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Abstract

An ISK4 in a graph G is an induced subgraph of G that is iso-
morphic to a subdivision of K4 (the complete graph on four vertices).
A wheel is a graph that consists of a chordless cycle, together with
a vertex that has at least three neighbors in the cycle. A graph is
{ISK4,wheel}-free if it has no ISK4 and does not contain a wheel
as an induced subgraph. We give an O(|V (G)|7)-time algorithm to
compute the maximum weight of a stable set in an input weighted
{ISK4,wheel}-free graph G with non-negative integer weights.

1 Introduction

All graphs in this paper are finite and simple. An ISK4 in a graph G is
an induced subgraph of G that is isomorphic to a subdivision of K4 (the
complete graph on four vertices). An ISK4-free graph is a graph G that
contains no ISK4 (that is, no induced subgraph of G is isomorphic to a
subdivision of K4). The class of ISK4-free graphs contains all series-parallel
graphs, and also all line graphs of graphs of maximum degree at most three.
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Lévêque, Maffray, and Trotignon [12] proved a decomposition theorem
for ISK4-free graphs, but gave no algorithmic applications. In particular,
no polynomial-time algorithms and no hardness proofs are known for the
following problems in the class of ISK4-free graphs: recognition, maximum
stable set, and coloring. (Finding a maximum clique in an ISK4-free graph
is of course trivial because every clique in such a graph is of size at most
three.)

A wheel is a graph that consists of a chordless cycle, together with a
vertex (called the center of the wheel) that has at least three neighbors
in the cycle. A graph is wheel-free if none of its induced subgraphs is a
wheel. Wheel-free graphs have a number of structural properties (see for
instance [1, 2, 8]). However, the maximum stable set problem is easily seen
to remain NP-hard even when restricted to the class of wheel-free graphs.
To see this, denote by α(G) the stability number (i.e., the maximum size
of a stable set) of a graph G, and consider the operation of subdividing
every edge of G twice. This yields a graph G′ that is wheel-free (because
every vertex of degree at least three in G′ has only neighbors of degree two,
and so it cannot be the center of a wheel). As observed by Poljak [14],
α(G′) = α(G) + |E(G)|, and so computing the stability number of a wheel-
free graph is as hard as computing it in a general graph.

A graph is {ISK4,wheel}-free if it is ISK4-free and wheel-free. In [12], a
decomposition theorem is given for {ISK4,wheel}-free graphs. (This theorem
was obtained as a corollary of the decomposition theorem for ISK4-free
graphs from [12].) The theorem for {ISK4,wheel}-free graphs is stronger
than the one for ISK4-free graphs in the sense that the former theorem can
be used to solve the recognition and the coloring problems for {ISK4,wheel}-
free graphs in polynomial time. However, no other algorithmic application
has previously been reported.

In this paper, we investigate the maximum weight stable set problem re-
stricted to {ISK4,wheel}-free graphs. Let us be precise. First, by a weighted
graph, we mean an ordered pair (G,w), where G is a graph and w is a func-
tion (called a weight function for G) that assigns to each vertex v of G a
non-negative integer weight w(v). The weight of a set of vertices is the sum
of the weights of its elements. The stability number of a weighted graph
(G,w), denoted by α(G,w), is the maximum weight of a stable set of G,
and a maximum weighted stable set of (G,w) is a stable set whose weight
is precisely α(G,w). (If (G,w) is a weighted graph and H is an induced
subgraph of G, then we will also write α(H,w) for the stability number of
the weighted graph (H,w′) where w′ is the restriction of w to V (H).) The
maximum weight stable set problem for a given class G of graphs is the prob-
lem of finding a maximum weight stable set in a given weighted graph (G,w)
such that G ∈ G. A hereditary class is a class of graphs that is closed under
isomorphism and induced subgraphs (clearly, the class of {ISK4,wheel}-free
graphs is a hereditary class). The following is well-known.
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Proposition 1.1 (folklore). Let G be a hereditary class. Suppose that A
is an algorithm that computes the stability number of any weighted graph
(G,w) such that G ∈ G in O(|V (G)|k) time. Then there is an algorithm B
that computes a maximum weight stable set of any graph (G,w) such that
G ∈ G in O(|V (G)|max{k+1,3}) time.

Proof. Let (G,w) be an input graph with G ∈ G, and set n = |V (G)|. If
G is the null graph, then the algorithm returns ∅ and stops. Otherwise,
we choose a vertex v ∈ V (G), we compute the graph G r N [v] in O(n2)
time (where N [v] is the set consisting of v and all its neighbors in G), and
using the algorithm A, we compute α(G,w) and α(G r N [v], w) in O(nk)
time. Clearly, w(v) +α(GrN [v], w) ≤ α(G,w). If w(v) +α(GrN [v], w) =
α(G,w), then we recursively compute a maximum weight stable set S of
(G rN [v], w), and the algorithm returns {v} ∪ S and stops. On the other
hand, if w(v) + α(G r N [v], w) < α(G,w), then we see that no maximum
weight stable set of (G,w) contains v. In this case, we compute G r v
in O(n2) time, we recursively compute a maximum weight stable set S of
(Gr v, w), and the algorithm returns S and stops.

It is clear that the algorithm is correct. We make O(n) recursive calls to
the algorithm, and it follows that the total running time of the algorithm is
O(nmax{k+1,3}).

In view of Proposition 1.1, from now on, we focus on constructing a
polynomial-time algorithm that computes the stability number of weighted
{ISK4,wheel}-free graphs.

The decomposition theorem for {ISK4,wheel}-free graphs from [12] states
(roughly) that every such graph is either “basic” or admits a “decomposi-
tion” (that is, a way to break it up into smaller pieces). The basic classes
are all fairly easy to handle and the main difficulty is posed by the decom-
positions. One of the decompositions, namely the clique-cutset (that is, a
clique whose deletion yields a disconnected graph), is easy to handle, but
the other one is not: the “proper 2-cutset.” A proper 2-cutset of a graph G
is a pair of non-adjacent vertices, say a and b, such that V (G) r {a, b} can
be partitioned into two non-empty sets X and Y so that there is no edge
between X and Y , and neither G[X ∪ {a, b}] nor G[Y ∪ {a, b}] is a path
between a and b.

The problem with a proper 2-cutset {a, b} of a graph G is that a maxi-
mum stable set of G may contain a (but not b), or b (but not a), or neither
a nor b, or both a and b. This phenomenon also occurs in any induced
subgraph of G that contains a and b, and in particular in any reasonable
subgraph built for the purposes of a recursive algorithm. So, any naive at-
tempt to build an algorithm for the maximum stable set problem relying
on proper 2-cutsets should lead one to consider an exponential number of
cases. In fact, the situation is even worse for proper 2-cutsets as shown by
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a hardness result that we explain now. Let G be a graph. A 2-extension
of G is any graph obtained from G by first deleting a vertex v of degree
two, with non-adjacent neighbors a and b, then adding four vertices of de-
gree two forming a path a − x1 − x2 − x3 − x4 − b, and finally adding a
vertex x adjacent to x1, x2, x3 and x4. An extended bipartite graph is any
graph obtained from a bipartite graph by repeatedly applying 2-extensions.
Trivially, extended bipartite graphs have a decomposition theorem: if G
is an extended bipartite graph, then either G is bipartite, or G was ob-
tained from an even cycle by performing exactly one 2-extension, or G has
a proper 2-cutset. It is well-known that one can find the stability number of
a (weighted) bipartite graph in polynomial time (see for instance [9]). It is
also clear that the stability number of a (weighted) graph obtained from an
even cycle by performing exactly one 2-extension can be found in polyno-
mial time (indeed, if G is obtained from an even cycle by performing exactly
one 2-extension, and x, x1, x2, x3, x4 are as in the definition of a 2-extension,
then every stable set of G is also a stable set of at least one of Gr {x2, x3},
Gr{x, x1}, and Gr{x, x2}, and each of these three induced subgraphs of G
is either a path or an even cycle, and is therefore bipartite). So, if proper 2-
cutsets were a good tool for solving the maximum stable set problem, there
should be a polynomial-time algorithm for solving this problem in extended
bipartite graphs. However, it was shown in [17] that the maximum stable
set problem is NP-hard when restricted to extended bipartite graphs. The
result is stated differently in [17], and so we reproduce it here for the sake
of completeness.

Proposition 1.2. The problem of computing the stability number of an
input extended bipartite graph is NP-hard.

Proof. Suppose there is a polynomial-time algorithm A for our problem.
We prove the theorem by using A as a subroutine to solve the problem of
computing the stability number of a general graph G in polynomial time.
First build B by subdividing every edge of G once. Let X be the set of
vertices of degree two in B that arise from the subdivisions. Note that B is
bipartite, and (X,V (B) r X) is a bipartition of B. Now build a graph H
from B by applying a 2-extension to every vertex of X. By construction,
H is an extended bipartite graph, and it is easy to check that α(H) =
α(G)+2|E(G)|. Thus, A indeed allows one to compute the stability number
of a general graph in polynomial time.

