NDMI011: Combinatorics and Graph Theory 1

Lecture \#1

Estimates of factorials and binomial coefficients

Irena Penev

September 29, 2020

Definition

For a positive integer n, we define n ! (read " n factorial") to be

$$
n!:=n \cdot(n-1) \cdot(n-2) \cdots \cdots \cdot 2 \cdot 1 .
$$

Furthermore, as a convention, we set $0!=1$.

Definition

For a positive integer n, we define n ! (read " n factorial") to be

$$
n!:=n \cdot(n-1) \cdot(n-2) \cdots \cdot 2 \cdot 1 .
$$

Furthermore, as a convention, we set $0!=1$.

- n ! is the number of ways that n distinct objects can be arranged in a sequence.

Definition

For a positive integer n, we define n ! (read " n factorial") to be

$$
n!:=n \cdot(n-1) \cdot(n-2) \cdots \cdots 2 \cdot 1 .
$$

Furthermore, as a convention, we set $0!=1$.

- n ! is the number of ways that n distinct objects can be arranged in a sequence.
- there are n choices for the first term of the sequence, $n-1$ choices for the second, $n-2$ for the third, etc.

Definition

For a positive integer n, we define n ! (read " n factorial") to be

$$
n!:=n \cdot(n-1) \cdot(n-2) \cdots \cdot \cdot 2 \cdot 1 .
$$

Furthermore, as a convention, we set $0!=1$.

- n ! is the number of ways that n distinct objects can be arranged in a sequence.
- there are n choices for the first term of the sequence, $n-1$ choices for the second, $n-2$ for the third, etc.
- For instance, there are 3 ! $=6$ ways to arrange the elements of $\{a, b, c\}$ in a sequence, namely:
(1) a, b, c
(3) b, a, c
(5) c, a, b
(2) a, c, b
(4) b, c, a
(6) c, b, a
- For small values of n, computing n ! is quite straightforward:
- $0!=1$
- 1 ! $=1$
- $2!=2 \cdot 1=2$
- $3!=3 \cdot 2 \cdot 1=6$
- $4!=4 \cdot 3 \cdot 2 \cdot 1=24$
- $5!=5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=120$
- $6!=6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=720$
- $7!=7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=5040$
- $8!=8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=40320$
- $9!=9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=362880$
- For small values of n, computing n ! is quite straightforward:
- $0!=1$
- $1!=1$
- $2!=2 \cdot 1=2$
- $3!=3 \cdot 2 \cdot 1=6$
- $4!=4 \cdot 3 \cdot 2 \cdot 1=24$
- $5!=5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=120$
- $6!=6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=720$
- $7!=7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=5040$
- $8!=8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=40320$
- $9!=9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=362880$
- However, n ! is a very fast growing function, and so computing it for even moderately large n is impractical.
- For small values of n, computing n ! is quite straightforward:
- $0!=1$
- $1!=1$
- $2!=2 \cdot 1=2$
- $3!=3 \cdot 2 \cdot 1=6$
- $4!=4 \cdot 3 \cdot 2 \cdot 1=24$
- $5!=5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=120$
- $6!=6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=720$
- $7!=7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=5040$
- $8!=8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=40320$
- $9!=9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=362880$
- However, n ! is a very fast growing function, and so computing it for even moderately large n is impractical.
- How about some estimates (upper and lower bounds)?
- Obviously, $n!\leq n^{n}$.
- Obviously, $n!\leq n^{n}$.
- Our goal is to obtain two better estimates for $n!$, as follows:
(i) $n^{n / 2} \leq n!\leq\left(\frac{n+1}{2}\right)^{n}$ for all non-negative integers n;
(ii) $e\left(\frac{n}{e}\right)^{n} \leq n!\leq e n\left(\frac{n}{e}\right)^{n}$ for all positive integers n.
- We first prove (i).

Theorem 1.1

For all non-negative integers n, the following holds:

$$
n^{n / 2} \leq n!\leq\left(\frac{n+1}{2}\right)^{n}
$$

- We first prove (i).

Theorem 1.1

For all non-negative integers n, the following holds:

$$
n^{n / 2} \leq n!\leq\left(\frac{n+1}{2}\right)^{n}
$$

- We'll prove only the upper bound. (See the Lecture Notes for the lower bound.)
- We first prove (i).

Theorem 1.1

For all non-negative integers n, the following holds:

$$
n^{n / 2} \leq n!\leq\left(\frac{n+1}{2}\right)^{n}
$$

- We'll prove only the upper bound. (See the Lecture Notes for the lower bound.)
- We'll need the inequality of arithmetic and geometric means.
- We first prove (i).

