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Definition
For a positive integer n, we define n! (read “n factorial”) to be

n! := n · (n − 1) · (n − 2) · · · · · 2 · 1.

Furthermore, as a convention, we set 0! = 1.

n! is the number of ways that n distinct objects can be
arranged in a sequence.

there are n choices for the first term of the sequence, n − 1
choices for the second, n − 2 for the third, etc.

For instance, there are 3! = 6 ways to arrange the elements of
{a, b, c} in a sequence, namely:

(1) a, b, c
(2) a, c, b

(3) b, a, c
(4) b, c, a

(5) c, a, b
(6) c, b, a



Definition
For a positive integer n, we define n! (read “n factorial”) to be

n! := n · (n − 1) · (n − 2) · · · · · 2 · 1.

Furthermore, as a convention, we set 0! = 1.

n! is the number of ways that n distinct objects can be
arranged in a sequence.

there are n choices for the first term of the sequence, n − 1
choices for the second, n − 2 for the third, etc.

For instance, there are 3! = 6 ways to arrange the elements of
{a, b, c} in a sequence, namely:

(1) a, b, c
(2) a, c, b

(3) b, a, c
(4) b, c, a

(5) c, a, b
(6) c, b, a



Definition
For a positive integer n, we define n! (read “n factorial”) to be

n! := n · (n − 1) · (n − 2) · · · · · 2 · 1.

Furthermore, as a convention, we set 0! = 1.

n! is the number of ways that n distinct objects can be
arranged in a sequence.

there are n choices for the first term of the sequence, n − 1
choices for the second, n − 2 for the third, etc.

For instance, there are 3! = 6 ways to arrange the elements of
{a, b, c} in a sequence, namely:

(1) a, b, c
(2) a, c, b

(3) b, a, c
(4) b, c, a

(5) c, a, b
(6) c, b, a



Definition
For a positive integer n, we define n! (read “n factorial”) to be

n! := n · (n − 1) · (n − 2) · · · · · 2 · 1.

Furthermore, as a convention, we set 0! = 1.

n! is the number of ways that n distinct objects can be
arranged in a sequence.

there are n choices for the first term of the sequence, n − 1
choices for the second, n − 2 for the third, etc.

For instance, there are 3! = 6 ways to arrange the elements of
{a, b, c} in a sequence, namely:

(1) a, b, c
(2) a, c, b

(3) b, a, c
(4) b, c, a

(5) c, a, b
(6) c, b, a



For small values of n, computing n! is quite straightforward:
0! = 1
1! = 1
2! = 2 · 1 = 2
3! = 3 · 2 · 1 = 6
4! = 4 · 3 · 2 · 1 = 24
5! = 5 · 4 · 3 · 2 · 1 = 120
6! = 6 · 5 · 4 · 3 · 2 · 1 = 720
7! = 7 · 6 · 5 · 4 · 3 · 2 · 1 = 5040
8! = 8 · 7 · 6 · 5 · 4 · 3 · 2 · 1 = 40320
9! = 9 · 8 · 7 · 6 · 5 · 4 · 3 · 2 · 1 = 362880

However, n! is a very fast growing function, and so computing
it for even moderately large n is impractical.
How about some estimates (upper and lower bounds)?
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Obviously, n! ≤ nn.

Our goal is to obtain two better estimates for n!, as follows:

(i) nn/2 ≤ n! ≤ ( n+1
2 )n for all non-negative integers n;

(ii) e( n
e )n ≤ n! ≤ en( n

e )n for all positive integers n.
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e )n for all positive integers n.



We first prove (i).

Theorem 1.1
For all non-negative integers n, the following holds:

nn/2 ≤ n! ≤ (n+1
2 )n

We’ll prove only the upper bound. (See the Lecture Notes for
the lower bound.)
We’ll need the inequality of arithmetic and geometric means.

Inequality of arithmetic and geometric means
All non-negative real numbers x and y satisfy

√xy ≤ x+y
2 .

Proof: Lecture Notes.
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Theorem 1.1
For all non-negative integers n, the following holds:

nn/2 ≤ n! ≤ (n+1
2 )n

Proof of the upper bound.

The statement is obviously true for
n = 0 and n = 1. For an integer n ≥ 2:

n! =
√(

n · (n − 1) · · · · · 2 · 1
)(

1 · 2 · · · · · (n − 1) · n
)

=
(√

n · 1
)(√

(n − 1) · 2
)

. . .
(√

2 · (n − 1)
)(√

1 · n
)

GM≤AM
≤ n+1

2 ·
(n−1)+2

2 · · · · · 2+(n−1)
2 · 1+n

2

= (n+1
2 )n.
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We now prove (ii).