Despite this negative result, we can use (a variant of) a proper 2-cutset
in the special case of {ISK4,wheel}-free graphs, mainly because the basic
classes are very restricted. We rely on what is called a “trigraph,” which
is a graph where some edges are left “undecided” (the notion is from [6,
7], and formal definitions are given in Section 2). The idea is as follows.
When G is a graph, a and b are non-adjacent vertices of G whose deletion
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yields a disconnected graph, and V (G)r{a, b} is partitioned into non-empty
sets X and Y such that there are no edges between X and Y , we build a
(tri)graph on the vertex set X ∪ {a, b}by keeping the edges of G, and by
leaving the adjacency between a and b undecided. We give weights to a and
b, and we also give weights specific to the pair {a, b}. Roughly speaking, the
weights associated with the vertices a and b and the pair {a, b} “encode”
the maximum weight of a stable set in graphs G[Y ], G[Y ∪{a}], G[Y ∪{b}],
and G[Y ∪ {a, b}]. We therefore need weights, undecided adjacencies, and
a way to handle the notion of the weight of a stable set in this context.
All this is captured in the notion of weighted trigraph (we postpone the
formal definition to Section 3). We remark that a similar idea was previously
used in [16] in the context of bull-free graphs. However, the definition of a
weighted trigraph was simpler in [16] than in the present paper, as was the
definition of the weight of a stable set in a weighted trigraph. The reason for
this is that the decompositions that appear in the context of bull-free graphs
are more convenient than proper 2-cutsets for the purposes of computing the
stability number.

We complete the introduction by giving an outline of the paper. In
Section 2, we define trigraphs and introduce some basic trigraph-related
terminology that we need. In Section 3, we define weighted trigraphs, ex-
plain how to compute the weight of a set of vertices in a weighted trigraph,
and prove several results about weighted stable sets in weighted trigraphs.
These properties are more complicated than one might expect because of
the weights associated with the undecided adjacencies. Because of these
weights, the weight of a set is not a monotone function (one could increase
the weight of a set by taking a subset). For this reason, all proofs need to
be written very carefully. In Section 4, we state a decomposition theorem
for {ISK4,wheel}-free trigraphs (see Theorem 4.1). Since the proof of this
theorem is very similar to that of the decomposition theorem for ISK4-free
graphs from [12], we omit the proof of Theorem 4.1 in the present paper.
The interested reader can find a detailed proof in [13]. Interestingly, the fact
that our theorem concerns trigraphs rather than graphs does not substan-
tially complicate the proof, even though our theorem is formally stronger
than the corresponding one for graphs. On the other hand, the fact that
we restrict our attention to the wheel-free case significantly simplifies our
proof. We complete Section 4 by using Theorem 4.1 to prove an “extreme”
decomposition theorem for {ISK4,wheel}-free trigraphs (see Theorem 4.8
and Corollary 4.9). Roughly speaking, our extreme decomposition theorem
states that every {ISK4,wheel}-free trigraph is either basic or admits a de-
composition such that one block of decomposition is basic. In Section 5, we
give a transformation from a weighted trigraph to a weighted graph that
preserves the stability number. In Section 6, we use this transformation
to compute the stability number in our basic trigraphs. Again, the proofs
have to be done carefully, because as proven at the very end of the pa-
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per (see Theorem 8.1), it is NP-hard to compute the stability number of
weighted bipartite trigraphs, and so one should be suspicious of “simple”
classes of trigraphs in our context. In Section 7, we prove our main techni-
cal result: there is an O(|V (G)|7)-time algorithm to compute the stability
number of an input weighted {ISK4,wheel}-free trigraph (G,w) (see Theo-
rem 7.1). Since every weighted {ISK4,wheel}-free graph can be seen as a
weighted {ISK4,wheel}-free trigraph, the algorithm from Theorem 7.1 can
also be applied to {ISK4,wheel}-free graphs. Together with Proposition 1.1,
this yields an O(|V (G)|8)-time algorithm that finds a maximum weight sta-
ble set of an input weighted {ISK4,wheel}-free graph (see Corollary 7.2). In
Section 8, we prove the above-mentioned Theorem 8.1, which states that it
is NP-hard to compute the stability number of a weighted bipartite trigraph.

2 Trigraphs

Given a set S, we denote by
(
S
2

)
the set of all subsets of S of size two.

A trigraph is an ordered pair G = (V (G), θG), where V (G) is a finite set,
called the vertex set of G (members of V (G) are called vertices of G), and
θG :

(
V (G)
2

)
→ {−1, 0, 1} is a function, called the adjacency function of

G. The null trigraph is the trigraph whose vertex set is empty; a non-null
trigraph is any trigraph whose vertex set is non-empty. If G is a trigraph
and u, v ∈ V (G) are distinct, we usually write uv instead of {u, v} (note
that this means that uv = vu), and furthermore:

• if θG(uv) = 1, we say that uv is a strongly adjacent pair of G, or that
u and v are strongly adjacent in G, or that u is strongly adjacent to v
in G, or that v is a strong neighbor of u in G, or that u and v are the
endpoints of a strongly adjacent pair of G;

• if θG(uv) = 0, we say that uv is a semi-adjacent pair of G, or that u
and v are semi-adjacent in G, or that u is semi-adjacent to v in G, or
that v is a weak neighbor of u in G, or that u and v are the endpoints
of a semi-adjacent pair of G;

• if θG(uv) = −1, we say that uv is a strongly anti-adjacent pair of G,
or that u and v are strongly anti-adjacent in G, or that u is strongly
anti-adjacent to v in G, or that v is a strong anti-neighbor of u in G,
or that u and v are the endpoints of a strongly anti-adjacent pair of G;

• if θG(uv) ≥ 0, we say that uv is an adjacent pair of G, or that u and
v are adjacent in G, or that u is adjacent to v in G, or that v is a
neighbor of u in G, or that u and v are the endpoints of an adjacent
pair of G;

• if θG(uv) ≤ 0, we say that uv is an anti-adjacent pair of G, or that u
and v are anti-adjacent in G, or that u is anti-adjacent to v in G, or
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that v is an anti-neighbor of u in G, or that u and v are the endpoints
of an anti-adjacent pair of G.

Note that a semi-adjacent pair is simultaneously an adjacent pair and an
anti-adjacent pair. One can think of strongly adjacent pairs as “edges,”
of strongly anti-adjacent pairs as “non-edges,” and of semi-adjacent pairs
as “optional edges.” Clearly, any graph can be thought of as a trigraph: a
graph is simply a trigraph with no semi-adjacent pairs, that is, the adjacency
function of a graph G is a mapping from

(
V (G)
2

)
to the set {−1, 1}.

Given a trigraph G, a vertex u ∈ V (G), and a setX ⊆ V (G)r{u}, we say
that u is complete (respectively: strongly complete, anti-complete, strongly
anti-complete) to X in G provided that u is adjacent (respectively: strongly
adjacent, anti-adjacent, strongly anti-adjacent) to every vertex of X in G.
Given a trigraph G and disjoint sets X,Y ⊆ V (G), we say that X is complete
(respectively: strongly complete, anti-complete, strongly anti-complete) to
Y in G provided that every vertex of X is complete (respectively: strongly
complete, anti-complete, strongly anti-complete) to Y in G.

Isomorphism between trigraphs is defined in the natural way. The com-
plement of a trigraph G = (V (G), θG) is the trigraph G = (V (G), θG) such
that V (G) = V (G) and θG = −θG. Thus, G is obtained from G by turn-
ing all strongly adjacent pairs of G into strongly anti-adjacent pairs, and
turning all strongly anti-adjacent pairs of G into strongly adjacent pairs;
semi-adjacent pairs of G remain semi-adjacent in G.

Given trigraphs G and G̃, we say that G̃ is a semi-realization of G pro-
vided that V (G̃) = V (G) and for all distinct u, v ∈ V (G̃) = V (G), we have
that if θG(uv) = 1 then θ

G̃
(uv) = 1, and if θG(uv) = −1 then θ

G̃
(uv) = −1.

Thus, a semi-realization of a trigraph G is any trigraph that can be ob-
tained from G by “deciding” the adjacency of some semi-adjacent pairs of
G, that is, by possibly turning some semi-adjacent pairs of G into strongly
adjacent or strongly anti-adjacent pairs. (In particular, every trigraph is a
semi-realization of itself.) A realization of a trigraph G is a graph that is
a semi-realization of G. Thus, a realization of a trigraph G is any graph
that can be obtained by “deciding” the adjacency of all semi-adjacent pairs
of G, that is, by turning each semi-adjacent pair of G into an edge or a
non-edge. Clearly, if a trigraph G has m semi-adjacent pairs, then G has
3m semi-realizations and 2m realizations. The full realization of a trigraph
G is the graph obtained from G by turning all semi-adjacent pairs of G
into strongly adjacent pairs (i.e., edges), and the null realization of G is the
graph obtained from G by turning all semi-adjacent pairs of G into strongly
anti-adjacent pairs (i.e., non-edges).

