )n(1+
√
5

2 )2 − (1−
√
5

2 )n(1−
√
5

2 )2
)

= 1√
5

(
(1+
√
5

2 )n+2 − (1−
√
5

2 )n+2
)

= (1+
√
5)n+2−(1−

√
5)n+2

2n+2
√
5

,

and so the formula is correct for n+ 2.

The golden ratio is the number

ϕ =
1 +
√

5

2
.

Our solution to Example 3.1 implies that the n-th Fibonacci number (n ≥ 0)
satisfies15

Fn = ϕn−(1−ϕ)n√
5

= ϕn−(−ϕ)−n√
5

.

Example 3.2. Let {a0}∞n=0 be a sequence defined recursively as follows:

• a0 = 0 and a1 = 1;

• an+2 = −an + 2an+1 for all integers n ≥ 0.

Find a closed formula for an (n ≥ 0).

Solution. We consider the generating function

a(x) =

∞∑
n=0

anx
n

15Check this!
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for the sequence {an}∞n=0, and we compute:

a(x) =
∞∑
n=0

anx
n

= a0 + a1x+ x2
∞∑
n=0

an+2x
n

= x+ x2
∞∑
n=0

(−an + 2an+1)x
n

= x−
(
x2
∞∑
n=0

an

)
+
(

2x
∞∑
n=0

an+1x
n+1
)

= x−
(
x2
∞∑
n=0

an

)
+
(

2x
∞∑
n=0

anx
n
)

because a0 = 0

= x− x2a(x) + 2xa(x)

Thus, we obtained the equation

a(x) = x− x2a(x) + 2xa(x),

which yields

a(x) =
x

(x− 1)2

We now compute:

a(x) = x
(x−1)2

= − 1
1−x + 1

(1−x)2 via partial

fractions

= −
( ∞∑
n=0

xn
)

+
( ∞∑
n=0

(−2
n

)
(−x)n

)
via Maclaurin

expansion

= −
( ∞∑
n=0

xn
)

+
( ∞∑
n=0

(−2)(−3)...(−2−n+1)
n! (−x)n

)

= −
( ∞∑
n=0

xn
)

+
( ∞∑
n=0

(−1)n(n+1)!
n! (−1)nxn

)

= −
( ∞∑
n=0

xn
)

+
( ∞∑
n=0

(n+ 1)xn
)

=
∞∑
n=0

nxn
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Since a(x) =
∞∑
n=0

an, we deduce that an = n for all integers n ≥ 0.16

We can easily check that our formula is correct by induction. Indeed,
a0 = 0 and a1 = 1 by construction, and so the formula is correct for n = 0
and n = 1. For the induction step, we fix an integer n ≥ 0, we assume
inductively that an = n and an+1 = n+ 1, and we observe that

an+2 = −an + 2an+1

= −n+ 2(n+ 1)

= n+ 2,

and so the formula is correct for n+ 2. This completes the induction.

Sometimes, generating functions can be used to find a closed formula for
the general term of a recursively defined sequence, even if the recurrence is
not given by a homogeneous linear difference equation. We now look at one
such example.

Example 3.3. Let {an}∞n=0 be a sequence defined recursively as follows:

• a0 = 1;

• an+1 = 7an + 6n+1 for all integers n ≥ 0.

Find a closed formula for an.
16Alternatively, we could have proceeded as follows:

a(x) = x
(x−1)2

= x 1
(1−x)2

= x
∞∑
n=0

(−2
n

)
(−x)n via Maclaurin expansion

= x
∞∑
n=0

(−2)(−3)...(−2−n+1)
n!

(−x)n

= x
∞∑
n=0

(−1)n(n+1)!
n!

(−1)nxn

= x
∞∑
n=0

(n+ 1)xn

=
∞∑
n=0

(n+ 1)xn+1

=
∞∑
n=0

nxn,

and so an = n for all integers n ≥ 0.
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Solution. We consider the generating function

a(x) =

∞∑
n=0

anx
n

for the sequence {an}∞n=0. We manipulate this function as follows:

a(x) =
∞∑
n=0

anx
n

= a0 +
∞∑
n=0

an+1x
n+1

= 1 +
∞∑
n=0

(7an + 6n+1)xn+1

= 1 + 7x
( ∞∑
n=0

anx
n
)

+
( ∞∑
n=1

6nxn
)

= 7x
( ∞∑
n=0

anx
n
)

+
( ∞∑
n=0

6nxn
)

= 7xa(x) + 1
1−6x .

So, we have obtained the equation

a(x) = 7xa(x) +
1

1− 6x
,

which implies that

a(x) =
1

(7x− 1)(6x− 1)
.

We now compute

a(x) = 1
(7x−1)(6x−1)

= 7
1−7x −

6
1−6x via partial fractions

= (7
∞∑
n=0

7nxn)− (6
∞∑
n=0

6nxn)

=
∞∑
n=0

(7n+1 − 6n+1)xn.

Recall that a(x) =
∞∑
n=0

anx
n. So, we get that

an = 7n+1 − 6n+1
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for all integers n ≥ 0.
We can check that this formula is correct by induction. Clearly,

71+1 − 61+1 = 1 = a0,

and so the formula is correct for n = 0. Now, fix a non-negative integer n,
and assume that an = 7n+1 − 6n+1. Then

an+1 = 7an + 6n+1

= 7(7n+1 − 6n+1) + 6n+1

= 7n+2 − 7 · 6n+1 + 6n+1

= 7n+2 − 6n+2.

This completes the induction.
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