NDMI011: Combinatorics and Graph Theory 1 HW\#4

Irena Penev

Winter 2020/2021
due Monday, November 2, 2020 before midnight (Prague time)

Remark: Please e-mail me (ipenev@iuuk.mff.cuni.cz) your HW as a PDF attachment (no other format will be accepted).

Problem 1 (60 points). Let $n \geq 2$ be an integer, and let (X, \mathcal{P}) be a set system ${ }^{1}$ such that $|X|=|\mathcal{P}|=n^{2}+n+1$. Assume that $|P|=n+1$ for all $P \in \mathcal{P}$, and assume furthermore that all distinct $P_{1}, P_{2} \in \mathcal{P}$ satisfy $\left|P_{1} \cap P_{2}\right| \leq 1$. In what follows, we refer to the elements of X as points and to the elements of \mathcal{P} as lines.
(a) [12 points] Prove that for all distinct points $x_{1}, x_{2} \in X$, there exists a unique line $P \in \mathcal{P}$ such that $x_{1}, x_{2} \in P$.

Hint: Uniqueness should be easy (details?). For existence, start by noticing that for each line P, there are $\binom{n+1}{2}$ unordered pairs of distinct points of P. And how many unordered pairs of distinct points of X are there? Now what?
(b) [12 points] Prove that each point is contained in at most $n+1$ lines.

Hint: Show that otherwise, you get "too many" points in X.
(c) [12 points] Prove that each point is contained in precisely $n+1$ lines.

Hint: Consider the incidence graph of the set system (X, \mathcal{P}), and then count the number of edges in two ways: first using the degrees of points, and then using the degrees of lines. Use part (b).

[^0](d) [12 points] Prove that every two lines in \mathcal{P} intersect, that is, prove that for all $P_{1}, P_{2} \in \mathcal{P}$, we have that $P_{1} \cap P_{2} \neq \emptyset$.

Hint: Fix an arbitrary line $P \in \mathcal{P}$. How many lines is it intersected by? (You should use one of the previous parts here.)
(e) [12 points] Prove that (X, \mathcal{P}) is a finite projective plane of order n.

Hint: You might want to use one of the problems from HW\#3, plus the previous parts.

In each part, you may use the statements of all the preceding parts even if you did not prove them.

Problem 2 (40 points). Let X be the set of points and \mathcal{P} the set of lines constructed in the proof of Theorem 2.3 from Lecture Notes 5. Using Problem 1 (or in some other way), show that (X, \mathcal{P}) is indeed a finite projective plane of order n. Make sure you carefully indicate where you are using the fact that L_{1}, \ldots, L_{n-1} are Latin squares, and where you are using orthogonality.

[^0]: ${ }^{1}$ So, X is a set and $\mathcal{P} \subseteq \mathscr{P}(X)$, where $\mathscr{P}(X)$ is the power set (i.e. the set of all subsets) of X.