A clique (respectively: strong clique, stable set, strongly stable set) of
a trigraph G is a set of pairwise adjacent (respectively: strongly adjacent,
anti-adjacent, strongly anti-adjacent) vertices of G. Note that any subset of
V (G) of size at most one is both a strong clique and a strongly stable set
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of G. Note also that if S ⊆ V (G), then S is a (strong) clique of G if and
only if S is a (strongly) stable set of G. Note furthermore that if K is a
strong clique and S is a stable set of G, then |K ∩ S| ≤ 1; similarly, if K
is a clique and S is a strongly stable set of G, then |K ∩ S| ≤ 1. However,
if K is a clique and S is a stable set of G, then we are only guaranteed
that vertices in K ∩ S are pairwise semi-adjacent to each other, and it is
possible that |K ∩ S| ≥ 2. A triangle (respectively: strong triangle) is a
clique (respectively: strong clique) of size three.

Given a trigraph G and a set X ⊆ V (G), the subtrigraph of G induced
by X, denoted by G[X], is the trigraph with vertex set X and adjacency
function θG �

(
X
2

)
, where for a function f : A → B and a set A′ ⊆ A, we

denote by f � A′ the restriction of f to A′. If H = G[X] for some X ⊆ V (G),
we also say that H is an induced subtrigraph of G; when convenient, we
relax this definition and say that H is an induced subtrigraph of G provided
that there is some set X ⊆ V (G) such that H is isomorphic to G[X]. If
v1, . . . , vk are vertices of a trigraph G, we often write G[v1, . . . , vk] instead
of G[{v1, . . . , vk}]. Further, for a trigraph G and a set X ⊆ V (G), we set
G r X = G[V (G) r X]; for v ∈ V (G), we often write G r v instead of
Gr {v}. The trigraph GrX (respectively: Gr v) is called the subtrigraph
of G obtained by deleting X (respectively: by deleting v).

If H is a graph, we say that a trigraph G is an H-trigraph if some
realization of G is (isomorphic to) H. Further, if H is a graph and G a
trigraph, we say that G is H-free provided that all realizations of G are
H-free (equivalently: provided that no induced subtrigraph of G is an H-
trigraph). If H is a family of graphs, we say that a trigraph G is H-free
provided that G is H-free for all graphs H ∈ H. In particular, a trigraph is
ISK4-free (respectively: wheel-free, {ISK4,wheel}-free) if all its realizations
are ISK4-free (respectively: wheel-free, {ISK4,wheel}-free).

A trigraph is connected if its full realization is a connected graph. A
trigraph is disconnected if it is not connected. A component of a non-null
trigraph G is any (inclusion-wise) vertex-maximal connected induced sub-
trigraph of G. Clearly, if H is an induced subtrigraph of a non-null trigraph
G, then we have that H is a component of G if and only if the full realization
of H is a component of the full realization of G.

A trigraph is a path if at least one of its realizations is a path. A trigraph
is a narrow path if its full realization is a path. We often denote a path P by
v0−v1− . . .−vk (with k ≥ 0), where v0, v1, . . . , vk are the vertices of P that
appear in that order in some realization P̃ of P such that P̃ is a path. The
endpoints of a narrow path are the endpoints of its full realization; if a and
b are the endpoints of a narrow path P , then we also say that P is a narrow
path between a and b. A path (respectively: narrow path) in a trigraph G is
an induced subtrigraph P of G such that P is a path (respectively: narrow
path).
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Note that if G is a connected trigraph, then for all vertices a, b ∈ V (G),
there exists a narrow path between a and b in G. (To see this, consider the
full realization G̃ of G. G̃ is connected, and so there is a path in G̃ between
a and b; let P be a shortest such path in G̃. The minimality of P guarantees
that P is an induced path of G̃. But now G[V (P )] is a narrow path of G
between a and b.)

A hole of a trigraph G is an induced subtrigraph C of G such that some
realization of C is a chordless cycle of length at least four. We often denote
a hole C of G by v0 − v1 − . . . − vk−1 − v0 (with k ≥ 4 and indices in Zk),
where v0, v1, . . . , vk−1 are the vertices of C that appear in that order in some
realization C̃ of C such that C̃ is a chordless cycle of length at least four.

A cutset of a trigraph G is a (possibly empty) set C ⊆ V (G) such that
GrC is disconnected. A cut-partition of a trigraph G is a partition (A,B,C)
of V (G) such that A and B are non-empty (C may possibly be empty), and
A is strongly anti-complete to B. Note that if (A,B,C) is a cut-partition
of G, then C is a cutset of G. Conversely, every cutset of G induces at least
one cut-partition of G. A clique-cutset of a trigraph G is a (possibly empty)
strong clique C of G such that G r C is disconnected. A cut-vertex of a
trigraph G is a vertex v ∈ V (G) such that Gr v is disconnected. Note that
if v is a cut-vertex of G, then {v} is a clique-cutset of G. A stable 2-cutset
of a trigraph G is cutset of G that is a stable set of size two. We remark
that if C is a cutset of a trigraph G such that |C| ≤ 2, then C is either a
clique-cutset or a stable 2-cutset of G.

A graph is series-parallel if it does not contain any subdivision of K4 as
a (not necessarily induced) subgraph. A trigraph is series-parallel if its full
realization is series-parallel (equivalently: if all its realizations are series-
parallel).

A bipartite trigraph is a trigraph G whose vertex set can be partitioned
into two (possibly empty) strongly stable sets, A and B; under these cir-
cumstances, (A,B) is said to be a bipartition of the bipartite trigraph G. If,
in addition, the two strongly stable sets A and B forming a bipartition are
strongly complete to each other, G is said to be a complete bipartite trigraph.
Note that non-null complete bipartite trigraphs have precisely two biparti-
tions: if (A,B) is a bipartition of a complete bipartite trigraph G, then so
is (B,A), and G has no other bipartitions. Furthermore, note that bipartite
trigraphs may have semi-adjacent pairs, but complete bipartite trigraphs
cannot. Thus, complete bipartite trigraphs are in fact complete bipartite
graphs.

The line graph of a graph H, denoted by L(H), is the graph whose
vertices are the edges of H, and in which two vertices (i.e., edges of H) are
adjacent if they share an endpoint in H. A line trigraph of a graph H is a
trigraph G whose full realization is (isomorphic to) L(H), and all of whose
triangles are strong. A trigraph G is said to be a line trigraph provided there
is a graph H such that G is a line trigraph of H.
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3 Stable sets in weighted trigraphs

In what follows, N is the set of non-negative integers. Given a trigraph G,
we define

D(G) = V (G) ∪ {(u, v) | u, v ∈ V (G), u 6= v} ∪
(
V (G)
2

)
.

A weight function for a trigraph G is any function w : D(G) → N that
satisfies the following two properties:

• for all distinct u, v ∈ V (G), if uv is not a semi-adjacent pair of G, then
w(u, v) = w(v, u) = w(uv) = 0;

• all distinct u, v ∈ V (G) satisfy w(u, v) ≤ w(uv).

A weighted trigraph is an ordered pair (G,w) where G is a trigraph and w
is a weight function for G.

Essentially, a weight function w assigns a non-negative integer weight
w(u) to each vertex u of the trigraph G, and for each semi-adjacent
pair uv, there are three non-negative integer weights associated with
it, namely w(u, v), w(v, u), and w(uv), and these weights must satisfy
max{w(u, v), w(v, u)} ≤ w(uv). If uv is a strongly adjacent or strongly anti-
adjacent pair, then we have w(u, v) = w(v, u) = w(uv) = 0. (Zero weights
are assigned to strongly adjacent and strongly anti-adjacent pairs for the
purposes of making calculations notationally simpler, but only vertices and
semi-adjacent pairs actually “count.”)

Note that if a trigraph G is a semi-realization of a trigraph G′, then
every weight function for G is also a weight function for G′ (however, a
weight function for G′ need not be a weight function for G).

If (G,w) is a weighted trigraph, and H is an induced subtrigraph of G,
then clearly, (H,w � D(H)) is also a weighted trigraph; to simplify notation,
we often write (H,w) instead of (H,w � D(H)).

Given a weighted trigraph (G,w) and a set S ⊆ V (G), the weight of S
with respect to (G,w), denoted by JSK(G,w), is defined to be

JSK(G,w) =
( ∑

u∈S
w(u)

)
+
( ∑

u∈S

∑
v∈V (G)rS

w(u, v)
)

+
( ∑

uv∈(V (G)rS
2 )

w(uv)
)
.

Note that if (G,w) is a weighted trigraph such that G has no semi-adjacent
pairs (that is, such that G is a graph), then for all S ⊆ V (G), we have that
JSK(G,w) =

∑
u∈S

w(u). Thus, our definition of a weight of a set of vertices in

a weighted trigraph indeed generalizes the usual notion of the weight of a
set in a weighted graph.

It is easy to see that for all weighted trigraphs (G,w), all induced sub-
trigraphs H of G, and all sets S ⊆ V (H), we have that JSK(H,w) ≤ JSK(G,w).
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Strict inequality may hold because the weight of a set in a weighted trigraph
depends not only on what is in the set, but also on what is outside of it.
Furthermore, if (G,w) is a weighted trigraph and S1 $ S2 ⊆ V (G), there
is in general no relationship between JS1K(G,w) and JS2K(G,w), that is, any
one of the following is possible: JS1K(G,w) < JS2K(G,w), JS1K(G,w) = JS2K(G,w),
and JS1K(G,w) > JS2K(G,w).