Theorem 1.1

For all non-negative integers n, the following holds:

$$
n^{n / 2} \leq n!\leq\left(\frac{n+1}{2}\right)^{n}
$$

- We'll prove only the upper bound. (See the Lecture Notes for the lower bound.)
- We'll need the inequality of arithmetic and geometric means.

Inequality of arithmetic and geometric means

All non-negative real numbers x and y satisfy

$$
\sqrt{x y} \leq \frac{x+y}{2}
$$

- We first prove (i).

Theorem 1.1

For all non-negative integers n, the following holds:

$$
n^{n / 2} \leq n!\leq\left(\frac{n+1}{2}\right)^{n}
$$

- We'll prove only the upper bound. (See the Lecture Notes for the lower bound.)
- We'll need the inequality of arithmetic and geometric means.

Inequality of arithmetic and geometric means

All non-negative real numbers x and y satisfy

$$
\sqrt{x y} \leq \frac{x+y}{2}
$$

Proof: Lecture Notes.

Theorem 1.1

For all non-negative integers n, the following holds:

$$
n^{n / 2} \leq n!\leq\left(\frac{n+1}{2}\right)^{n}
$$

Proof of the upper bound.

Theorem 1.1

For all non-negative integers n, the following holds:

$$
n^{n / 2} \leq n!\leq\left(\frac{n+1}{2}\right)^{n}
$$

Proof of the upper bound. The statement is obviously true for $n=0$ and $n=1$. For an integer $n \geq 2$:

$$
\begin{aligned}
n! & =\sqrt{(n \cdot(n-1) \cdots \cdot 2 \cdot 1)(1 \cdot 2 \cdots(n-1) \cdot n)} \\
& =(\sqrt{n \cdot 1})(\sqrt{(n-1) \cdot 2}) \cdots(\sqrt{2 \cdot(n-1)})(\sqrt{1 \cdot n})
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{GM} & \leq \mathrm{AM} \\
& \leq \frac{n+1}{2} \cdot \frac{(n-1)+2}{2} \cdots \cdot \frac{2+(n-1)}{2} \cdot \frac{1+n}{2} \\
& =\left(\frac{n+1}{2}\right)^{n}
\end{aligned}
$$

- We now prove (ii).

Theorem 1.3

For all positive integers n, the following holds:

$$
e\left(\frac{n}{e}\right)^{n} \leq n!\leq e n\left(\frac{n}{e}\right)^{n} .
$$

- We now prove (ii).

Theorem 1.3

For all positive integers n, the following holds:

$$
e\left(\frac{n}{e}\right)^{n} \leq n!\leq e n\left(\frac{n}{e}\right)^{n} .
$$

- In fact, we'll only prove the upper bound (see the Lecture Notes for the lower bound).
- We now prove (ii).

Theorem 1.3

For all positive integers n, the following holds:

$$
e\left(\frac{n}{e}\right)^{n} \leq n!\leq e n\left(\frac{n}{e}\right)^{n} .
$$

- In fact, we'll only prove the upper bound (see the Lecture Notes for the lower bound).
- We will use the following inequality (which can be proven using calculus).

Proposition 1.2

For all real numbers x, we have $1+x \leq e^{x}$.
Proof: Lecture Notes.

Theorem 1.3

For all positive integers n, the following holds:

$$
e\left(\frac{n}{e}\right)^{n} \leq n!\leq e n\left(\frac{n}{e}\right)^{n} .
$$

Proof of the upper bound.

Theorem 1.3

For all positive integers n, the following holds:

$$
e\left(\frac{n}{e}\right)^{n} \leq n!\leq e n\left(\frac{n}{e}\right)^{n} .
$$

Proof of the upper bound. By induction on n. The statement is obviously true for $n=1$.

Theorem 1.3

For all positive integers n, the following holds:

$$
e\left(\frac{n}{e}\right)^{n} \leq n!\leq e n\left(\frac{n}{e}\right)^{n} .
$$

Proof of the upper bound. By induction on n. The statement is obviously true for $n=1$. Now fix a positive integer n, and assume $n!\leq e n\left(\frac{n}{e}\right)^{n}$. WTS $(n+1)!\leq e(n+1)\left(\frac{n+1}{e}\right)^{n+1}$.