Theorem 1.3
For all positive integers n, the following holds:

e(n
e )n ≤ n! ≤ en(n

e )n.

In fact, we’ll only prove the upper bound (see the Lecture
Notes for the lower bound).
We will use the following inequality (which can be proven
using calculus).

Proposition 1.2
For all real numbers x , we have 1 + x ≤ ex .

Proof: Lecture Notes.
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Theorem 1.3
For all positive integers n, the following holds:

e(n
e )n ≤ n! ≤ en(n

e )n.

Proof of the upper bound.

By induction on n. The statement is
obviously true for n = 1. Now fix a positive integer n, and assume
n! ≤ en(n

e )n. WTS (n + 1)! ≤ e(n + 1)(n+1
e )n+1. We compute:

(n + 1)! = (n + 1) · n!

≤ (n + 1) · en(n
e )n by ind. hyp.

=
(

e(n + 1)(n+1
e )n+1

)
· ( n

n+1)n+1e.

It remains to show that ( n
n+1)n+1e ≤ 1.
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Theorem 1.3
For all positive integers n, the following holds:

e(n
e )n ≤ n! ≤ en(n

e )n.

Proof of the upper bound (continued). WTS ( n
n+1)n+1e ≤ 1.

( n
n+1)n+1e = (1− 1

n+1)n+1e

≤ (e−
1

n+1 )n+1e by Proposition 1.2
(1 + x ≤ ex ∀x ∈ R)
for x = − 1

n+1
= 1.
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(i) nn/2 ≤ n! ≤ (n+1
2 )n for all non-negative integers n;

(ii) e(n
e )n ≤ n! ≤ en(n

e )n for all positive integers n.

We have proven the upper bounds of both (i) and (ii).

See the Lecture Notes for the lower bounds.

Stirling’s formula

lim
n→∞

√
2πn ( n

e )n

n! = 1.

Proof omitted.
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Definition
For integers n and k such that n ≥ k ≥ 0, we define

(n
k
)
, read “n

choose k,” as follows:

(n
k
)

= n(n−1)...(n−k+1)
k·(k−1)·····1 =

k−1∏
i=0

n−i
k−i .

Remark:
(n

k
)

= n!
k!(n−k)! and

(n
k
)

=
( n

n−k
)
.(n

k
)

is the number of k-element subsets of an n-element set.
For example, the number of 3-element subsets of the
5-element set {a, b, c, d , e} is

(5
3
)

= 10:

1 {a, b, c}
2 {a, b, d}
3 {a, b, e}
4 {a, c, d}
5 {a, c, e}

6 {a, d , e}
7 {b, c, d}
8 {b, c, e}
9 {b, d , e}
10 {c, d , e}
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Numbers
(n

k
)

are called binomial coefficients.

Binomial theorem
For all integers n ≥ 0, and all real numbers x and y , the following
holds:

(x + y)n =
n∑

k=0

(n
k
)
xkyn−k

=
(n

0
)
yn +

(n
1
)
xyn−1 + · · ·+

( n
n−1
)
xn−1y +

(n
n
)
xn.

As in the case of factorials, binomial coefficients are easy to
compute for small values of n and k. However, even for
moderately large n, k, computing

(n
k
)

becomes impractical.
So, as in the case of factorials, we would like to obtain some
useful estimates (convenient upper and lower bounds) for
binomial coefficients.
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Theorem 2.1
For all integers n and k such that n ≥ k ≥ 1, the following holds:

( n
k )k ≤

(n
k
)
≤ ( en

k )k .

Theorem 2.1 follows from the two propositions below.

Proposition 2.2
For all integers n and k such that n ≥ k ≥ 1, we have that

( n
k )k ≤

(n
k
)

Proposition 2.3
For all integers n and k such that n ≥ k ≥ 1, we have that:

k∑
i=0

(n
i
)
≤ ( en
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So, we have proven Theorem 2.1.

Theorem 2.1
For all integers n and k such that n ≥ k ≥ 1, the following holds:

( n
k )k ≤

(n
k
)
≤ ( en

k )k .

Theorem 2.1 works for all integers n and k such that
n ≥ k ≥ 1.
Our next goal is to find a good estimate for the largest among
the binomial coefficients

(n
0
)
,
(n

1
)
, . . . ,

(n
n
)
.