The stability number of a weighted trigraph (G,w), denoted by α(G,w),
is defined to be

α(G,w) = max{JSK(G,w) | S is a stable set of G}.

A zero-vertex of a weighted trigraph (G,w) is any vertex u ∈ V (G) such
that w(u) = 0.

Proposition 3.1. Let (G,w) be a weighted trigraph, and let Z, S ⊆ V (G).
Then JSK(G,w) ≤ JS r ZK(G,w) +

∑
u∈Z

w(u).

Proof. Since w(u) ≥ 0 for all u ∈ V (G), we may assume that Z ⊆ S. Using
the definition of JSK(G,w) and JS r ZK(G,w), we obtain the following:

JSK(G,w) =
( ∑

u∈S
w(u)

)
+
( ∑

u∈S

∑
v∈V (G)rS

w(u, v)
)

+

+
( ∑

uv∈(V (G)rS
2 )

w(uv)
)

=
( ∑

u∈SrZ

w(u)
)

+
( ∑

u∈Z
w(u)

)
+

+
( ∑

u∈SrZ

∑
v∈V (G)r(SrZ)

w(u, v)
)
−
( ∑

u∈SrZ

∑
v∈Z

w(u, v)
)

+

+
( ∑

u∈Z

∑
v∈V (G)rS

w(u, v)
)

+
( ∑

uv∈(V (G)r(SrZ)
2 )

w(uv)
)
−

−
( ∑

uv∈(Z2)
w(uv)

)
−
( ∑

u∈Z

∑
v∈V (G)rS

w(uv)
)

= JS r ZK(G,w) +
( ∑

u∈Z
w(u)

)
−

(( ∑
u∈SrZ

∑
v∈Z

w(u, v)
)

+

+
( ∑

u∈Z

∑
v∈V (G)rS

(w(uv)− w(u, v))
)

+
( ∑

uv∈(Z2)
w(uv)

))
.

By the definition of a weight function, we have that w(uv) ≥ w(u, v) ≥ 0 for
all distinct u, v ∈ V (G). The calculation above now implies that JSK(G,w) ≤
JS r ZK(G,w) +

∑
u∈Z

w(u), which is what we needed.
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Proposition 3.2. For all weighted trigraphs (G,w), there exists a stable
set S of G such that S contains no zero-vertices of (G,w) and JSK(G,w) =
α(G,w).

Proof. Fix a weighted trigraph (G,w) and a stable set S of G such that
JSK(G,w) = α(G,w). Let Z be the set of all zero-vertices of G. Then S r Z
is a stable set of G that contains no zero vertices of G, and clearly, we have
that JS r ZK(G,w) ≤ α(G,w). On the other hand, Proposition 3.1 implies
that α(G,w) = JSK(G,w) ≤ JS r ZK(G,w) +

∑
u∈Z

w(u) = JS r ZK(G,w). It

follows that JS r ZK(G,w) = α(G,w), and so S r Z is the stable set that we
needed.

The next two propositions (Propositions 3.3 and 3.4) are easy conse-
quences of the appropriate definitions, and we leave their proofs as exercises
for the reader.

Proposition 3.3. Let (G,w) be a weighted trigraph, let (A,B,C) be a cut-
partition of G, and let S ⊆ V (G). Then JS ∩ (A∪C)K(G[A∪C],w) + JS ∩ (B ∪
C)K(G[B∪C],w) = JSK(G,w) + JS ∩ CK(G[C],w).

Proposition 3.4. Let (G,w) and (G′, w′) be weighted trigraphs such that
V (G) = V (G′). Let C ⊆ V (G), and assume that θG � (

(
V (G)
2

)
r
(
C
2

)
) =

θG′ � (
(
V (G)
2

)
r
(
C
2

)
) and w � (D(G) rD(G[C])) = w′ � (D(G′) rD(G′[C]))

(that is, adjacency and weights in (G,w) and (G′, w′) are the same except
possibly within C). Let S ⊆ V (G). Then JSK(G,w) − JS ∩ CK(G[C],w) =
JSK(G′,w′) − JS ∩ CK(G′[C],w′).

We now need a couple of definitions. If (G,w) is a weighted trigraph
and R ⊆ V (G), the reduction of (G,w) to R, denoted by Red[G,w;R], is
defined to be the weighted trigraph (G[R], w′), where w′ : D(G[R]) → N is
given by:

• for all u ∈ R, w′(u) = max

{
w(u)−

∑
v∈V (G)rR

(w(uv)− w(u, v)), 0

}
;

• for all distinct u, v ∈ R, w′(u, v) = w(u, v);

• for all uv ∈
(
R
2

)
, w′(uv) = w(uv).

Further, we define the exterior weight of R with respect to (G,w), denoted
by Ext[G,w;R], to be

Ext[G,w;R] =
( ∑

uv∈(V (G)rR
2 )

w(uv)
)

+
( ∑

u∈R

∑
v∈V (G)rR

w(uv)
)
.

We remark that for all weighted trigraphs (G,w), we have that
Red[G,w;V (G)] = (G,w) and Ext[G,w;V (G)] = 0, and consequently,
α(G,w) = α(Red[G,w;V (G)]) + Ext[G,w;V (G)].
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Proposition 3.5. There is an algorithm with the following specifications:

• Input: a weighted trigraph (G,w) and a set R ⊆ V (G);

• Output: Red[G,w;R] and Ext[G,w;R];

• Running time: O(n2), where n = |V (G)|.

Proof. Clearly, the trigraph G[R] can be computed in time O(n2). Sim-
ilarly, the quantity

∑
uv∈(V (G)rR

2 )
w(uv) can be found in time O(n2). Fur-

ther, for each vertex u ∈ R, the quantities
∑

v∈V (G)rR

w(uv) and max{w(u)−∑
v∈V (G)rR

(w(uv)−w(u, v)), 0} can be found in O(n) time. Since R contains

at most n vertices, the result follows.

Proposition 3.6. Let (G,w) be a weighted trigraph, and let S ⊆ R ⊆ V (G).
Then JSK(G,w) ≤ JSKRed[G,w;R] + Ext[G,w;R]. Furthermore, if S contains
no zero-vertices of Red[G,w;R], then equality holds, that is, JSK(G,w) =
JSKRed[G,w;R] + Ext[G,w;R].

Proof. Set w′ : D(G[R]) → N so that (G[R], w′) = Red[G,w;R]. By defini-
tion, for all u ∈ S, w′(u) ≥ w(u) −

∑
v∈V (G)rR

(w(uv) − w(u, v)) (and if u is
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not a zero-vertex of Red[G,w;R], then equality holds). Consequently,

JSKRed[G,w;R] + Ext[G,w;R]

=
( ∑

u∈S
w′(u)

)
+
( ∑

u∈S

∑
v∈RrS

w′(u, v)
)

+
( ∑

uv∈(RrS
2 )

w′(uv)
)

+

+
( ∑

uv∈(V (G)rR
2 )

w(uv)
)

+
( ∑

u∈R

∑
v∈V (G)rR

w(uv)
)

≥

( ∑
u∈S

(
w(u)−

∑
v∈V (G)rR

(w(uv)− w(u, v))
))

+
( ∑

u∈S

∑
v∈RrS

w(u, v)
)

+

+
( ∑

uv∈(RrS
2 )

w(uv)
)

+
( ∑

uv∈(V (G)rR
2 )

w(uv)
)

+
( ∑

u∈R

∑
v∈V (G)rR

w(uv)
)

=
( ∑

u∈S
w(u)

)
−
( ∑

u∈S

∑
v∈V (G)rR

w(uv)
)

+
( ∑

u∈S

∑
v∈V (G)rS

w(u, v)
)

+

+
( ∑

uv∈(RrS
2 )

w(uv)
)

+
( ∑

uv∈(V (G)rR
2 )

w(uv)
)

+
( ∑

u∈R

∑
v∈V (G)rR

w(uv)
)

=
( ∑

u∈S
w(u)

)
+
( ∑

u∈S

∑
v∈V (G)rS

w(u, v)
)

+
( ∑

uv∈(RrS
2 )

w(uv)
)

+

+
( ∑

uv∈(V (G)rR
2 )

w(uv)
)

+
( ∑

u∈RrS

∑
v∈V (G)rR

w(uv)
)

=
( ∑

u∈S
w(u)

)
+
( ∑

u∈S

∑
v∈V (G)rS

w(u, v)
)

+
( ∑

uv∈(V (G)rS
2 )

w(uv)
)

= JSK(G,w).

This proves that JSK(G,w) ≤ JSKRed[G,w;R] + Ext[G,w;R]. Furthermore,
if S contains no zero vertices of Red[G,w;R] (and so w′(u) = w(u) −∑
v∈V (G)rR

(w(uv) − w(u, v)) for all u ∈ S), the computation above yields

JSK(G,w) = JSKRed[G,w;R] + Ext[G,w;R].

