NDMI011: Combinatorics and Graph Theory 1 HW\#9

Irena Penev

Winter 2020/2021
due Monday, December 14, 2020 before midnight (Prague time)

Remark: Please e-mail me (ipenev@iuuk.mff.cuni.cz) your HW as a PDF attachment (no other format will be accepted).

Problem 1 (30 points). Let k and ℓ be positive integers. Using the definition of Ramsey numbers, prove that $R(k, \ell)=R(\ell, k)$.

Problem 2 (70 points). Let n be a non-negative integer, and let X be an n-element set. A half-antichain in $(\mathscr{P}(X), \subseteq)$ is a set \mathcal{A} of subsets of X such that there do not exist sets $A_{1}, A_{2}, A_{3} \in \mathcal{A}$ such that $A_{1} \varsubsetneqq A_{2} \varsubsetneqq A_{3}$.
(a) [40 points] Prove that any half-antichain in $(\mathscr{P}(X), \subseteq)$ has at most $2\binom{n}{\lfloor n / 2\rfloor}$ elements.

Hint: Imitate the proof of Sperner's theorem. You may use the statements of Claims 1 and 2 from the proof of Sperner's theorem without (re)proving them.
(b) [30 points] Prove that if n is odd, then there is a half-antichain in $(\mathscr{P}(X), \subseteq)$ that has precisely $2\binom{n}{\lfloor n / 2\rfloor}$ elements.

