NDMI011: Combinatorics and Graph Theory 1

Lecture \#1
Estimates of factorials and binomial coefficients

Irena Penev

1 Estimating factorials

For a positive integer n, we define n ! (read " n factorial") to be

$$
n!:=n \cdot(n-1) \cdot(n-2) \cdots \cdots \cdot 2 \cdot 1 .
$$

Furthermore, as a convention, we set $0!=1$.
n ! is the number of ways that n distinct objects can be arranged in a sequence: there are n choices for the first term of the sequence, $n-1$ choices for the second, $n-2$ for the third, etc. For instance, there are $3!=6$ ways to arrange the elements of the set $\{a, b, c\}$ in a sequence, namely:
(1) a, b, c
(3) b, a, c
(5) c, a, b
(2) a, c, b
(4) b, c, a
(6) c, b, a

For small values of n, computing n ! is quite straightforward:

- $0!=1$
- $1!=1$
- $2!=2 \cdot 1=2$
- $3!=3 \cdot 2 \cdot 1=6$
- $4!=4 \cdot 3 \cdot 2 \cdot 1=24$
- $5!=5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=120$
- $6!=6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=720$
- $7!=7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=5040$
- $8!=8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=40320$
- 9 ! $=9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=362880$
etc. However, as we see from the list above, $n!$ is a very fast increasing function, and computing it for even moderately large n is impractical. Nevertheless, in applications, it is often useful to know roughly how big n ! is, that is, how it compares to various other functions of n. Obviously, ${ }^{1}$

$$
n!\leq n^{n}
$$

for all non-negative integers n. In this lecture, we will obtain two better estimates for n !, as follows:
(i) $n^{n / 2} \leq n!\leq\left(\frac{n+1}{2}\right)^{n}$ for all non-negative integers n;
(ii) $e\left(\frac{n}{e}\right)^{n} \leq n!\leq e n\left(\frac{n}{e}\right)^{n}$ for all positive integers n.

For non-negative real numbers x and y, the arithmetic mean of x and y is $\frac{x+y}{2}$, and the geometric mean of x and y is $\sqrt{x y}$. To prove (i), we will use the inequality of arithmetic and geometric means (below).

Inequality of arithmetic and geometric means. All non-negative real numbers x and y satisfy

$$
\sqrt{x y} \leq \frac{x+y}{2} .
$$

Proof. For non-negative real numbers x and y, we have the following sequence of equivalences:

$$
\begin{aligned}
& & (\sqrt{x}-\sqrt{y})^{2} & \geq 0 \\
& \Longleftrightarrow & x-2 \sqrt{x y}+y & \geq 0 \\
& \Longleftrightarrow & x+y & \geq 2 \sqrt{x y} \\
& \Longleftrightarrow & \frac{x+y}{2} & \geq \sqrt{x y} .
\end{aligned}
$$

Since the first inequality above is obviously true, so is the last one.
We are now ready to prove (i).
Theorem 1.1. For all non-negative integers n, the following holds:

$$
n^{n / 2} \leq n!\leq\left(\frac{n+1}{2}\right)^{n}
$$

[^0]Proof. For $n=0$ and $n=1$, the statement is obviously true. So, fix an integer $n \geq 2$.

We first prove the upper bound, as follows:

$$
\begin{aligned}
n! & =\sqrt{(n \cdot(n-1) \cdots \cdot 2 \cdot 1)(1 \cdot 2 \cdots \cdots(n-1) \cdot n)} \\
& =\sqrt{(n \cdot 1)((n-1) \cdot 2) \cdots(2 \cdot(n-1))(1 \cdot n)} \\
& =(\sqrt{n \cdot 1})(\sqrt{(n-1) \cdot 2}) \cdots(\sqrt{2 \cdot(n-1)})(\sqrt{1 \cdot n}) \\
& \stackrel{(*)}{\leq} \frac{n+1}{2} \cdot \frac{(n-1)+2}{2} \cdots \cdots \frac{2+(n-1)}{2} \cdot \frac{1+n}{2} \\
& =\left(\frac{n+1}{2}\right)^{n},
\end{aligned}
$$