Proposition 3.7. Let (G,w) be a weighted trigraph, let S ⊆ R ⊆ V (G),
and assume that S is a stable set of G. Then

∑
u∈S

w(u) ≤ α(Red[G,w;R]) +

Ext[G,w;R].

Proof. By the definition of JSK(G,w), we have that
∑
u∈S

w(u) ≤ JSK(G,w). We

14



now compute:∑
u∈S

w(u) ≤ JSK(G,w)

≤ JSKRed[G,w;R] + Ext[G,w;R] by Proposition 3.6

≤ α(Red[G,w;R]) + Ext[G,w;R].

Thus,
∑
u∈S

w(u) ≤ α(Red[G,w;R]) + Ext[G,w;R]. This completes the argu-

ment.

Proposition 3.8. Let (G,w) be a weighted trigraph, and let R1, R2 ⊆ V (G)
be disjoint sets. Set αR1 = α(Red[G,w;R1]) + Ext[G,w;R1] and αR1∪R2 =
α(Red[G,w;R1 ∪ R2]) + Ext[G,w;R1 ∪ R2]. Then αR1 ≤ αR1∪R2 ≤ αR1 +∑
u∈R2

w(u).

Proof. We first show that αR1 ≤ αR1∪R2 . Using Proposition 3.2, we fix a
stable set S ⊆ R1 of G that contains no zero-vertices of Red[G,w;R1] and
satisfies JSKRed[G,w;R1] = α(Red[G,w;R1]). Then

αR1 = α(Red[G,w;R1]) + Ext[G,w;R1]

= JSKRed[G,w;R1] + Ext[G,w;R1]

= JSK(G,w) by Proposition 3.6

≤ JSKRed[G,w;R1∪R2] + Ext[G,w;R1 ∪R2] by Proposition 3.6

≤ α(Red[G,w;R1 ∪R2])+
+Ext[G,w;R1 ∪R2]

= αR1∪R2 .

Thus, αR1 ≤ αR1∪R2 .
It remains to show that αR1∪R2 ≤ αR1 +

∑
u∈R2

w(u). Using Proposi-

tion 3.2, we fix a stable set S ⊆ R1 ∪ R2 that contains no zero-vertices of
Red[G,w;R1 ∪ R2] and satisfies JSKRed[G,w;R1∪R2] = α(Red[G,w;R1 ∪ R2]).
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We then have the following:

αR1∪R2 = α(Red[G,w;R1 ∪R2])+
+Ext[G,w;R1 ∪R2]

= JSKRed[G,w;R1∪R2]+

+Ext[G,w;R1 ∪R2]

= JSK(G,w) by Proposition 3.6

≤ JS rR2K(G,w) +
∑

u∈R2

w(u) by Proposition 3.1

≤ JS rR2KRed[G,w;R1]+ by Proposition 3.6

+Ext[G,w;R1] +
∑

u∈R2

w(u)

≤ α(Red[G,w;R1])+
+Ext[G,w;R1] +

∑
u∈R2

w(u)

= αR1 +
∑

u∈R2

w(u).

Thus, αR1∪R2 ≤ αR1 +
∑

u∈R2

w(u). This completes the argument.

Before stating our next proposition, we remind the reader that if G is a
semi-realization of a trigraph G′, then every weight function for G is also a
weight function for G′. In particular, if (G,w) is a weighted trigraph, and
G′ is a trigraph obtained from G by possibly turning some strongly anti-
adjacent pairs of G into semi-adjacent pairs, then (G′, w) is also a weighted
trigraph.

Proposition 3.9. Let (G,w) be a weighted trigraph, and let (A,B,C) be a
cut-partition of G. For each X ∈ {A,B}, let GX be a trigraph obtained from
G[X ∪C] by possibly turning some strongly anti-adjacent pairs of G[X ∪C]
into semi-adjacent pairs. For all C ′ ⊆ C, set αA∪C′ = α(Red[GA, w;A ∪
C ′]) + Ext[GA, w;A ∪ C ′]. Let k ∈ N and let wB be a weight function for
GB that satisfies all of the following:

• for all u ∈ B, wB(u) = w(u);

• for all uv ∈
(
B∪C
2

)
r
(
C
2

)
, wB(u, v) = w(u, v) and wB(uv) = w(uv);

• for all SC ⊆ C such that SC is a stable set of GB, we have that
JSCK(GB [C],wB) = αA∪SC

− k.

Then α(G,w) = k + α(GB, wB).
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Proof. We begin by observing that for all X ∈ {A,B} and S ⊆ X ∪ C, we
have that S is a stable set of GX if and only if S is a stable set of G[X ∪C],
and furthermore, for all Y ⊆ X ∪ C, we have that JS ∩ Y K(GX [Y ],w) =
JS ∩ Y K(G[Y ],w).

Let us first show that α(G,w) ≤ k + α(GB, wB). Fix a stable set S of
G such that JSK(G,w) = α(G,w). Set SA = S ∩ (A ∪ C), SB = S ∩ (B ∪ C),
and SC = S ∩ C. We then have the following:

α(G,w) = JSK(G,w)

= JSAK(G[A∪C],w) + JSBK(G[B∪C],w)− by Proposition 3.3

−JSCK(G[C],w)

= JSAK(GA,w) + JSBK(GB ,w)−
−JSCK(GB [C],w)

= JSAK(GA,w) + JSBK(GB ,wB)− by Proposition 3.4

−JSCK(GB [C],wB)

= JSAK(GA,w) + JSBK(GB ,wB)−
−(αA∪SC

− k)

≤ k + α(GB, wB)− αA∪SC
+

+JSAK(GA,w)

≤ k + α(GB, wB)− αA∪SC
+ by Proposition 3.6

+JSAKRed[GA,w;A∪SC ]+

+Ext[GA, w;A ∪ SC ]

≤ k + α(GB, wB)− αA∪SC
+

+α(Red[GA, w;A ∪ SC ])+
+Ext[GA, w;A ∪ SC ]

= k + α(GB, wB).

This proves that α(G,w) ≤ k + α(GB, wB).
It remains to show that k+α(GB, wB) ≤ α(G,w). Using Proposition 3.2,

we fix a stable set SB of GB that contains no zero-vertices of GB and satisfies
JSBK(GB ,wB) = α(GB, wB); we may assume that SB was chosen inclusion-
minimal with this property, that is, that for all S′B $ SB, we have that
JS′BK(GB ,wB) < α(GB, wB). Set SC = SB ∩ C.

Let us first check that for all S′C $ SC , we have that αA∪S′C < αA∪SC
.

Fix S′C $ SC , and set S′B = (SB r C) ∪ S′C . By the minimality of SB, we
have that JS′BK(GB ,wB) < JSBK(GB ,wB). Since wB is a weight function for
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GB, we know that wB(u, v) ≤ wB(uv) for all uv ∈
(
B∪C
2

)
. We now have

that
0 < JSBK(GB ,wB) − JS′BK(GB ,wB)

=
(
JSCK(GB [C],wB) − JS′CK(GB [C],wB)

)
+

+
( ∑

u∈SCrS′C

∑
v∈BrSB

(wB(u, v)− wB(uv))
)

≤ JSCK(GB [C],wB) − JS′CK(GB [C],wB).

= αA∪SC
− αA∪S′C ,

and consequently, αA∪S′C < αA∪SC
, as we had claimed.

Now, using Proposition 3.2, we fix a stable set SA ⊆ A ∪ SC of GA

that contains no zero-vertices of GA and satisfies JSAK(Red[GA,w;A∪SC ]) =
α(Red[GA, w;A ∪ SC ]). By Proposition 3.6, we have that

JSAK(GA,w) = JSAKRed[GA,w;A∪SC ] + Ext[GA, w;A ∪ SC ]

= α(Red[GA, w;A ∪ SC ]) + Ext[GA, w;A ∪ SC ]

= αA∪SC
.

Next, note the following:

αA∪SC
= JSAK(GA,w)

≤ JSAKRed[GA,w;A∪(SA∩C)]+ by Proposition 3.6

+Ext[GA, w;A ∪ (SA ∩ C)]

≤ α(Red[GA, w;A ∪ (SA ∩ C)])+
+Ext[GA, w;A ∪ (SA ∩ C)]

= αA∪(SA∩C).

Thus, αA∪SC
≤ αA∪(SA∩C). Now, recall that for all S′C $ SC , we have that

αA∪S′C < αA∪SC
; since (by the construction of SA) we have that SA∩C ⊆ SC ,

this implies that SC = SA ∩ C.
Set S = SA ∪ SB; since SA ∩ C = SC = SB ∩ C, and since (A,B,C) is

a cut-partition of G, we readily deduce that S is a stable set of G. We now
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compute:

k + α(GB, wB) = k + JSBK(GB ,wB)

= k + (αA∪SC
− k)+

+JSBK(GB ,wB)−
−JSCK(GB [C],wB)

= αA∪SC
+ JSBK(GB ,w)− by Proposition 3.4

−JSCK(GB [C],w)

= JSAK(GA,w)+

+JSBK(GB ,w)−
−JSCK(GB [C],w)

= JSAK(G[A∪C],w)+

+JSBK(G[B∪C],w)−
−JSCK(G[C],w)

= JSK(G,w) by Proposition 3.3

≤ α(G,w).

