
NDMI011: Combinatorics and Graph Theory 1

Lecture #1

Estimates of factorials and binomial coefficients

Irena Penev

1 Estimating factorials

For a positive integer n, we define n! (read “n factorial”) to be

n! := n · (n− 1) · (n− 2) · · · · · 2 · 1.

Furthermore, as a convention, we set 0! = 1.
n! is the number of ways that n distinct objects can be arranged in a

sequence: there are n choices for the first term of the sequence, n− 1 choices
for the second, n− 2 for the third, etc. For instance, there are 3! = 6 ways
to arrange the elements of the set {a, b, c} in a sequence, namely:

(1) a, b, c

(2) a, c, b

(3) b, a, c

(4) b, c, a

(5) c, a, b

(6) c, b, a

For small values of n, computing n! is quite straightforward:

• 0! = 1

• 1! = 1

• 2! = 2 · 1 = 2

• 3! = 3 · 2 · 1 = 6

• 4! = 4 · 3 · 2 · 1 = 24

• 5! = 5 · 4 · 3 · 2 · 1 = 120

• 6! = 6 · 5 · 4 · 3 · 2 · 1 = 720

• 7! = 7 · 6 · 5 · 4 · 3 · 2 · 1 = 5040
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• 8! = 8 · 7 · 6 · 5 · 4 · 3 · 2 · 1 = 40320

• 9! = 9 · 8 · 7 · 6 · 5 · 4 · 3 · 2 · 1 = 362880

etc. However, as we see from the list above, n! is a very fast increasing
function, and computing it for even moderately large n is impractical. Nev-
ertheless, in applications, it is often useful to know roughly how big n! is,
that is, how it compares to various other functions of n. Obviously,1

n! ≤ nn

for all non-negative integers n. In this lecture, we will obtain two better
estimates for n!, as follows:

(i) nn/2 ≤ n! ≤ (n+1
2 )n for all non-negative integers n;

(ii) e(ne )n ≤ n! ≤ en(ne )n for all positive integers n.

For non-negative real numbers x and y, the arithmetic mean of x and y
is x+y

2 , and the geometric mean of x and y is
√
xy. To prove (i), we will use

the inequality of arithmetic and geometric means (below).

Inequality of arithmetic and geometric means. All non-negative real
numbers x and y satisfy √

xy ≤ x+y
2 .

Proof. For non-negative real numbers x and y, we have the following sequence
of equivalences:

(
√
x−√y)2 ≥ 0

⇐⇒ x− 2
√
xy + y ≥ 0

⇐⇒ x+ y ≥ 2
√
xy

⇐⇒ x+y
2 ≥ √

xy.

Since the first inequality above is obviously true, so is the last one.

We are now ready to prove (i).

Theorem 1.1. For all non-negative integers n, the following holds:

nn/2 ≤ n! ≤ (n+1
2 )n

1Recall that for all real numbers r, we have that r0 = 1. In particular, 00 = 1.
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Proof. For n = 0 and n = 1, the statement is obviously true. So, fix an
integer n ≥ 2.

We first prove the upper bound, as follows:

n! =

√(
n · (n− 1) · · · · · 2 · 1

)(
1 · 2 · · · · · (n− 1) · n

)

=

√(
n · 1

)(
(n− 1) · 2

)
. . .
(

2 · (n− 1)
)(

1 · n
)

=
(√

n · 1
)(√

(n− 1) · 2
)
. . .
(√

2 · (n− 1)
)(√

1 · n
)

(∗)
≤ n+1

2 ·
(n−1)+2

2 · · · · · 2+(n−1)
2 · 1+n2

= (n+1
2 )n,

where (*) follows from the inequality of arithmetic and geometric means.
It remains to prove the lower bound. First, we claim that for all i ∈

{1, . . . , n}, we have that

i(n+ 1− i) ≥ n.

Indeed, if i = 1 or i = n, then i(n + 1 − i) = n. On the other hand, for
i ∈ {2, . . . , n−1}, we have that min{i, n+1− i} ≥ 2 and max{i, n+1− i} ≥
i+(n+1−i)

2 ≥ n
2 , and consequently,

i(n+ 1− i) = min{i, n+ 1− i} ·max{i, n+ 1− i} ≥ 2 · n2 = n,

as we had claimed. We now compute:

n! =

√(
1 · 2 · · · · · (n− 1) · n

)(
n · (n− 1) · · · · · 2 · 1

)

=

√(
1 · n

)(
2 · (n− 1)

)
· · · · ·

(
2 · (n− 1)

)(
1 · n

)

=

√√√√ n∏
i=1

(
i · (n+ 1− i)︸ ︷︷ ︸

≥n

)

≥
√
nn

= nn/2,

which is what we needed.
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It remains to prove (ii). We begin with the following proposition.

Proposition 1.2. For all real numbers x, we have

1 + x ≤ ex.