where $\left(^{*}\right.$) follows from the inequality of arithmetic and geometric means.
It remains to prove the lower bound. First, we claim that for all $i \in$ $\{1, \ldots, n\}$, we have that

$$
i(n+1-i) \geq n
$$

Indeed, if $i=1$ or $i=n$, then $i(n+1-i)=n$. On the other hand, for $i \in\{2, \ldots, n-1\}$, we have that $\min \{i, n+1-i\} \geq 2$ and $\max \{i, n+1-i\} \geq$ $\frac{i+(n+1-i)}{2} \geq \frac{n}{2}$, and consequently,

$$
i(n+1-i)=\min \{i, n+1-i\} \cdot \max \{i, n+1-i\} \geq 2 \cdot \frac{n}{2}=n
$$

as we had claimed. We now compute:

$$
\begin{aligned}
n! & =\sqrt{(1 \cdot 2 \cdots \cdots(n-1) \cdot n)(n \cdot(n-1) \cdots \cdots 2 \cdot 1)} \\
& =\sqrt{(1 \cdot n)(2 \cdot(n-1)) \cdots(2 \cdot(n-1))(1 \cdot n)} \\
& =\sqrt{\prod_{i=1}^{n}(\underbrace{i \cdot(n+1-i)}_{\geq n})} \\
& \geq \sqrt{n^{n}} \\
& =n^{n / 2},
\end{aligned}
$$

which is what we needed.

It remains to prove (ii). We begin with the following proposition.
Proposition 1.2. For all real numbers x, we have

$$
1+x \leq e^{x}
$$

Proof. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(x)=e^{x}-x-1$. Then $f^{\prime}(x)=e^{x}-1$, and we have the following table:

	0 x				$(-\infty, 0)$	$(0,+\infty)$
$f^{\prime}(x)$	-	0	+			
$f(x)$	\searrow	\min	\nearrow			

So, $f(x)$ reaches a global minimum at $x=0$, and we have that $f(0)=0$. So, $f(x) \geq 0$ for all $x \in \mathbb{R}$, and the result follows.

We will also need the well-known fact that

$$
\left(1+\frac{1}{n}\right)^{n} \leq e
$$

for all positive integers $n .{ }^{2}$
We are now ready to prove (ii).
Theorem 1.3. For all positive integers n, the following holds:

$$
e\left(\frac{n}{e}\right)^{n} \leq n!\leq e n\left(\frac{n}{e}\right)^{n}
$$

Proof. We proceed by induction on n. The claim is clearly true for $n=1$. Now, fix a positive integer n, and assume inductively that $e\left(\frac{n}{e}\right)^{n} \leq n!\leq$ en $\left(\frac{n}{e}\right)^{n}$. We must show that $e\left(\frac{n+1}{e}\right)^{n+1} \leq(n+1)!\leq e(n+1)\left(\frac{n+1}{e}\right)^{n+1}$.

We first obtain the needed upper bound, i.e. we prove that $(n+1)!\leq$ $e(n+1)\left(\frac{n+1}{e}\right)^{n+1}$. We first compute:

$$
\begin{aligned}
(n+1)! & =(n+1) \cdot n! & & \\
& \leq(n+1) \cdot e n\left(\frac{n}{e}\right)^{n} & & \text { by the induction } \\
& =\left(e(n+1)\left(\frac{n+1}{e}\right)^{n+1}\right) \cdot\left(\frac{n}{n+1}\right)^{n+1} e & & \text { hypothesis }
\end{aligned}
$$

[^1]It now remains to show that $\left(\frac{n}{n+1}\right)^{n+1} e \leq 1$, for then we will obtain precisely the inequality that we need. We obtain this as follows:

$$
\begin{array}{rlr}
\left(\frac{n}{n+1}\right)^{n+1} e & =\left(1-\frac{1}{n+1}\right)^{n+1} e & \\
& \leq\left(e^{-\frac{1}{n+1}}\right)^{n+1} e & \\
& \begin{array}{l}
\text { by Proposition 1.2 } \\
\end{array} & =1
\end{array}
$$