Theorem 1.3

For all positive integers n, the following holds:

$$
e\left(\frac{n}{e}\right)^{n} \leq n!\leq e n\left(\frac{n}{e}\right)^{n} .
$$

Proof of the upper bound. By induction on n. The statement is obviously true for $n=1$. Now fix a positive integer n, and assume $n!\leq e n\left(\frac{n}{e}\right)^{n}$. WTS $(n+1)!\leq e(n+1)\left(\frac{n+1}{e}\right)^{n+1}$. We compute:

$$
\begin{aligned}
(n+1)! & =(n+1) \cdot n! \\
& \leq(n+1) \cdot e n\left(\frac{n}{e}\right)^{n} \\
& =\left(e(n+1)\left(\frac{n+1}{e}\right)^{n+1}\right) \cdot\left(\frac{n}{n+1}\right)^{n+1} e
\end{aligned}
$$

Theorem 1.3

For all positive integers n, the following holds:

$$
e\left(\frac{n}{e}\right)^{n} \leq n!\leq e n\left(\frac{n}{e}\right)^{n} .
$$

Proof of the upper bound. By induction on n. The statement is obviously true for $n=1$. Now fix a positive integer n, and assume $n!\leq e n\left(\frac{n}{e}\right)^{n}$. WTS $(n+1)!\leq e(n+1)\left(\frac{n+1}{e}\right)^{n+1}$. We compute:

$$
\begin{aligned}
(n+1)! & =(n+1) \cdot n! \\
& \leq(n+1) \cdot e n\left(\frac{n}{e}\right)^{n} \\
& =\left(e(n+1)\left(\frac{n+1}{e}\right)^{n+1}\right) \cdot\left(\frac{n}{n+1}\right)^{n+1} e
\end{aligned}
$$

It remains to show that $\left(\frac{n}{n+1}\right)^{n+1} e \leq 1$.

Theorem 1.3

For all positive integers n, the following holds:

$$
e\left(\frac{n}{e}\right)^{n} \leq n!\leq e n\left(\frac{n}{e}\right)^{n} .
$$

Proof of the upper bound (continued). WTS $\left(\frac{n}{n+1}\right)^{n+1} e \leq 1$.

Theorem 1.3

For all positive integers n, the following holds:

$$
e\left(\frac{n}{e}\right)^{n} \leq n!\leq e n\left(\frac{n}{e}\right)^{n} .
$$

Proof of the upper bound (continued). WTS $\left(\frac{n}{n+1}\right)^{n+1} e \leq 1$.

$$
\begin{array}{rlrl}
\left(\frac{n}{n+1}\right)^{n+1} e & =\left(1-\frac{1}{n+1}\right)^{n+1} e & \\
& \leq\left(e^{-\frac{1}{n+1}}\right)^{n+1} e & & \text { by Proposition } 1.2 \\
& \begin{array}{ll}
\left(1+x \leq e^{x} \forall x \in \mathbb{R}\right)
\end{array} \\
& =1 . & & \text { for } x=-\frac{1}{n+1}
\end{array}
$$

(i) $n^{n / 2} \leq n!\leq\left(\frac{n+1}{2}\right)^{n}$ for all non-negative integers n;
(ii) $e\left(\frac{n}{e}\right)^{n} \leq n!\leq e n\left(\frac{n}{e}\right)^{n}$ for all positive integers n.

- We have proven the upper bounds of both (i) and (ii).
(i) $n^{n / 2} \leq n!\leq\left(\frac{n+1}{2}\right)^{n}$ for all non-negative integers n;
(ii) $e\left(\frac{n}{e}\right)^{n} \leq n!\leq e n\left(\frac{n}{e}\right)^{n}$ for all positive integers n.
- We have proven the upper bounds of both (i) and (ii).
- See the Lecture Notes for the lower bounds.
(i) $n^{n / 2} \leq n!\leq\left(\frac{n+1}{2}\right)^{n}$ for all non-negative integers n;
(ii) $e\left(\frac{n}{e}\right)^{n} \leq n!\leq e n\left(\frac{n}{e}\right)^{n}$ for all positive integers n.
- We have proven the upper bounds of both (i) and (ii).
- See the Lecture Notes for the lower bounds.

Stirling's formula

$\lim _{n \rightarrow \infty} \frac{\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}}{n!}=1$.
Proof omitted.