Proof. Let f : R→ R be given by f(x) = ex − x− 1. Then f ′(x) = ex − 1,
and we have the following table:

x

f ′(x)

f(x)

(−∞, 0)

0

(0,+∞)

−∞ +∞

0− +

↘ ↗min

So, f(x) reaches a global minimum at x = 0, and we have that f(0) = 0. So,
f(x) ≥ 0 for all x ∈ R, and the result follows.

We will also need the well-known fact that

(1 +
1

n
)n ≤ e

for all positive integers n.2

We are now ready to prove (ii).

Theorem 1.3. For all positive integers n, the following holds:

e(ne )n ≤ n! ≤ en(ne )n.

Proof. We proceed by induction on n. The claim is clearly true for n = 1.
Now, fix a positive integer n, and assume inductively that e(ne )n ≤ n! ≤
en(ne )n. We must show that e(n+1

e )n+1 ≤ (n+ 1)! ≤ e(n+ 1)(n+1
e )n+1.

We first obtain the needed upper bound, i.e. we prove that (n + 1)! ≤
e(n+ 1)(n+1

e )n+1. We first compute:

(n+ 1)! = (n+ 1) · n!

≤ (n+ 1) · en(ne )n by the induction
hypothesis

=
(
e(n+ 1)(n+1

e )n+1
)
· ( n
n+1)n+1e.

2As you saw in Analysis, the sequence {(1 + 1
n

)n}∞n=1 is strictly increasing and bounded
above, and so by the Monotone Sequence Theorem, it converges. The constant e is defined
as the limit of this sequence, i.e. e := lim

n→∞
(1 + 1

n
)n, and the inequality follows.
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It now remains to show that ( n
n+1)n+1e ≤ 1, for then we will obtain precisely

the inequality that we need. We obtain this as follows:

( n
n+1)n+1e = (1− 1

n+1)n+1e

≤ (e−
1

n+1 )n+1e by Proposition 1.2,
for x = − 1

n+1

= 1.

It remains to establish the lower bound, i.e. to prove that e(n+1
e )n+1 ≤

(n+ 1)!. For this, we compute:

e(n+1
e )n+1 = (n+ 1)(ne )n · (1 + 1

n)n

≤ (n+ 1)(ne )n · e because (1 + 1
n)n ≤ e

≤ (n+ 1) · n! by the induction
hypothesis

= (n+ 1)!

which is what we needed.

We complete this section by giving the following formula (without proof).

Stirling’s formula. lim
n→∞

√
2πn (n

e
)n

n! = 1.

So, for very large values of n, the function f(n) =
√

2πn (ne )n is a good
approximation of n!.

2 Estimating binomial coefficients

For integers n and k such that n ≥ k ≥ 0, we define
(
n
k

)
, read “n choose k,”

as follows: (
n
k

)
= n(n−1)...(n−k+1)

k·(k−1)·····1 =
k−1∏
i=0

n−i
k−i .

Note that this implies that (
n
k

)
= n!

k!(n−k)! ,

and consequently, (
n
k

)
=

(
n

n−k
)
.

5



(
n
k

)
is the number of k-element subsets of an n-element set.3 For example,

the number of 3-element subsets of the 5-element set {a, b, c, d, e} is
(
5
3

)
= 10;

those subsets are:

(1) {a, b, c}

(2) {a, b, d}

(3) {a, b, e}

(4) {a, c, d}

(5) {a, c, e}

(6) {a, d, e}

(7) {b, c, d}

(8) {b, c, e}

(9) {b, d, e}

(10) {c, d, e}

We note that for all non-negative integers n, we have that
(
n
0

)
= 1. In

particular,
(
0
0

)
= 1.

Numbers
(
n
k

)
are called binomial coefficients. You are already familiar

with the binomial theorem (below).

Binomial theorem. For all integers n ≥ 0, and all real numbers x and y,
the following holds:

(x+ y)n =
n∑
k=0

(
n
k

)
xkyn−k

=
(
n
0

)
yn +

(
n
1

)
xyn−1 + · · ·+

(
n
n−1
)
xn−1y +

(
n
n

)
xn.

As in the case of factorials, binomial coefficients are easy to compute for
small values of n and k. However, even for moderately large n, k, computing(
n
k

)
becomes impractical. So, as in the case of factorials, we would like

to obtain some useful estimates (convenient upper and lower bounds) for
binomial coefficients.

2.1 Estimating the binomial coefficient
(
n
k

)
Our goal is to prove the following theorem.

Theorem 2.1. For all integers n and k such that n ≥ k ≥ 1, the following
holds:

(nk )k ≤
(
n
k

)
≤ ( enk )k.

Theorem 2.1 readily follows from Propositions 2.2 and 2.3 (below). Propo-
sition 2.2 establishes the lower bound from Theorem 2.1, and Proposition 2.3
establishes the upper bound.4

Proposition 2.2. For all integers n and k such that n ≥ k ≥ 1, we have
that

(nk )k ≤
(
n
k

)
3Indeed, there are n(n − 1) . . . (n − k + 1) sequences of k different elements of an

n-element set: there are n ways to select the first element, n− 1 ways to select the second
element, . . . , and n− k + 1 ways to select the k-th element. Since every k-element set can
be ordered in k! ways, there are exactly n(n−1)...(n−k+1)

k!
=

(
n
k

)
many k-element subsets of

an n-element set.
4In fact, the inequality from Proposition 2.3 is stronger than the upper bound from

Theorem 2.1.