It remains to establish the lower bound, i.e. to prove that $e\left(\frac{n+1}{e}\right)^{n+1} \leq$ $(n+1)$!. For this, we compute:

$$
\begin{aligned}
e\left(\frac{n+1}{e}\right)^{n+1} & =(n+1)\left(\frac{n}{e}\right)^{n} \cdot\left(1+\frac{1}{n}\right)^{n} & & \\
& \leq(n+1)\left(\frac{n}{e}\right)^{n} \cdot e & & \text { because }\left(1+\frac{1}{n}\right)^{n} \leq e \\
& \leq(n+1) \cdot n! & & \text { by the induction } \\
& =(n+1)! & & \text { hypothesis }
\end{aligned}
$$

which is what we needed.
We complete this section by giving the following formula (without proof).
Stirling's formula. $\lim _{n \rightarrow \infty} \frac{\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}}{n!}=1$.
So, for very large values of n, the function $f(n)=\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}$ is a good approximation of n !.

2 Estimating binomial coefficients

For integers n and k such that $n \geq k \geq 0$, we define $\binom{n}{k}$, read " n choose k," as follows:

$$
\binom{n}{k}=\frac{n(n-1) \ldots(n-k+1)}{k \cdot(k-1) \cdots \cdot 1}=\prod_{i=0}^{k-1} \frac{n-i}{k-i} .
$$

Note that this implies that

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!},
$$

and consequently,

$$
\binom{n}{k}=\binom{n}{n-k} .
$$

$\binom{n}{k}$ is the number of k-element subsets of an n-element set. ${ }^{3}$ For example, the number of 3 -element subsets of the 5 -element set $\{a, b, c, d, e\}$ is $\binom{5}{3}=10$; those subsets are:
(1) $\{a, b, c\}$
(3) $\{a, b, e\}$
(5) $\{a, c, e\}$
(7) $\{b, c, d\}$
(9) $\{b, d, e\}$
(2) $\{a, b, d\}$
(4) $\{a, c, d\}$
(6) $\{a, d, e\}$
(8) $\{b, c, e\}$
(10) $\{c, d, e\}$

We note that for all non-negative integers n, we have that $\binom{n}{0}=1$. In particular, $\binom{0}{0}=1$.

Numbers $\binom{n}{k}$ are called binomial coefficients. You are already familiar with the binomial theorem (below).

Binomial theorem. For all integers $n \geq 0$, and all real numbers x and y, the following holds:

$$
\begin{aligned}
(x+y)^{n} & =\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k} \\
& =\binom{n}{0} y^{n}+\binom{n}{1} x y^{n-1}+\cdots+\binom{n}{n-1} x^{n-1} y+\binom{n}{n} x^{n} .
\end{aligned}
$$

As in the case of factorials, binomial coefficients are easy to compute for small values of n and k. However, even for moderately large n, k, computing $\binom{n}{k}$ becomes impractical. So, as in the case of factorials, we would like to obtain some useful estimates (convenient upper and lower bounds) for binomial coefficients.

2.1 Estimating the binomial coefficient $\binom{n}{k}$

Our goal is to prove the following theorem.
Theorem 2.1. For all integers n and k such that $n \geq k \geq 1$, the following holds:

$$
\left(\frac{n}{k}\right)^{k} \leq\binom{ n}{k} \leq\left(\frac{e n}{k}\right)^{k} .
$$

Theorem 2.1 readily follows from Propositions 2.2 and 2.3 (below). Proposition 2.2 establishes the lower bound from Theorem 2.1, and Proposition 2.3 establishes the upper bound. ${ }^{4}$

Proposition 2.2. For all integers n and k such that $n \geq k \geq 1$, we have that

$$
\left(\frac{n}{k}\right)^{k} \leq\binom{ n}{k}
$$

[^2]Proof. Fix integers n, k such that $n \geq k \geq 1$. We observe that for all $i \in\{0, \ldots, k-1\}$, we have that $\frac{n-i}{k-i} \geq \frac{n}{k},{ }^{5}$ and so

$$
\binom{n}{k}=\prod_{i=0}^{k-1} \frac{n-i}{k-i} \geq \prod_{i=0}^{k-1} \frac{n}{k}=\left(\frac{n}{k}\right)^{k},
$$

which is what we needed.
Proposition 2.3. For all integers n and k such that $n \geq k \geq 1$, we have that:

