NDMI011: Combinatorics and Graph Theory 1 HW\#1

Irena Penev

Winter 2020/2021
due Monday, October 12, 2020 before midnight (Prague time)

Remark: Please e-mail me (ipenev@iuuk.mff.cuni.cz) your HW as a PDF attachment (no other format will be accepted).

Problem 1 (100 points). Use generating functions ${ }^{1}$ to find a closed formula of the general term of the following recursively defined sequences.
(a) The sequence $\left\{a_{n}\right\}_{n=0}^{\infty}$ defined recursively as follows:

- $a_{0}=2, a_{1}=3$;
- $a_{n+2}=3 a_{n}-2 a_{n+1}$ for all integers $n \geq 0$.
(b) The sequence $\left\{b_{n}\right\}_{n=0}^{\infty}$ defined recursively as follows:
- $b_{0}=1$;
- $b_{n+1}=3 b_{n}+2^{n+1}$ for all integers $n \geq 0$.
(c) The sequence $\left\{c_{n}\right\}_{n=0}^{\infty}$ defined recursively as follows:
- $c_{0}=1, c_{1}=4$;
- $c_{n+2}=-4 c_{n}+4 c_{n+1}$ for all integers $n \geq 0$.
(d) The sequence $\left\{d_{n}\right\}_{n=0}^{\infty}$ defined recursively as follows:
- $d_{0}=1$;
- $d_{n+1}=d_{n}+n+1$ for all integers $n \geq 0$.

Hint for (d): What do you get when you expand $\frac{1}{(1+x)^{2}}$ and $\frac{1}{(1-x)^{2}}$ as power series? You'll probably need to recognize one of these at some point in your calculation.

[^0]
[^0]: ${ }^{1}$ Yes, this can be done in other ways as well. However, you are specifically asked to use generating functions.