Definition

For integers n and k such that $n \geq k \geq 0$, we define $\binom{n}{k}$, read " n choose k," as follows:

$$
\binom{n}{k}=\frac{n(n-1) \ldots(n-k+1)}{k \cdot(k-1) \cdots \cdot 1}=\prod_{i=0}^{k-1} \frac{n-i}{k-i} .
$$

Definition

For integers n and k such that $n \geq k \geq 0$, we define $\binom{n}{k}$, read " n choose k," as follows:

$$
\binom{n}{k}=\frac{n(n-1) \ldots(n-k+1)}{k \cdot(k-1) \cdots \cdot 1}=\prod_{i=0}^{k-1} \frac{n-i}{k-i} .
$$

- Remark: $\binom{n}{k}=\frac{n!}{k!(n-k)!}$ and $\binom{n}{k}=\binom{n}{n-k}$.

Definition

For integers n and k such that $n \geq k \geq 0$, we define $\binom{n}{k}$, read " n choose k," as follows:

$$
\binom{n}{k}=\frac{n(n-1) \ldots(n-k+1)}{k \cdot(k-1) \cdots \cdot 1}=\prod_{i=0}^{k-1} \frac{n-i}{k-i}
$$

- Remark: $\binom{n}{k}=\frac{n!}{k!(n-k)!}$ and $\binom{n}{k}=\binom{n}{n-k}$.
- $\binom{n}{k}$ is the number of k-element subsets of an n-element set.

Definition

For integers n and k such that $n \geq k \geq 0$, we define $\binom{n}{k}$, read " n choose k," as follows:

$$
\binom{n}{k}=\frac{n(n-1) \ldots(n-k+1)}{k \cdot(k-1) \cdots \cdot 1}=\prod_{i=0}^{k-1} \frac{n-i}{k-i}
$$

- Remark: $\binom{n}{k}=\frac{n!}{k!(n-k)!}$ and $\binom{n}{k}=\binom{n}{n-k}$.
- $\binom{n}{k}$ is the number of k-element subsets of an n-element set.
- For example, the number of 3 -element subsets of the 5-element set $\{a, b, c, d, e\}$ is $\binom{5}{3}=10$:
(1) $\{a, b, c\}$
(0) $\{a, d, e\}$
(2) $\{a, b, d\}$
(3) $\{b, c, d\}$
(3) $\{a, b, e\}$
(8) $\{b, c, e\}$
(9) $\{a, c, d\}$
(9) $\{b, d, e\}$
(0) $\{a, c, e\}$
(10) $\{c, d, e\}$
- Numbers $\binom{n}{k}$ are called binomial coefficients.
- Numbers $\binom{n}{k}$ are called binomial coefficients.

Binomial theorem

For all integers $n \geq 0$, and all real numbers x and y, the following holds:

$$
\begin{aligned}
(x+y)^{n} & =\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k} \\
& =\binom{n}{0} y^{n}+\binom{n}{1} x y^{n-1}+\cdots+\binom{n}{n-1} x^{n-1} y+\binom{n}{n} x^{n}
\end{aligned}
$$

- Numbers $\binom{n}{k}$ are called binomial coefficients.

Binomial theorem

For all integers $n \geq 0$, and all real numbers x and y, the following holds:

$$
\begin{aligned}
(x+y)^{n} & =\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k} \\
& =\binom{n}{0} y^{n}+\binom{n}{1} x y^{n-1}+\cdots+\binom{n}{n-1} x^{n-1} y+\binom{n}{n} x^{n} .
\end{aligned}
$$

- As in the case of factorials, binomial coefficients are easy to compute for small values of n and k. However, even for moderately large n, k, computing $\binom{n}{k}$ becomes impractical.
- Numbers $\binom{n}{k}$ are called binomial coefficients.

Binomial theorem

For all integers $n \geq 0$, and all real numbers x and y, the following holds:

$$
\begin{aligned}
(x+y)^{n} & =\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k} \\
& =\binom{n}{0} y^{n}+\binom{n}{1} x y^{n-1}+\cdots+\binom{n}{n-1} x^{n-1} y+\binom{n}{n} x^{n} .
\end{aligned}
$$

- As in the case of factorials, binomial coefficients are easy to compute for small values of n and k. However, even for moderately large n, k, computing $\binom{n}{k}$ becomes impractical.
- So, as in the case of factorials, we would like to obtain some useful estimates (convenient upper and lower bounds) for binomial coefficients.

