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Definition

For a positive integer n, we define n! (read "n factorial”) to be
n = n-(n=1)-(n—2)----- 2-1.

Furthermore, as a convention, we set 0! = 1.

@ n! is the number of ways that n distinct objects can be
arranged in a sequence.

e there are n choices for the first term of the sequence, n — 1
choices for the second, n — 2 for the third, etc.

@ For instance, there are 3! = 6 ways to arrange the elements of
{a, b, c} in a sequence, namely:

) b, a,c c,a
(2) a,c,b (4) b,c,a (6) c,b,



@ For small values of n, computing n! is quite straightforward:

e 0l=1

0o 1l=1

e 21=2.1=2

e31=3.2-1=6

e 41=4.3.2-1=24
e5/=5.4.3.2.1=120

e 6!=6-5-4-3-2-1=720

e 7'=7-6-5-4-3-2-1=5040

e 8=8-7-6-5-4-3-2-1=40320
e9l=9.8-7-6-5-4-3-2-1=362880
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@ However, n! is a very fast growing function, and so computing
it for even moderately large n is impractical.

@ How about some estimates (upper and lower bounds)?



@ Obviously, n! < n".



@ Obviously, n! < n".
@ Our goal is to obtain two better estimates for n!, as follows:

(i) n"/2 < nl < (21" for all non-negative integers n;

(i) e(2)" < n! <en(Z)" for all positive integers n.
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For all non-negative integers n, the following holds:

n2 < pl < (BEL)n

e We'll prove only the upper bound. (See the Lecture Notes for
the lower bound.)

@ We'll need the inequality of arithmetic and geometric means.

Inequality of arithmetic and geometric means

All non-negative real numbers x and y satisfy

Vxy < %

Proof: Lecture Notes.
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For all non-negative integers n, the following holds:

nn/2 < n < n—é—l)n

Proof of the upper bound. The statement is obviously true for
n=0 and n=1. For an integer n > 2:

nl — \/(,,.(,,_1).....2.1)(1.2.....(n_1).n>
(Vo 1) (Vin=1-2)... (V2 (n—1)) (Vi n)

OMAM 1 (-2 24(n=1)  1+n
— 2 2 2 2
_ n+1\n
= (7)
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e We now prove (ii).

For all positive integers n, the following holds:

e(£)" < nl < en(%)".

@ In fact, we'll only prove the upper bound (see the Lecture
Notes for the lower bound).

e We will use the following inequality (which can be proven
using calculus).

Proposition 1.2

For all real numbers x, we have 1 + x < e*.

Proof: Lecture Notes.
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For all positive integers n, the following holds:

e(2)" < nl < en(3)".

Proof of the upper bound. By induction on n. The statement is

obviously true for n = 1. Now fix a positive integer n, and assume

n! < en(2)". WTS (n+ 1)! < e(n+ 1)(ZH)""1. We compute:
(n+1)! = (n+1) n

< (n+1)-en(Z)" by ind. hyp.

e

= (e(n—I— 1)(n+1)n+1) (o) e,

It remains to show that (7)™ e < 1.



For all positive integers n, the following holds:
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Proof of the upper bound (continued). WTS (1 -)"He < 1.



For all positive integers n, the following holds:

e(8)" < nl < en(Z)"

Proof of the upper bound (continued). WTS (1 -)"He < 1.

(e = (1 )e
< (e n+1)”+1 by Proposition 1.2
(1+x<eVxeR)
_ 1
for x = — 5
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(i) N2 < nl < (%)™ for all non-negative integers n;

(i) e(2)" < n! < en(Z)" for all positive integers n.

@ We have proven the upper bounds of both (i) and (ii).

@ See the Lecture Notes for the lower bounds.

Stirling's formula

Proof omitted.
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Definition

For integers n and k such that n > k > 0, we define (}), read “n
choose k," as follows:

n n(n—1)...(n—k+1 n—i
(o) = % = Il 4=

o Remark: (}) = k!(:ik)! and (i) = (,7)-
° (Z) is the number of k-element subsets of an n-element set.

@ For example, the number of 3-element subsets of the
5-element set {a, b, c,d, e} is (g) = 10:

Q {a,b,c} O {a,d,e}
Q {a b,d} Q@ {b,c,d}
Q {a, b, e} Q {b,c,e}
Q {acd} Q {b,d,e}

o {a, c, e} (10 {C’ d, e}
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e Numbers (Z) are called binomial coefficients.

Binomial theorem

For all integers n > 0, and all real numbers x and y, the following
holds:

() = % (e

= @Y+ @0 ()X ()X

@ As in the case of factorials, binomial coefficients are easy to
compute for small values of n and k. However, even for
moderately large n, k, computing (}) becomes impractical.

@ So, as in the case of factorials, we would like to obtain some

useful estimates (convenient upper and lower bounds) for
binomial coefficients.
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For all integers n and k such that n > k > 1, the following holds:

B < (@ < (@B~

@ Theorem 2.1 follows from the two propositions below.

