NDMI011: Combinatorics and Graph Theory 1 HW\#10

Irena Penev

Winter 2020/2021
due Monday, January 4, 2021 before midnight (Prague time)

Remark: Please e-mail me (ipenev@iuuk.mff.cuni.cz) your HW as a PDF attachment (no other format will be accepted).

Problem 1 (50 points). Using Ramsey numbers, show that for all $k \in \mathbb{N}$, there exists some $N \in \mathbb{N}$, such that for all $n \in \mathbb{N}$ with $n \geq N$, every n-term sequence of real numbers contains a k-term subsequence that is either strictly increasing or strictly decreasing or constant.

Problem 2 (50 points). Let $n, t \in \mathbb{N}$, with $t \geq 2$. Prove that any n-vertex graph that does not contain the complete bipartite graph $K_{2, t}$ as a subgraph has at most $\frac{1}{2}\left(n+n^{3 / 2} \sqrt{t-1}\right)$ edges.

Hint: Imitate the proof of Theorem 2.1 from Lecture Notes 12. (Note that $C_{4}=K_{2,2}$.) If you define M the same way as in that proof, you should get a different upper bound for $|M|$. Now work with that upper bound.