Theorem 2.1

For all integers n and k such that $n \geq k \geq 1$, the following holds:

$$
\left(\frac{n}{k}\right)^{k} \leq\binom{ n}{k} \leq\left(\frac{e n}{k}\right)^{k} .
$$

Theorem 2.1

For all integers n and k such that $n \geq k \geq 1$, the following holds:

$$
\left(\frac{n}{k}\right)^{k} \leq\binom{ n}{k} \leq\left(\frac{e n}{k}\right)^{k} .
$$

- Theorem 2.1 follows from the two propositions below.

Proposition 2.2

For all integers n and k such that $n \geq k \geq 1$, we have that

$$
\binom{n}{k}^{k} \leq\binom{ n}{k}
$$

Proposition 2.3

For all integers n and k such that $n \geq k \geq 1$, we have that:

$$
\sum_{i=0}^{k}\binom{n}{i} \leq\left(\frac{e n}{k}\right)^{k}
$$

Proposition 2.2

For all integers n and k such that $n \geq k \geq 1$, we have that

$$
\binom{n}{k}^{k} \leq\binom{ n}{k}
$$

Proof.

Proposition 2.2

For all integers n and k such that $n \geq k \geq 1$, we have that

$$
\binom{n}{k}^{k} \leq\binom{ n}{k}
$$

Proof. Fix integers n, k such that $n \geq k \geq 1$. We observe that for all $i \in\{0, \ldots, k-1\}$, we have that $\frac{n-i}{k-i} \geq \frac{n}{k}$,

Proposition 2.2

For all integers n and k such that $n \geq k \geq 1$, we have that

$$
\binom{n}{k}^{k} \leq\binom{ n}{k}
$$

Proof. Fix integers n, k such that $n \geq k \geq 1$. We observe that for all $i \in\{0, \ldots, k-1\}$, we have that $\frac{n-i}{k-i} \geq \frac{n}{k}$, and so

$$
\binom{n}{k}=\prod_{i=0}^{k-1} \frac{n-i}{k-i} \geq \prod_{i=0}^{k-1} \frac{n}{k}=\left(\frac{n}{k}\right)^{k} .
$$

Proposition 2.3

For all integers n and k such that $n \geq k \geq 1$, we have that:

$$
\sum_{i=0}^{k}\binom{n}{i} \leq\left(\frac{e n}{k}\right)^{k} .
$$

Proof.

Proposition 2.3

For all integers n and k such that $n \geq k \geq 1$, we have that:

$$
\sum_{i=0}^{k}\binom{n}{i} \leq\left(\frac{e n}{k}\right)^{k}
$$

Proof. Claim. For all real numbers x such that $0<x \leq 1$:

$$
\sum_{i=0}^{k}\binom{n}{i} \leq \frac{(1+x)^{n}}{x^{k}}
$$

Proposition 2.3

For all integers n and k such that $n \geq k \geq 1$, we have that:

$$
\sum_{i=0}^{k}\binom{n}{i} \leq\left(\frac{e n}{k}\right)^{k}
$$

Proof. Claim. For all real numbers x such that $0<x \leq 1$:

$$
\sum_{i=0}^{k}\binom{n}{i} \leq \frac{(1+x)^{n}}{x^{k}}
$$

Proof of the Claim. By the Binomial theorem:

$$
(1+x)^{n}=\sum_{i=0}^{n}\binom{n}{i} x^{i} \geq \sum_{i=0}^{k}\binom{n}{i} x^{i} .
$$

Proposition 2.3

For all integers n and k such that $n \geq k \geq 1$, we have that:

$$
\sum_{i=0}^{k}\binom{n}{i} \leq\left(\frac{e n}{k}\right)^{k}
$$

Proof. Claim. For all real numbers x such that $0<x \leq 1$:

$$
\sum_{i=0}^{k}\binom{n}{i} \leq \frac{(1+x)^{n}}{x^{k}}
$$

Proof of the Claim. By the Binomial theorem:

$$
(1+x)^{n}=\sum_{i=0}^{n}\binom{n}{i} x^{i} \geq \sum_{i=0}^{k}\binom{n}{i} x^{i} .
$$

Dividing by x^{k}, we then obtain

$$
\frac{(1+x)^{n}}{x^{k}} \geq \sum_{i=0}^{k}\binom{n}{i} \frac{1}{x^{k-i}} \stackrel{0<x \leq 1}{\geq} \sum_{i=0}^{k}\binom{n}{i}
$$

This proves the Claim.