Which one is the largest?
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For all integers n and k such that n ≥ k ≥ 1, we have that(n
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1
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< . . . <
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> . . . >
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,

whereas for odd n:(n
0
)

< . . . <
( n
bn/2c

)
=

( n
dn/2e

)
> . . . >

(n
n
)
.

In particular,
( n
bn/2c

)
=
( n
dn/2e

)
is maximum among the

binomial coefficients
(n

0
)
,
(n

1
)
, . . . ,

(n
n
)
.

Let’s find good bounds for
(2m

m
)
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Theorem 2.4
For all integers m ≥ 1, we have that

22m

2
√

m ≤
(2m

m
)
≤ 22m

√
2m

Proof.

Fix an integer m ≥ 1, and let

P = 1·3·5·····(2m−1)
2·4·6·····(2m) .

Then
P = 1·3·5·····(2m−1)

2·4·6·····(2m)

= 1·3·5·····(2m−1)
2·4·6·····(2m) ·

2·4·····(2m)
2·4·····(2m)

= (2m)!
22m(m!)2

= 1
22m
(2m

m
)
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Proof (continued). Reminder: P = 1·3·5·····(2m−1)
2·4·6·····(2m) = 1
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It
now suffices to show that 1

2
√

m ≤ P ≤ 1√
2m .

We first prove the upper bound for P, as follows:

1 ≥ (1− 1
22 )(1− 1

42 ) . . . (1− 1
(2m)2 )

= 22−1
22 · 42−1

42 · · · · · (2m)2−1
(2m)2

= 1·3
22 · 3·5

42 · · · · · (2m−1)(2m+1)
(2m)2

= (2m + 1)P2,

which implies P ≤ 1√
2m+1 ≤

1√
2m . Lower bound: Lecture Notes.



Theorem 2.4
For all integers m ≥ 1, we have that

22m

2
√

m ≤
(2m

m
)
≤ 22m

√
2m

Proof (continued). Reminder: P = 1·3·5·····(2m−1)
2·4·6·····(2m) = 1

22m
(2m

m
)
. It

now suffices to show that 1
2
√

m ≤ P ≤ 1√
2m .

We first prove the upper bound for P, as follows:

1 ≥ (1− 1
22 )(1− 1

42 ) . . . (1− 1
(2m)2 )

= 22−1
22 · 42−1

42 · · · · · (2m)2−1
(2m)2

= 1·3
22 · 3·5

42 · · · · · (2m−1)(2m+1)
(2m)2

= (2m + 1)P2,

which implies P ≤ 1√
2m+1 ≤

1√
2m . Lower bound: Lecture Notes.



Theorem 2.4
For all integers m ≥ 1, we have that

22m

2
√

m ≤
(2m

m
)
≤ 22m

√
2m

Proof (continued). Reminder: P = 1·3·5·····(2m−1)
2·4·6·····(2m) = 1

22m
(2m

m
)
. It

now suffices to show that 1
2
√

m ≤ P ≤ 1√
2m .

We first prove the upper bound for P, as follows:

1 ≥ (1− 1
22 )(1− 1

42 ) . . . (1− 1
(2m)2 )

= 22−1
22 · 42−1

42 · · · · · (2m)2−1
(2m)2

= 1·3
22 · 3·5

42 · · · · · (2m−1)(2m+1)
(2m)2

= (2m + 1)P2,

which implies P ≤ 1√
2m+1 ≤

1√
2m .

Lower bound: Lecture Notes.



Theorem 2.4
For all integers m ≥ 1, we have that

22m

2
√

m ≤
(2m

m
)
≤ 22m

√
2m

Proof (continued). Reminder: P = 1·3·5·····(2m−1)
2·4·6·····(2m) = 1

22m
(2m

m
)
. It

now suffices to show that 1
2
√

m ≤ P ≤ 1√
2m .

We first prove the upper bound for P, as follows:

1 ≥ (1− 1
22 )(1− 1

42 ) . . . (1− 1
(2m)2 )

= 22−1
22 · 42−1

42 · · · · · (2m)2−1
(2m)2

= 1·3
22 · 3·5

42 · · · · · (2m−1)(2m+1)
(2m)2

= (2m + 1)P2,

which implies P ≤ 1√
2m+1 ≤

1√
2m . Lower bound: Lecture Notes.



Finally, we note that using Stirling’s formula (which we stated
without proof), we can obtain an even better approximation
of
(2m

m
)
, as follows:

lim
m→∞

((
22m
√
πm

)
/
(2m

m
))

= 1.

So, for very large values of m, the function g(m) = 22m
√
πm is a

good approximation of
(2m

m
)
.
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