NDMI011: Combinatorics and Graph Theory 1 HW#3

Irena Penev Winter 2020/2021

due Monday, October 26, 2020 before midnight (Prague time)

Remark: Please e-mail me (ipenev@iuuk.mff.cuni.cz) your HW as a **PDF attachment** (no other format will be accepted).

Problem 1 (30 points). Let $n \ge 4$ be an integer, and let $X = \{0, 1, ..., n\}$. Construct a set $\mathcal{P} \subseteq \mathscr{P}(X)$ such that

- (X, \mathcal{P}) satisfies (P1) and (P2) from the definition of a finite projective plane,
- (X, P) does **not** satisfy (P0) from the definition of a finite projective plane, and
- every $P \in \mathcal{P}$ satisfies $|P| \geq 2$.

Make sure you prove that your set system (X, \mathcal{P}) has the desired properties.

Problem 2 (35 points). Let (X, \mathcal{P}) be a set system such that X is finite, and all the following are satisfied:¹

- (P0') there exist distinct $P_1, P_2 \in \mathcal{P}$ such that $|P_1|, |P_2| \geq 3$;
- (P1) all distinct $P_1, P_2 \in \mathcal{P}$ satisfy $|P_1 \cap P_2| = 1$;
- (P2) for all distinct $x_1, x_2 \in X$, there exists a unique $P \in \mathcal{P}$ such that $x_1, x_2 \in P$.

Prove that (X, \mathcal{P}) is a finite projective plane.

¹Note that (P1) and (P2) are exactly as in the definition of a finite projective plane, but we have (P0') instead of (P0).

Problem 3 (35 points). Prove Theorem 1.4(c) from Lecture Notes 4 directly, *i.e. without* using duality. The theorem is stated below, for your reference. (You may use parts (a) and/or (b) of Theorem 1.4 if you find them useful.)

Theorem 1.4 from Lecture Notes 4. Let (X, \mathcal{P}) be a finite projective plane of order n. Then all the following hold:

- (a) for each point $x \in X$, exactly n + 1 lines in \mathcal{P} pass through x;
- (b) $|X| = n^2 + n + 1;$
- (c) $|\mathcal{P}| = n^2 + n + 1.$