NDMI011: Combinatorics and Graph Theory 1 HW\#8

Irena Penev

Winter 2020/2021

due Monday, December 7, 2020 before midnight (Prague time)

Remark: Please e-mail me (ipenev@iuuk.mff.cuni.cz) your HW as a PDF attachment (no other format will be accepted).

Problem 1 (20 points).
(a) [10 points] Find the Prüfer code of the tree below.

(b) [10 points] Find the tree on the vertex set $\{1, \ldots, 7\}$, whose Prüfer code is $3,3,7,4,3$.

A bridge in a graph G is an edge $e \in E(G)$ such that $G \backslash e$ has more components than G. Note that a graph is 2-edge-connected if and only if it has at least two vertices, is connected, and does not contain a bridge. ${ }^{1}$

Problem 2. [30 points] Let G be a connected graph on at least two vertices. Prove that G is 2-edge-connected if and only if every edge of G belongs to a cycle of G.

[^0]Recall that a path addition to a graph H is the addition to H of a path between two distinct vertices of H in such a way that no internal vertex and no edge of the path belongs to H. Similarly, a cycle addition to a graph H is the addition to H of a cycle such that exactly one vertex and no edge of the cycle belongs to H.

Problem 3 (50 points). Prove that a graph G is 2-edge-connected if and only if it either is a cycle or can be obtained from a cycle by a sequence of path and cycle additions.

Hint: Imitate the proof of the Ear Lemma from Lecture Notes 9. You may use the statement of Problem 2 even if you did not prove it.

[^0]: ${ }^{1}$ Depending on how you write up your solutions of the next two problems, you may or may not want to refer to this characterization of 2-connected graphs. (Note that the characterization is immediate from the definition.)