Proposition 2.3

For all integers n and k such that $n \geq k \geq 1$, we have that:

$$
\sum_{i=0}^{k}\binom{n}{i} \leq\left(\frac{e n}{k}\right)^{k}
$$

Proof (continued). Claim. For all real numbers x such that $0<x \leq 1$:

$$
\sum_{i=0}^{k}\binom{n}{i} \leq \frac{(1+x)^{n}}{x^{k}}
$$

Proposition 2.3

For all integers n and k such that $n \geq k \geq 1$, we have that:

$$
\sum_{i=0}^{k}\binom{n}{i} \leq\left(\frac{e n}{k}\right)^{k}
$$

Proof (continued). Claim. For all real numbers x such that $0<x \leq 1$:

$$
\sum_{i=0}^{k}\binom{n}{i} \leq \frac{(1+x)^{n}}{x^{k}} .
$$

We now compute apply the Claim to $x:=\frac{k}{n}$, and we obtain

$$
\begin{aligned}
\sum_{i=0}^{k}\binom{n}{i} & \leq\left(1+\frac{k}{n}\right)^{n}\left(\frac{n}{k}\right)^{k} & & \text { by the Claim for } x=\frac{k}{n} \\
& \leq\left(e^{k / n}\right)^{n}\left(\frac{n}{k}\right)^{k} & & \text { by Proposition } 1.2 \text { for } x=\frac{k}{n} \\
& =\left(\frac{e n}{k}\right)^{k} . & & \left(1+x \leq e^{x} \forall x \in \mathbb{R}\right)
\end{aligned}
$$

- So, we have proven Theorem 2.1.

Theorem 2.1

For all integers n and k such that $n \geq k \geq 1$, the following holds:

$$
\left(\frac{n}{k}\right)^{k} \leq\binom{ n}{k} \leq\left(\frac{e n}{k}\right)^{k} .
$$

- So, we have proven Theorem 2.1.

Theorem 2.1

For all integers n and k such that $n \geq k \geq 1$, the following holds:

$$
\left(\begin{array}{l}
\left.\frac{n}{k}\right)^{k} \leq\binom{ n}{k} \leq\left(\frac{e n}{k}\right)^{k} . ~
\end{array}\right.
$$

- Theorem 2.1 works for all integers n and k such that $n \geq k \geq 1$.
- So, we have proven Theorem 2.1.

Theorem 2.1

For all integers n and k such that $n \geq k \geq 1$, the following holds:

$$
\binom{n}{k}^{k} \leq\binom{ n}{k} \leq\left(\frac{e n}{k}\right)^{k} .
$$

- Theorem 2.1 works for all integers n and k such that $n \geq k \geq 1$.
- Our next goal is to find a good estimate for the largest among the binomial coefficients $\binom{n}{0},\binom{n}{1}, \ldots,\binom{n}{n}$.
- So, we have proven Theorem 2.1.

Theorem 2.1

For all integers n and k such that $n \geq k \geq 1$, the following holds:

$$
\left(\frac{n}{k}\right)^{k} \leq\binom{ n}{k} \leq\left(\frac{e n}{k}\right)^{k} .
$$

- Theorem 2.1 works for all integers n and k such that $n \geq k \geq 1$.
- Our next goal is to find a good estimate for the largest among the binomial coefficients $\binom{n}{0},\binom{n}{1}, \ldots,\binom{n}{n}$.
- Which one is the largest?
- For all integers n and k such that $n \geq k \geq 1$, we have that

$$
\binom{n}{k}=\binom{n}{k-1} \cdot \frac{n-k+1}{k} .
$$

- For all integers n and k such that $n \geq k \geq 1$, we have that

$$
\binom{n}{k}=\binom{n}{k-1} \cdot \frac{n-k+1}{k} .
$$

- So, for even n :

$$
\binom{n}{0}<\binom{n}{1}<\ldots<\binom{n}{n / 2}>\ldots>\binom{n}{n-1}>\binom{n}{n},
$$

- For all integers n and k such that $n \geq k \geq 1$, we have that

$$
\binom{n}{k}=\binom{n}{k-1} \cdot \frac{n-k+1}{k}
$$

- So, for even n :

$$
\binom{n}{0}<\binom{n}{1}<\ldots<\binom{n}{n / 2}>\ldots>\binom{n}{n-1}>\binom{n}{n},
$$

- whereas for odd n :

$$
\binom{n}{0}<\ldots<\binom{n}{\lfloor n / 2\rfloor}=\binom{n}{\lceil n / 2\rceil}>\ldots>\binom{n}{n} .
$$