This completes the argument.

Lemma 3.10. Let (G,w) be a weighted trigraph, let C be a clique-cutset of
G, and let (A,B,C) be an associated cut-partition of G. Set GA = G[A∪C]
and GB = G[B∪C]. For each C ′ ⊆ C, set αA∪C′ = α(Red[GA, w;A∪C ′])+
Ext[GA, w;A∪C ′]. Define wB : D(GB)→ N by setting wB(c) = αA∪{c}−αA

for all c ∈ C, and wB � (D(GB) r C) = w � (D(GB) r C). Then wB is a
weight function for GB, and α(G,w) = αA + α(GB, wB).

Proof. By Proposition 3.8, we have that wB(c) ≥ 0 for all c ∈ C, and it
follows immediately that wB is a weight function for GB. Now, set k =
αA. Using the fact that C is a strong clique of GB, we observe that the
weight function wB for GB satisfies the hypotheses of Proposition 3.9, and
we deduce that α(G,w) = αA + α(GB, wB).

Lemma 3.11. Let (G,w) be a weighted trigraph and let (A,B,C) be a cut-
partition of G such that C is a stable set of size two of G. Set C = {c1, c2}.
For each X ∈ {A,B}, let GX be the trigraph on the vertex set X ∪ C in
which c1c2 is a semi-adjacent pair and all other adjacencies are inherited
from G[X ∪ C]. For each C ′ ⊆ C, set αA∪C′ = α(Red[GA, w;A ∪ C ′]) +
Ext[GA, w;A ∪ C ′]. Define wB : D(GB)→ N as follows:

• wB(c1) = αA∪C − w(c2);
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• wB(c2) = w(c2);

• wB(c1, c2) = αA∪{c1} − αA∪C + w(c2);

• wB(c2, c1) = αA∪{c2} − w(c2);

• wB(c1c2) = αA;

• wB �
(
D(GB) rD(GB[C])

)
= w �

(
D(GB) rD(GB[C])

)
.

Then wB is a weight function for GB, and α(GB, wB) = α(G,w).

Proof. We first show that wB is a weight function for GB. It suffices to show
that wB(c1), wB(c1, c2), wB(c2, c1) ≥ 0 and that wB(c1, c2), wB(c2, c1) ≤
wB(c1c2), for wB clearly satisfies all the other conditions from the definition
of a weight function. The fact that wB(c1), wB(c2, c1) ≥ 0 follows immedi-
ately from Proposition 3.7. Next, Proposition 3.8 guarantees that αA∪C ≤
αA∪{c1} + w(c2), which immediately implies that wB(c1, c2) ≥ 0. Similarly,
Proposition 3.8 guarantees that αA∪{c2} ≤ αA + w(c2), which implies that
wB(c2, c1) ≤ wB(c1c2). Finally, to show that wB(c1, c2) ≤ wB(c1c2), we
observe that:

wB(c1, c2) = αA∪{c1} − αA∪C + w(c2)

≤
(
αA + w(c1)

)
− αA∪C + w(c2) by Proposition 3.8

= αA +
(
w(c1) + w(c2)

)
− αA∪C

≤ αA by Proposition 3.7

= wB(c1c2).

This proves that wB is indeed a weight function for GB.
Now, set k = 0. We see by inspection that wB satisfies the hypotheses of

Proposition 3.9, and we deduce that α(GB, wB) = α(G,w). This completes
the argument.

4 Decomposition theorem

In this section, we state a decomposition theorem for {ISK4,wheel}-free tri-
graphs (see Theorem 4.1 below), and then we derive an “extreme” decom-
position theorem for this class of graphs, which states (roughly) that every
{ISK4,wheel}-free trigraph is either “basic” or admits a “decomposition”
such that one of the “blocks of decomposition” is basic (see Theorem 4.8
and Corollary 4.9). Here, we state Theorem 4.1 without proof, but the
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interested reader can find a complete proof in [13]. As explained in the
Introduction, the proof of Theorem 4.1 closely follows the proof of the de-
composition theorem for ISK4-free graphs from [12], but the proof of our
theorem is easier because we restrict ourselves to the wheel-free case. Inter-
estingly, the fact that we work with trigraphs rather than graphs does not
make the proof significantly harder.

Theorem 4.1. [13] Let G be an {ISK4,wheel}-free trigraph. Then at least
one of the following holds:

• G is a series-parallel trigraph;

• G is a complete bipartite trigraph;

• G is a line trigraph;

• G admits a clique-cutset;

• G admits a stable 2-cutset.

We remark that Lévêque, Maffray, and Trotignon [12] proved a graph
analogue of Theorem 4.1. Their theorem had an additional outcome, namely,
that G is a “long rich square.” In fact, long rich squares are not wheel-free,
and so this outcome is unnecessary (see [13] for details). Furthermore, the
last outcome of the decomposition theorem for {ISK4,wheel}-free graphs
from [12] is that the graph admits a proper 2-cutset. In the trigraph context,
we work with stable 2-cutsets instead.

Let us say thatG is a basic trigraph ifG is either a series-parallel trigraph,
a complete bipartite trigraph, or a line trigraph. Note that all induced
subtrigraphs of a basic trigraph are basic trigraphs.

A good cut-partition of a trigraph G is a cut-partition (A,B,C) of G
such that either

• C is a clique-cutset of G such that |C| ≤ 3 (in this case, (A,B,C) is
said to be a good cut-partition of type clique), or

• C is a stable 2-cutset of G, and each of G[A∪C] and G[B∪C] contains
a narrow path between the two vertices of C (in this case, (A,B,C)
is said to be a good cut-partition of type stable).

Proposition 4.2. Let G be an {ISK4,wheel}-free trigraph. Then the fol-
lowing are equivalent:

(a) G admits a clique-cutset or a stable 2-cutset;

(b) G admits a good cut-partition.
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Proof. Clearly, (b) implies (a). For the reverse, we suppose that G admits
a clique-cutset or a stable 2-cutset, and we show that G admits a good cut-
partition. If G admits a clique-cutset, then let C be a clique-cutset of G, and
otherwise, let C be a stable 2-cutset of G. Let (A,B,C) be any cut-partition
of G induced by C. If C is a clique-cutset, then since G is ISK4-free, we
see that |C| ≤ 3, and it follows that (A,B,C) is a good cut-partition of
G of type clique. So assume that C is a stable 2-cutset. (Note that this
means that G admits no clique-cutset, and in particular, G is connected and
contains no cut-vertices.) Set C = {c1, c2}. We claim that (A,B,C) is a
good cut-partition of G of type stable. To prove this, we must only show
that each of G[A ∪ C] and G[B ∪ C] contains a narrow path between c1
and c2. By symmetry, it suffices to show that G[A ∪ C] contains a narrow
path between c1 and c2. Let A1 be the vertex set of a component of G[A].
Vertex c1 must have a neighbor in A1, for otherwise, c2 would be a cut-
vertex of G; similarly, vertex c2 has a neighbor in A1. Thus, G[A1∪{c1, c2}]
is connected, and it follows that G[A1∪{c1, c2}] (and consequently G[A∪C]
as well) contains a narrow path between c1 and c2. Thus, (A,B,C) is a
good cut-partition of G of type stable. This completes the argument.

Theorem 4.1 and Proposition 4.2 immediately imply the following.

Corollary 4.3. Let G be an {ISK4,wheel}-free trigraph. Then either G is
a basic trigraph, or G admits a good cut-partition.

Our goal for the remainder of the section is to derive an “extreme decom-
position theorem” from Corollary 4.3 (see Theorem 4.8 and Corollary 4.9).

Given a good cut-partition (A,B,C) of a trigraph G, and given X ∈
{A,B}, we define the X-block of G with respect to (A,B,C) as follows:

• if (A,B,C) is of type clique, then GX = G[X ∪ C];

• if (A,B,C) is of type stable, then GX is the trigraph obtained from
G[X ∪ C] by making the two vertices of C semi-adjacent.

We remark that GX is well-defined because every good cut-partition is either
of type clique or of type stable, but not both. We also remark that if
(A,B,C) is of type stable and the two vertices of C are semi-adjacent in G,
then GX = G[X ∪ C].

Proposition 4.4. Let (A,B,C) be a good cut-partition of an {ISK4,wheel}-
free trigraph G, and for each X ∈ {A,B}, let GX be the X-block of G with
respect to (A,B,C). Then GA and GB are {ISK4,wheel}-free.