Proposition 2.2
For all integers n and k such that n > k > 1, we have that

(B < @

Proposition 2.3

For all integers n and k such that n > k > 1, we have that:

k
X () < (8-
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For all integers n and k such that n > k > 1, we have that

(P < ()

Proof.
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For all integers n and k such that n > k > 1, we have that

(P < ()

Proof. Fix integers n, k such that n > k > 1. We observe that for

> 1.
all i € {0,...,k— 1}, we have that =% > 7,

i -
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For all integers n and k such that n > k > 1, we have that:

k
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Proof. Claim. For all real numbers x such that 0 < x < 1:

k n
> < S



Proposition 2.3

For all integers n and k such that n > k > 1, we have that:

k
() < ()~

k n
x () < G
Proof of the Claim. By the Binomial theorem:

A+ = SO > ¥ (O

n
i=0 i=0



Proposition 2.3

For all integers n and k such that n > k > 1, we have that:

k
() < ()~

k n
> < Wb

Proof of the Claim. By the Binomial theorem:

n . k .
1+x)" = X (Hx = X (Nx".
i=0 i=0
Dividing by x*, we then obtain
k 0<x<1 k
1+ n 1 =
Gz 204 =2 50

This proves the Claim.



Proposition 2.3

For all integers n and k such that n > k > 1, we have that:

k
() < (B~

Proof (continued). Claim. For all real numbers x such that
0<x<1:

(0 < o

= Xk



Proposition 2.3

For all integers n and k such that n > k > 1, we have that:

k
() < (B~

Proof (continued). Claim. For all real numbers x such that
0<x<1:

» () <

We now compute apply the Claim to x := ¢, and we obtain

k
() < 1+ X)n(a)k by the Claim for x = %
i=0

by Proposition 1.2 for x = X

n
(1+x < e*Vx eR)

IN
—~
D

=

~
s
N
E]
—~
s
N

==



@ So, we have proven Theorem 2.1.
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@ So, we have proven Theorem 2.1.

For all integers n and k such that n > k > 1, the following holds:

(B < @ < (¥~

@ Theorem 2.1 works for all integers n and k such that
n>k>1.

@ Our next goal is to find a good estimate for the largest among

the binomial coefficients (g), (7),..., ().

@ Which one is the largest?
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@ For all integers n and k such that n > k > 1, we have that

® = G2 =

@ So, for even n:



@ For all integers n and k such that n > k > 1, we have that

B = ()=

@ So, for even n:

@ whereas for odd n:

G < ... < (Lnl}zﬂ = ((n’/’z]) > o> (D).
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@ For all integers n and k such that n > k > 1, we have that

@ = (") =
@ So, for even n:
@ < (I < < (o) > > (2D > Q)
@ whereas for odd n:
© < - < (o) = (o) > - >

o In particular, (|,7) = ([,/5)) is maximum among the
binomial coefficients (g), (7),---, (7).
o

")

@ Let's find good bounds for
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For all integers m > 1, we have that
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For all integers m > 1, we have that

22m < (2m) < 22m

2ym — m v2m
Proof. Fix an integer m > 1, and let
p _ 135.-(2m-1)



Theorem 2.4
For all integers m > 1, we have that

2m 2m
am S () < F

s

Proof. Fix an integer m > 1, and let

1-35(2m—1

P = 2'4-6~~-(~(2m))‘
Then 1.35-(2m—1)
P = 2-4-6-----(2m)

1.3-5.-(2m—1)  2:4---(2m)
246-(2m) 24 (2m)

(2m)!
= 2(mi)2

= ()
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Theorem 2.4
For all integers m > 1, we have that

22m 2 22m

2/m (,;n) = v2m
Proof (continued). Reminder: P = 123:’67(2(';;)” = 3 (>M). It
now suffices to show that =1—= < P <

1
2ym = V2m’



Theorem 2.4
For all integers m > 1, we have that

22m 2 22m

2w = (n) =
Proof (continued). Reminder' P = 1‘23'2’67(2(’;”1)1) (2 it
now suffices to show that <P< A

We first prove the upper bound for P, as foIIows

1> (1-%)1-3).(1- zhp)

221 421 (2m)?—1
= % S RiRERE Gy’
13 35 | (@m-1)(2m+1)
= 2 (2m)2
= (2m+1)P?
. . . 1 1
which implies P < 5T < o



Theorem 2.4
For all integers m > 1, we have that

22m 2 22m

2w = (n) =
Proof (continued). Reminder' P = 1‘23'2’67(2(’;”1)1) (2 it
now suffices to show that <P< A

We first prove the upper bound for P, as foIIows

1> (1-%)1-3).(1- zhp)

221 421 (2m)?—1
= %3 R REE Gy’
13 35 ... @m=-1)(2m+1)
= 2 (2m)2
= (2m+1)P?
. . . 1
which implies P < T} < E Lower bound: Lecture Notes.



e Finally, we note that using Stirling's formula (which we stated
without proof), we can obtain an even better approximation
of (3™), as follows:
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e Finally, we note that using Stirling's formula (which we stated
without proof), we can obtain an even better approximation
of (3™), as follows:

Jm ((Z)en) - 1

@ So, for very large values of m, the function g(m) = 22m

is a

E

good approximation of (2,;")