$$
\sum_{i=0}^{k}\binom{n}{i} \leq\left(\frac{e n}{k}\right)^{k} .
$$

Proof. Fix integers n and k such that $n \geq k \geq 1$.
Claim. For all real numbers x such that $0<x \leq 1$, we have that

$$
\sum_{i=0}^{k}\binom{n}{i} \leq \frac{(1+x)^{n}}{x^{k}} .
$$

Proof of the Claim. Fix a real number x such that $0<x \leq 1$. By the Binomial theorem, we have that

$$
\begin{aligned}
(1+x)^{n} & =\sum_{i=0}^{n}\binom{n}{i} x^{i} \\
& \geq \sum_{i=0}^{k}\binom{n}{i} x^{i} \quad \text { since } n \geq k \text { and } x>0
\end{aligned}
$$

Dividing by x^{k}, we then obtain

$$
\begin{aligned}
\frac{(1+x)^{n}}{x^{k}} & \geq \sum_{i=0}^{k}\binom{n}{i} \frac{1}{x^{k-i}} \\
& \geq \sum_{i=0}^{k}\binom{n}{i} \quad \text { because } 0<x \leq 1
\end{aligned}
$$

This proves the Claim.
We now compute apply the Claim to $x:=\frac{k}{n}$, and we obtain

$$
\begin{array}{rlr}
\sum_{i=0}^{k}\binom{n}{i} & \leq\left(1+\frac{k}{n}\right)^{n}\left(\frac{n}{k}\right)^{k} & \text { by the Claim for } x=\frac{k}{n} \\
& \leq\left(e^{k / n}\right)^{n}\left(\frac{n}{k}\right)^{k} & \text { by Proposition 1.2 for } x=\frac{k}{n} \\
& =\left(\frac{e n}{k}\right)^{k}, &
\end{array}
$$

which is what we needed.

[^3]
2.2 Estimating the binomial coefficient $\binom{2 n}{n}$

Note that for all integers n and k such that $n \geq k \geq 1$, we have that

$$
\binom{n}{k}=\binom{n}{k-1} \cdot \frac{n-k+1}{k} .
$$

This implies that ${ }^{6}$ for even n, we have that

$$
\binom{n}{0}<\binom{n}{1}<\ldots<\binom{n}{n / 2}>\ldots>\binom{n}{n-1}>\binom{n}{n},
$$

whereas for odd n, we have that

$$
\binom{n}{0}<\binom{n}{1}<\ldots<\binom{n}{\lfloor n / 2\rfloor}=\binom{n}{\lceil n / 2\rceil}>\ldots>\binom{n}{n-1}>\binom{n}{n} .
$$

In particular, $\binom{n}{\lfloor n / 2\rfloor}=\binom{n}{[n / 2\rceil}$ is maximum among the binomial coefficients $\binom{n}{0},\binom{n}{1}, \ldots,\binom{n}{n}$. For this reason, it is of particular interest to find good estimates for the behavior of binomial coefficients of the form $\binom{n}{\lfloor n / 2\rfloor}$.
Theorem 2.4. For all integers $m \geq 1$, we have that

$$
\frac{2^{2 m}}{2 \sqrt{m}} \leq\binom{ 2 m}{m} \leq \frac{2^{2 m}}{\sqrt{2 m}}
$$

Proof. Fix an integer $m \geq 1$, and let

$$
P=\frac{1 \cdot 3 \cdot 5 \cdots \cdot(2 m-1)}{2 \cdot 4 \cdot 6 \cdots \cdot(2 m)}
$$

Then

$$
\begin{aligned}
P & =\frac{1 \cdot 3 \cdot 5 \cdots \cdots(2 m-1)}{2 \cdot 4 \cdot 6 \cdots \cdot(2 m)} \\
& =\frac{1 \cdot 3 \cdot 5 \cdots \cdots \cdot(2 m-1)}{2 \cdot 4 \cdot 6 \cdots \cdot(2 m)} \cdot \frac{2 \cdot 4 \cdots \cdots(2 m)}{2 \cdot 4 \cdots \cdots(2 m)} \\
& =\frac{(2 m)!}{2^{2 m}(m!)^{2}} \\
& =\frac{1}{2^{2 m}}\binom{2 m}{m} .
\end{aligned}
$$