Proof. By symmetry, it suffices to show that GA is {ISK4,wheel}-free. We
may assume that GA 6= G[A∪C], for otherwise, we are done. It now follows
from the construction of GA that (A,B,C) is of type stable, and that the
two vertices of C (call them c1 and c2) are strongly anti-adjacent in G.
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Furthermore, GA is obtained from G[A ∪ C] by turning the strongly anti-
adjacent pair c1c2 into a semi-adjacent pair. Let G̃A be some realization of
GA; we must show that G̃A is {ISK4,wheel}-free. If c1c2 is a non-edge of
G̃A, then G̃A is an induced subgraph of some realization of G[A ∪ C], and
since G is {ISK4,wheel}-free, so is G̃A. So assume that c1c2 is an edge of G̃A.
Since (A,B,C) is a good cut-partition of G of type stable, we know that
G[B∪C] contains a narrow path P between c1 and c2. Then some realization
H of G[A ∪ V (P )] is a subdivision of G̃A. Since G is {ISK4,wheel}-free, so
is H. Note that every subdivision of an ISK4 is an ISK4, and that every
subdivision of a wheel contains either an induced wheel or an ISK4. Thus, if
G̃A contained an ISK4 or an induced wheel, then all its subdivisions would
also contain an ISK4 or an induced wheel. Since the {ISK4,wheel}-free
graph H is a subdivision of G̃A, it follows that G̃A is an {ISK4,wheel}-free
graph. This completes the argument.

Proposition 4.5. There is an algorithm with the following specifications:

• Input: a trigraph G;

• Output: exactly one of the following:

– a good cut-partition (A,B,C) of G of type clique, together with
the true statement “(A,B,C) is a good cut-partition of G of type
clique”;

– a good cut-partition (A,B,C) of G of type stable, together with
the true statement “(A,B,C) is a good cut-partition of G of type
stable, and G does not admit a good cut-partition of type clique”;

– the true statement “G does not admit a good cut-partition”;

• Running time: O(n5), where n = |V (G)|.

Proof. Let Gf be the full realization of G; clearly, Gf can be constructed in
O(n2) time. We first form a list C1, . . . , Ck of all (possibly empty) strong
cliques of G of size at most three; there are at most

(
n
0

)
+
(
n
1

)
+
(
n
2

)
+
(
n
3

)
such cliques, and the list C1, . . . , Ck can be found in time O(n3). For each
i ∈ {1, . . . , k}, we can determine in time O(n2) whether Ci is a cutset of
Gf ; since we are testing O(n3) cliques, we can determine whether G has
a clique-cutset of size at most three in O(n5) time. If we determined that
some Ci from the list is a cutset of Gf (and therefore of G), then we can find
the components A1, . . . , At (t ≥ 2) of G r Ci in time O(n2). In this case,
(V (A1),

⋃t
j=2 V (Aj), Ci) is a good cut-partition of G type clique, and the

algorithm returns this cut-partition and stops. So assume that the algorithm
determined that G contains no clique-cutsets of size at most three, and
consequently, G admits no good cut-partition of type clique. (In particular,
G is connected and contains no cut-vertices.)
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We then form a list S1, . . . , S` of all (not necessarily strong) stable sets
of size two of G. There are at most

(
n
2

)
such stable sets, and so this list can

be formed in O(n2) time. For each i ∈ {1, . . . , `}, we can determine in time
O(n2) whether Si is a cutset of Gf ; since there are O(n2) sets in our list,
testing the whole list takes O(n4) time. If none of S1, . . . , S` is a cutset of
Gf , then G contains no stable 2-cutsets; in this case, by Proposition 4.2, the
algorithm returns the true statement that G admits no good cut-partition
and stops. So assume that the algorithm determined that some Si from the
list is a cutset of Gf (and therefore of G); clearly, Si is a stable 2-cutset
of G. We now find the components A1, . . . , At (t ≥ 2) of Gf r Si, and
using the fact that G is connected and admits no cut-vertex, we deduce that
(V (A1),

⋃t
j=2 V (Aj), Si) is a good cut-partition of G of type stable. The

algorithm now returns this cut-partition and stops.
It is clear that the algorithm is correct, and that its running time is

O(n5).

Lemma 4.6. There is an algorithm with the following specifications:

• Input: a trigraph G and a good cut-partition (A,B,C) of G;

• Output: either the true statement “the A-block of G with respect to
(A,B,C) does not admit a good cut-partition,” or a good cut-partition
(A′, B′, C ′) of G such that A′ ∪ C ′ $ A ∪ C;

• Running time: O(n5), where n = |V (G)|.

Proof. We first form GA, the A-block of G with respect to (A,B,C); this
takes O(n2) time. We then apply the algorithm from Proposition 4.5 to
GA; this takes O(n5) time. If the algorithm from Proposition 4.5 returns
the answer that GA admits no good cut-partition, then we are done. So as-
sume that the algorithm from Proposition 4.5 returned a good cut-partition
(A1, B1, C1) of GA. By the construction of GA, we know that C is a clique of
GA (indeed, C is either a strong clique of size at most three of GA, or a set
of two semi-adjacent vertices of GA), and consequently, either C ⊆ A1 ∪C1

or C ⊆ B1 ∪ C1. By symmetry, we may assume that C ⊆ B1 ∪ C1. Now
(A1, B ∪ B1, C1) is a cut-partition of G, and clearly A1 ∪ C1 $ A ∪ C. The
algorithm now returns the cut-partition (A1, B ∪B1, C1) and stops.

It is clear that the running time of the algorithm is O(n5). To show that
the algorithm is correct, we must show that (A1, B ∪B1, C1) is a good cut-
partition of G. If GA = G[A ∪ C], or if the good cut-partition (A1, B1, C1)
of GA is of type clique, then it is clear that (A1, B ∪ B1, C1) is a good cut-
partition of G, and furthermore, the good cut-partition (A1, B ∪ B1, C1) of
G is of the same type (type clique or type stable) as the good cut-partition
(A1, B1, C1) of GA. So assume that GA 6= G[A ∪ C] and that the good cut-
partition (A1, B1, C1) of GA is of type stable. We now claim that (A1, B ∪
B1, C1) is a good cut-partition of G of type stable.
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Since GA 6= G[A ∪ C], we deduce from the construction of GA that
(A,B,C) is a good cut-partition of G of type stable, and furthermore, that
the two vertices of C (call them c and c′) are strongly anti-adjacent in G
and semi-adjacent in GA. Since (A1, B1, C1) is a good cut-partition of GA

of type stable, we know that C1 is a stable set of GA (and consequently,
a stable set of G) of size two; set C1 = {c1, c′1}. Furthermore, the spec-
ifications of the algorithm from Proposition 4.5 guarantee that GA does
not admit a good cut-partition of type clique (for otherwise, the algorithm
from Proposition 4.5 would have returned such a cut-partition), and conse-
quently, GA is connected and contains no cut-vertices. We also note that
since C ⊆ B1 ∪ C1, we have either that GA[A1 ∪ C1] = G[A1 ∪ C1], or that
C = C1 and GA[A1∪C1] is obtained from G[A1∪C1] by turning the strongly
anti-adjacent pair cc′ = c1c

′
1 into a semi-adjacent pair.

Now, to show that (A1, B ∪B1, C1) is a good cut-partition of G of type
stable, we need only show that each of G[A1 ∪ C1] and G[B ∪ B1 ∪ C1]
contains a narrow path between c1 and c′1. Let us first show that G[A1∪C1]
contains a narrow path between c1 and c′1. Let A′1 be the vertex set of some
component of GA[A1] = G[A1]. Since GA contains no cut-vertices, we know
that each of c1 and c′1 has a neighbor in A′1 in GA; consequently, each of c1
and c′1 has a neighbor in A′1 in G. Thus, G[A′1∪{c1, c′1}] is connected, and it
follows that G[A′1 ∪ {c1, c′1}] (and consequently G[A1 ∪C1] as well) contains
a narrow path between c1 and c′1.

It remains to show that G[B ∪B1 ∪C1] contains a narrow path between
c1 and c′1. Since (A1, B1, C1) is a good cut-partition of GA of type stable,
we know that there is a narrow path P between c1 and c′1 in GA[B1 ∪ C1].
Further, since (A,B,C) is a good cut-partition of G of type stable, we know
that there is a narrow path Q between c and c′ in G[B ∪ C]. Now, we
know that GA[B1 ∪C1] is the trigraph obtained from G[B1 ∪C1] by turning
the strongly anti-adjacent pair cc′ into a semi-adjacent pair. Thus, if P
contains at most one of c and c′, then the narrow path P between c and c′

is an induced subtrigraph of G[B ∪ B1 ∪ C1], and if P contains both c and
c′, then G[V (P ) ∪ V (Q)] is a narrow path in G[B ∪ B1 ∪ C1] between c1
and c′1 (essentially, G[V (P )∪ V (Q)] is the narrow path obtained from P by
replacing the semi-adjacent pair cc′ by the narrow path Q). This completes
the argument.

Lemma 4.7. There exists an algorithm with the following specifications:

• Input: a trigraph G;

• Output: exactly one of the following:

– the true statement “G admits no good cut-partition”;

– a good cut-partition (A,B,C) of G, and the true statement “the
A-block of G with respect to (A,B,C) admits no good cut-partition”;
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• Running time: O(n6), where n = |V (G)|.