- For all integers n and k such that $n \geq k \geq 1$, we have that

$$
\binom{n}{k}=\binom{n}{k-1} \cdot \frac{n-k+1}{k} .
$$

- So, for even n :

$$
\binom{n}{0}<\binom{n}{1}<\ldots<\binom{n}{n / 2}>\ldots>\binom{n}{n-1}>\binom{n}{n},
$$

- whereas for odd n :

$$
\binom{n}{0}<\ldots<\binom{n}{\lfloor n / 2\rfloor}=\binom{n}{\lceil n / 2\rceil}>\ldots>\binom{n}{n} .
$$

- In particular, $\binom{n}{\lfloor n / 2\rfloor}=\binom{n}{\lceil n / 2\rceil}$ is maximum among the binomial coefficients $\binom{n}{0},\binom{n}{1}, \ldots,\binom{n}{n}$.
- For all integers n and k such that $n \geq k \geq 1$, we have that

$$
\binom{n}{k}=\binom{n}{k-1} \cdot \frac{n-k+1}{k} .
$$

- So, for even n :

$$
\binom{n}{0}<\binom{n}{1}<\ldots<\binom{n}{n / 2}>\ldots>\binom{n}{n-1}>\binom{n}{n},
$$

- whereas for odd n :

$$
\binom{n}{0}<\ldots<\binom{n}{\lfloor n / 2\rfloor}=\binom{n}{\lceil n / 2\rceil}>\ldots>\binom{n}{n} .
$$

- In particular, $\binom{n}{\lfloor n / 2\rfloor}=\binom{n}{[n / 2\rceil}$ is maximum among the binomial coefficients $\binom{n}{0},\binom{n}{1}, \ldots,\binom{n}{n}$.
- Let's find good bounds for $\binom{2 m}{m}$.

Theorem 2.4

For all integers $m \geq 1$, we have that

$$
\frac{2^{2 m}}{2 \sqrt{m}} \leq\binom{ 2 m}{m} \leq \frac{2^{2 m}}{\sqrt{2 m}}
$$

Proof.

Theorem 2.4

For all integers $m \geq 1$, we have that

$$
\frac{2^{2 m}}{2 \sqrt{m}} \leq\binom{ 2 m}{m} \leq \frac{2^{2 m}}{\sqrt{2 m}}
$$

Proof. Fix an integer $m \geq 1$, and let

$$
P=\frac{1 \cdot 3 \cdot 5 \cdots \cdots(2 m-1)}{2 \cdot 4 \cdot 6 \cdots \cdot(2 m)}
$$

Theorem 2.4

For all integers $m \geq 1$, we have that

$$
\frac{2^{2 m}}{2 \sqrt{m}} \leq\binom{ 2 m}{m} \leq \frac{2^{2 m}}{\sqrt{2 m}}
$$

Proof. Fix an integer $m \geq 1$, and let

$$
P=\frac{1 \cdot 3 \cdot 5 \cdots \cdot(2 m-1)}{2 \cdot 4 \cdot 6 \cdots \cdot(2 m)}
$$

Then

$$
\begin{aligned}
P & =\frac{1 \cdot 3 \cdot 5 \cdots \cdot(2 m-1)}{2 \cdot 4 \cdot 6 \cdots \cdot(2 m)} \\
& =\frac{1 \cdot 3 \cdot 5 \cdots \cdot(2 m-1)}{2 \cdot 4 \cdot 6 \cdots \cdot(2 m)} \cdot \frac{2 \cdot 4 \cdots \cdot(2 m)}{2 \cdot 4 \cdots \cdot(2 m)} \\
& =\frac{(2 m)!}{2^{2 m}(m!)^{2}} \\
& =\frac{1}{2^{2 m}}\binom{2 m}{m}
\end{aligned}
$$

Theorem 2.4

For all integers $m \geq 1$, we have that

$$
\frac{2^{2 m}}{2 \sqrt{m}} \leq\binom{ 2 m}{m} \leq \frac{2^{2 m}}{\sqrt{2 m}}
$$

Proof (continued). Reminder: $P=\frac{1 \cdot 3 \cdot 5 \cdots \cdots \cdot(2 m-1)}{2 \cdot 4 \cdot 6 \cdots \cdots(2 m)}=\frac{1}{2^{2 m}}\binom{2 m}{m}$.