It now suffices to show that

$$
\frac{1}{2 \sqrt{m}} \leq P \leq \frac{1}{\sqrt{2 m}},
$$

for the result then follows immediately.
We first establish the upper bound for P. For this, we observe that

$$
\begin{aligned}
1 & \geq\left(1-\frac{1}{2^{2}}\right)\left(1-\frac{1}{4^{2}}\right) \cdots\left(1-\frac{1}{(2 m)^{2}}\right) \\
& =\frac{2^{2}-1}{2^{2}} \cdot \frac{4^{2}-1}{4^{2}} \cdots \cdots \frac{(2 m)^{2}-1}{(2 m)^{2}} \\
& =\frac{1 \cdot 3}{2^{2}} \cdot \frac{3 \cdot 5}{4^{2}} \cdots \cdot \frac{(2 m-1)(2 m+1)}{(2 m)^{2}} \\
& =(2 m+1) P^{2},
\end{aligned}
$$

[^4]and consequently, $P^{2} \leq \frac{1}{2 m+1}$, which in turn implies that
$$
P \leq \frac{1}{\sqrt{2 m+1}} \leq \frac{1}{\sqrt{2 m}}
$$
which is what we needed.
It remains to establish our lower bound for P. The proof is similar as for the upper bound. We observe the following:
\[

$$
\begin{aligned}
1 & \geq\left(1-\frac{1}{3^{2}}\right)\left(1-\frac{1}{5^{2}}\right) \cdots\left(1-\frac{1}{(2 m-1)^{2}}\right) \\
& =\frac{3^{2}-1}{3^{2}} \cdot \frac{5^{2}-1}{5^{2}} \cdots \cdots \frac{(2 m-1)^{2}-1}{(2 m-1)^{2}} \\
& =\frac{2 \cdot 4}{3^{2}} \cdot \frac{4 \cdot 6}{5^{2}} \cdots \cdot \frac{(2 m-2)(2 m)}{(2 m-1)^{2}} \\
& =\frac{1}{2(2 m) P^{2}},
\end{aligned}
$$
\]

which implies that

$$
P \geq \frac{1}{2 \sqrt{m}}
$$

which is what we needed. This completes the argument.
Finally, we note that using Stirling's formula (which we stated without proof), we can obtain an even better approximation of $\binom{2 m}{m}$, as follows:

$$
\lim _{m \rightarrow \infty}\left(\left(\frac{2^{2 m}}{\sqrt{\pi m}}\right) /\binom{(2 m}{m}\right)=1
$$

So, for very large values of m, the function $g(m)=\frac{2^{2 m}}{\sqrt{\pi m}}$ is a good approximation of $\binom{2 m}{m}$.

[^0]: ${ }^{1}$ Recall that for all real numbers r, we have that $r^{0}=1$. In particular, $0^{0}=1$.

[^1]: ${ }^{2}$ As you saw in Analysis, the sequence $\left\{\left(1+\frac{1}{n}\right)^{n}\right\}_{n=1}^{\infty}$ is strictly increasing and bounded above, and so by the Monotone Sequence Theorem, it converges. The constant e is defined as the limit of this sequence, i.e. $e:=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$, and the inequality follows.

[^2]: ${ }^{3}$ Indeed, there are $n(n-1) \ldots(n-k+1)$ sequences of k different elements of an n-element set: there are n ways to select the first element, $n-1$ ways to select the second element, ..., and $n-k+1$ ways to select the k-th element. Since every k-element set can be ordered in k ! ways, there are exactly $\frac{n(n-1) \ldots(n-k+1)}{k!}=\binom{n}{k}$ many k-element subsets of an n-element set.
 ${ }^{4}$ In fact, the inequality from Proposition 2.3 is stronger than the upper bound from Theorem 2.1.

[^3]: ${ }^{5}$ Indeed, this is equivalent to $(n-i) k \geq n(k-i)$, which is in turn equivalent to $n i \geq k i$, which is true since $n \geq k$ and $i \geq 0$.

[^4]: ${ }^{6}$ Check this!