6



Proof. Fix integers n, k such that n ≥ k ≥ 1. We observe that for all
i ∈ {0, . . . , k − 1}, we have that n−i

k−i ≥
n
k ,5 and so

(
n
k

)
=

k−1∏
i=0

n−i
k−i ≥

k−1∏
i=0

n
k = (nk )k,

which is what we needed.

Proposition 2.3. For all integers n and k such that n ≥ k ≥ 1, we have
that:

k∑
i=0

(
n
i

)
≤ ( enk )k.

Proof. Fix integers n and k such that n ≥ k ≥ 1.

Claim. For all real numbers x such that 0 < x ≤ 1, we have that

k∑
i=0

(
n
i

)
≤ (1+x)n

xk
.

Proof of the Claim. Fix a real number x such that 0 < x ≤ 1. By the
Binomial theorem, we have that

(1 + x)n =
n∑
i=0

(
n
i

)
xi

≥
k∑
i=0

(
n
i

)
xi since n ≥ k and x > 0

Dividing by xk, we then obtain

(1+x)n

xk
≥

k∑
i=0

(
n
i

)
1

xk−i

≥
k∑
i=0

(
n
i

)
because 0 < x ≤ 1

This proves the Claim. �
We now compute apply the Claim to x := k

n , and we obtain

k∑
i=0

(
n
i

)
≤ (1 + k

n)n(nk )k by the Claim for x = k
n

≤ (ek/n)n(nk )k by Proposition 1.2 for x = k
n

= ( enk )k,

which is what we needed.
5Indeed, this is equivalent to (n− i)k ≥ n(k− i), which is in turn equivalent to ni ≥ ki,

which is true since n ≥ k and i ≥ 0.
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2.2 Estimating the binomial coefficient
(
2n
n

)
Note that for all integers n and k such that n ≥ k ≥ 1, we have that(

n
k

)
=

(
n
k−1
)
· n−k+1

k .

This implies that6 for even n, we have that(
n
0

)
<

(
n
1

)
< . . . <

(
n
n/2

)
> . . . >

(
n
n−1
)

>
(
n
n

)
,

whereas for odd n, we have that(
n
0

)
<

(
n
1

)
< . . . <

(
n
bn/2c

)
=

(
n
dn/2e

)
> . . . >

(
n
n−1
)

>
(
n
n

)
.

In particular,
(

n
bn/2c

)
=
(

n
dn/2e

)
is maximum among the binomial coefficients(

n
0

)
,
(
n
1

)
, . . . ,

(
n
n

)
. For this reason, it is of particular interest to find good

estimates for the behavior of binomial coefficients of the form
(

n
bn/2c

)
.

Theorem 2.4. For all integers m ≥ 1, we have that

22m

2
√
m
≤

(
2m
m

)
≤ 22m√

2m

Proof. Fix an integer m ≥ 1, and let

P = 1·3·5·····(2m−1)
2·4·6·····(2m) .

Then
P = 1·3·5·····(2m−1)

2·4·6·····(2m)

= 1·3·5·····(2m−1)
2·4·6·····(2m) ·

2·4·····(2m)
2·4·····(2m)

= (2m)!
22m(m!)2

= 1
22m

(
2m
m

)
.

It now suffices to show that

1
2
√
m
≤ P ≤ 1√

2m
,

for the result then follows immediately.
We first establish the upper bound for P . For this, we observe that

1 ≥ (1− 1
22

)(1− 1
42

) . . . (1− 1
(2m)2

)

= 22−1
22
· 42−1

42
· · · · · (2m)2−1

(2m)2

= 1·3
22
· 3·5
42
· · · · · (2m−1)(2m+1)

(2m)2

= (2m+ 1)P 2,

6Check this!
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and consequently, P 2 ≤ 1
2m+1 , which in turn implies that

P ≤ 1√
2m+1

≤ 1√
2m
,

which is what we needed.
It remains to establish our lower bound for P . The proof is similar as for

the upper bound. We observe the following:

1 ≥ (1− 1
32

)(1− 1
52

) . . . (1− 1
(2m−1)2 )

= 32−1
32
· 52−1

52
· · · · · (2m−1)

2−1
(2m−1)2

= 2·4
32
· 4·6
52
· · · · · (2m−2)(2m)

(2m−1)2

= 1
2(2m)P 2 ,

which implies that
P ≥ 1

2
√
m
,

which is what we needed. This completes the argument.

Finally, we note that using Stirling’s formula (which we stated without
proof), we can obtain an even better approximation of

(
2m
m

)
, as follows:

lim
m→∞

((
22m√
πm

)
/
(
2m
m

))
= 1.

So, for very large values of m, the function g(m) = 22m√
πm

is a good approxi-

mation of
(
2m
m

)
.
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