Theorem 2.4

For all integers $m \geq 1$, we have that

$$
\frac{2^{2 m}}{2 \sqrt{m}} \leq\binom{ 2 m}{m} \leq \frac{2^{2 m}}{\sqrt{2 m}}
$$

Proof (continued). Reminder: $P=\frac{1 \cdot 3 \cdot 5 \cdot \cdots \cdot(2 m-1)}{2 \cdot 4 \cdot 6 \cdots \cdots(2 m)}=\frac{1}{2^{2 m}}\binom{2 m}{m}$. It now suffices to show that $\frac{1}{2 \sqrt{m}} \leq P \leq \frac{1}{\sqrt{2 m}}$.

Theorem 2.4

For all integers $m \geq 1$, we have that

$$
\frac{2^{2 m}}{2 \sqrt{m}} \leq\binom{ 2 m}{m} \leq \frac{2^{2 m}}{\sqrt{2 m}}
$$

Proof (continued). Reminder: $P=\frac{1 \cdot 3 \cdot 5 \cdot \cdots \cdot(2 m-1)}{2 \cdot 4 \cdot 6 \cdots \cdots(2 m)}=\frac{1}{2^{2 m}}\binom{2 m}{m}$. It now suffices to show that $\frac{1}{2 \sqrt{m}} \leq P \leq \frac{1}{\sqrt{2 m}}$.
We first prove the upper bound for P, as follows:

$$
\begin{aligned}
1 & \geq\left(1-\frac{1}{2^{2}}\right)\left(1-\frac{1}{4^{2}}\right) \ldots\left(1-\frac{1}{(2 m)^{2}}\right) \\
& =\frac{2^{2}-1}{2^{2}} \cdot \frac{4^{2}-1}{4^{2}} \cdots \cdot \frac{(2 m)^{2}-1}{(2 m)^{2}} \\
& =\frac{1 \cdot 3}{2^{2}} \cdot \frac{3 \cdot 5}{4^{2}} \cdots \cdots \frac{(2 m-1)(2 m+1)}{(2 m)^{2}} \\
& =(2 m+1) P^{2}
\end{aligned}
$$

which implies $P \leq \frac{1}{\sqrt{2 m+1}} \leq \frac{1}{\sqrt{2 m}}$.

Theorem 2.4

For all integers $m \geq 1$, we have that

$$
\frac{2^{2 m}}{2 \sqrt{m}} \leq\binom{ 2 m}{m} \leq \frac{2^{2 m}}{\sqrt{2 m}}
$$

Proof (continued). Reminder: $P=\frac{1 \cdot 3 \cdot 5 \cdot \cdots \cdot(2 m-1)}{2 \cdot 4 \cdot 6 \cdots \cdots \cdot(2 m)}=\frac{1}{2^{2 m}}\binom{2 m}{m}$. It now suffices to show that $\frac{1}{2 \sqrt{m}} \leq P \leq \frac{1}{\sqrt{2 m}}$.
We first prove the upper bound for P, as follows:

$$
\begin{aligned}
1 & \geq\left(1-\frac{1}{2^{2}}\right)\left(1-\frac{1}{4^{2}}\right) \ldots\left(1-\frac{1}{(2 m)^{2}}\right) \\
& =\frac{2^{2}-1}{2^{2}} \cdot \frac{4^{2}-1}{4^{2}} \cdots \cdot \frac{(2 m)^{2}-1}{(2 m)^{2}} \\
& =\frac{1 \cdot 3}{2^{2}} \cdot \frac{3 \cdot 5}{4^{2}} \cdots \cdots \frac{(2 m-1)(2 m+1)}{(2 m)^{2}} \\
& =(2 m+1) P^{2}
\end{aligned}
$$

which implies $P \leq \frac{1}{\sqrt{2 m+1}} \leq \frac{1}{\sqrt{2 m}}$. Lower bound: Lecture Notes.

- Finally, we note that using Stirling's formula (which we stated without proof), we can obtain an even better approximation of $\binom{2 m}{m}$, as follows:

$$
\lim _{m \rightarrow \infty}\left(\left(\frac{2^{2 m}}{\sqrt{\pi m}}\right) /\binom{2 m}{m}\right)=1
$$

- Finally, we note that using Stirling's formula (which we stated without proof), we can obtain an even better approximation of $\binom{2 m}{m}$, as follows:

$$
\lim _{m \rightarrow \infty}\left(\left(\frac{2^{2 m}}{\sqrt{\pi m}}\right) /\binom{2 m}{m}\right)=1
$$

- So, for very large values of m, the function $g(m)=\frac{2^{2 m}}{\sqrt{\pi m}}$ is a good approximation of $\binom{2 m}{m}$.

