NDMI011: Combinatorics and Graph Theory 1 HW\#3

Irena Penev

Winter 2020/2021
due Monday, October 26, 2020 before midnight (Prague time)

Remark: Please e-mail me (ipenev@iuuk.mff.cuni.cz) your HW as a PDF attachment (no other format will be accepted).

Problem 1 (30 points). Let $n \geq 4$ be an integer, and let $X=\{0,1, \ldots, n\}$. Construct a set $\mathcal{P} \subseteq \mathscr{P}(X)$ such that

- (X, \mathcal{P}) satisfies (P1) and (P2) from the definition of a finite projective plane,
- (X, \mathcal{P}) does not satisfy (P0) from the definition of a finite projective plane, and
- every $P \in \mathcal{P}$ satisfies $|P| \geq 2$.

Make sure you prove that your set system (X, \mathcal{P}) has the desired properties.

Problem 2 (35 points). Let (X, \mathcal{P}) be a set system such that X is finite, and all the following are satisfied: ${ }^{1}$
(P0') there exist distinct $P_{1}, P_{2} \in \mathcal{P}$ such that $\left|P_{1}\right|,\left|P_{2}\right| \geq 3$;
(P1) all distinct $P_{1}, P_{2} \in \mathcal{P}$ satisfy $\left|P_{1} \cap P_{2}\right|=1$;
(P2) for all distinct $x_{1}, x_{2} \in X$, there exists a unique $P \in \mathcal{P}$ such that $x_{1}, x_{2} \in P$.

Prove that (X, \mathcal{P}) is a finite projective plane.

[^0]Problem 3 (35 points). Prove Theorem 1.4(c) from Lecture Notes 4 directly, i.e. without using duality. The theorem is stated below, for your reference. (You may use parts (a) and/or (b) of Theorem 1.4 if you find them useful.)

Theorem 1.4 from Lecture Notes 4. Let (X, \mathcal{P}) be a finite projective plane of order n. Then all the following hold:
(a) for each point $x \in X$, exactly $n+1$ lines in \mathcal{P} pass through x;
(b) $|X|=n^{2}+n+1$;
(c) $|\mathcal{P}|=n^{2}+n+1$.

[^0]: ${ }^{1}$ Note that (P1) and (P2) are exactly as in the definition of a finite projective plane, but we have (P0') instead of (P0).