Proof. Step 1. We first call the algorithm from Proposition 4.5 with input
G; the running time of that algorithm is O(n5). If the algorithm from
Proposition 4.5 returns the answer thatG admits no good cut-partition, then
we are done. So assume that the algorithm from Proposition 4.5 returned a
good cut-partition (A,B,C) of G. We now go to Step 2.

Step 2. We call the algorithm from Lemma 4.6 with input G and
(A,B,C). If the algorithm from Lemma 4.6 returns the answer that the
A-block of G with respect to (A,B,C) does not admit a good cut-partition,
then we are done. So assume that the algorithm from Lemma 4.6 returned
a good cut-partition (A′, B′, C ′) of G such that A′ ∪ C ′ $ A ∪ C. We now
set (A,B,C) := (A′, B′, C ′), and we go back to Step 2.

Since the size of A ∪ C decreases after each call of Step 2, we make at
most n recursive calls to Step 2 (and in particular, the algorithm termi-
nates). Since the running time of the algorithm from Lemma 4.6 is O(n5),
we conclude that the running time of our algorithm is O(n6).

Theorem 4.8. There exists an algorithm with the following specifications:

• Input: an {ISK4,wheel}-free trigraph G;

• Output: exactly one of the following:

– the true statement “G is a basic trigraph”;

– a good cut-partition (A,B,C) of G, and the true statement “the
A-block of G with respect to (A,B,C) is a basic trigraph”;

• Running time: O(n6), where n = |V (G)|.

Proof. We call the algorithm from Lemma 4.7 with input G. If that al-
gorithm returns the answer that G admits no good cut-partition, then our
algorithm returns the answer that G is a basic trigraph and stops. On the
other hand, if the algorithm from Lemma 4.7 returns a good cut-partition
(A,B,C) of G and the statement that the A-block of G with respect to
(A,B,C) admits no good cut-partition, then our algorithm stops and re-
turns the good cut-partition (A,B,C) of G and the statement that the
A-block of G with respect to (A,B,C) is a basic trigraph.

Since the running time of the algorithm from Lemma 4.7 is O(n6), the
running time of our algorithm is also O(n6). The correctness of our algo-
rithm follows immediately from Corollary 4.3 and Proposition 4.4.

The following “extreme decomposition theorem” for {ISK4,wheel}-free
trigraphs is an immediate corollary of Theorem 4.8.

Corollary 4.9. Let G be an {ISK4,wheel}-free trigraph. Then either G is
a basic trigraph, or G admits a good cut-partition (A,B,C) such that the
A-block of G with respect to (A,B,C) is a basic trigraph.
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5 A stability preserving transformation

We now describe a transformation on a weighted trigraph that preserves the
stability number, while decreasing the number of semi-adjacent pairs. It is
based on the gem, a graph G with five vertices such that one of them, say
v, is adjacent to all the others and G r v is isomorphic to the four-vertex
path P4.

Let (G,w) be a weighted trigraph and let uv be a semi-adjacent pair in
G. The weighted trigraph obtained from (G,w) by replacing uv with a gem
is the weighted trigraph (G′, w′) defined as follows:

• The vertex set is V (G′) = V (G)∪{xuv, xv,u, xu,v}, where xuv, xv,u, xu,v
are pairwise distinct and do not belong to V (G).

• The adjacency function is θG′ :
(
V (G′)

2

)
→ {−1, 0, 1}, defined as follows:

– θG′ � (
(
V (G)
2

)
r {uv}) = θG � (

(
V (G)
2

)
r {uv})

– θG′(e) = 1 for all e ∈ {uxv,u, xv,uxu,v, xu,vv, xuvu, xuvxv,u,
xuvxu,v, xuvv},

– θG′(e) = −1 for all other e ∈
(
V (G′)

2

)
.

(In particular, G′[u, xv,u, xu,v, v, xuv] is a graph isomorphic to a gem.)

• The weight function w′ : D(G′)→ N is defined as follows:

– w′ � (D(G) r {uv, (v, u), (u, v)}) = w � (D(G) r
{uv, (v, u), (u, v)}),

– w′(xuv) = w(uv), w′(xv,u) = w(v, u), w′(xu,v) = w(u, v), and

– w′(p) = 0 for all other p ∈ D(G′) .

It is immediate to see that (G′, w′) is indeed a weighted trigraph, that
is, that w′ is a weight function of G′. The importance of the above trans-
formation stems from the fact that it preserves the stability number, a fact
which we now prove.

Proposition 5.1. Let uv be a semi-adjacent pair in a weighted trigraph
(G,w) and let (G′, w′) be the weighted trigraph obtained from (G,w) by re-
placing uv with a gem. Then, α(G′, w′) = α(G,w).

Proof. Let xuv, xv,u, xu,v be the three vertices in V (G′)rV (G) labeled as in
the definition of the operation of replacing a semi-adjacent pair with a gem.

We split the proof of the equality α(G′, w′) = α(G,w) into two parts.
First, we show that α(G,w) ≤ α(G′, w′). Let S ∈ V (G) be a stable set of
G such that JSK(G,w) = α(G,w). We consider three cases depending on the
number of vertices in S ∩ {u, v}. In each case, we exhibit a stable set S′ of
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G′ such that JS′K(G′,w′) = JSK(G,w). This is enough, for then we obtain that
α(G,w) = JSK(G,w) = JS′K(G′,w′) ≤ α(G′, w′), which is what we need.

If |S ∩ {u, v}| = 0, then the set S′ = S ∪ {xuv} is a stable set of G′. Its
weight with respect to (G′, w′) is

JS′K(G′,w′) =
∑
x∈S′

w′(x) +
∑
x∈S′

∑
y∈V (G)rS′

w′(x, y) +
∑

xy∈(V (G′)rS′
2 )

w′(xy)

=

(∑
x∈S

w(x) + w′(xuv)

)
+
∑
x∈S

∑
y∈V (G)rS

w(x, y)+

+

 ∑
xy∈(V (G)rS

2 )
w(xy)− w(uv)


=

∑
x∈S

w(x) +
∑
x∈S

∑
y∈V (G)rS

w(x, y) +
∑

xy∈(V (G)rS
2 )

w(xy)

= JSK(G,w).

If |S ∩ {u, v}| = 1, then we may assume without loss of generality that
S ∩ {u, v} = {u}. The set S′ = S ∪ {xu,v} is a stable set of G′. Its weight
with respect to (G′, w′) is

JS′K(G′,w′) =
∑
x∈S′

w′(x) +
∑
x∈S′

∑
y∈V (G)rS′

w′(x, y) +
∑

xy∈(V (G′)rS′
2 )

w′(xy)

=

(∑
x∈S

w(x) + w′(xu,v)

)
+

+

(∑
x∈S

∑
y∈V (G)rS

w(x, y)− w(u, v)

)
+

∑
xy∈(V (G)rS

2 )
w(xy)

=
∑
x∈S

w(x) +
∑
x∈S

∑
y∈V (G)rS

w(x, y) +
∑

xy∈(V (G)rS
2 )

w(xy)

= JSK(G,w).

Finally, suppose that |S ∩ {u, v}| = 2, that is, {u, v} ⊆ S. In this case,
S′ = S itself is a stable set of G′. It is immediate to verify that its weight
with respect to (G′, w′) is the same as its weight with respect to (G,w).

We now prove the reverse inequality, that is, we show that α(G′, w′) ≤
α(G,w). Let S′ ⊆ V (G′) be a stable set of G′ such that JS′K(G′,w′) =
α(G′, w′).

Up to symmetry, it suffices to analyze four cases depending on the in-
tersection of S′ with the vertex set of the gem, that is, depending on the set
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X = S′ ∩ {u, v, xuv, xv,u, xu,v}. These four cases are:

X ∈ {{xuv}, {xv,u}, {u, xu,v}, {u, v}} .

Indeed, if X = ∅, then we can replace S′ with S′∪{xuv} to obtain a set with
JS′ ∪ {xuv}K(G′,w′) ≥ JS′K(G′,w′). If X = {u}, then we can replace S′ with
S′ ∪ {xu,v} to obtain a set with JS′ ∪ {xu,v}K(G′,w′) ≥ JS′K(G′,w′). Each of
the remaining cases for X either results in a non-stable set, or is symmetric
to one of the four cases above. In each case, we exhibit a stable set S of
G such that JSK(G,w) = JS′K(G′,w′). This is enough because we then obtain
α(G′, w′) = JS′K(G′,w′) = JSK(G,w) ≤ α(G,w), which is what we need.

Case 1. X = {xuv}.
The set S = S′ r {xuv} is a stable set of G. Its weight with respect to

(G,w) is

JSK(G,w) =
∑
x∈S

w(x) +
∑
x∈S

∑
y∈V (G)rS

w(x, y) +
∑

xy∈(V (G)rS
2 )

w(xy)

=

( ∑
x∈S′

w′(x)− w′(xuv)

)
+
∑
x∈S′

∑
y∈V (G′)rS′

w′(x, y)+

+

 ∑
xy∈(V (G′)rS′

2 )

w′(xy) + w(uv)


=

∑
x∈S′

w′(x) +
∑
x∈S′

∑
y∈V (G′)rS′

w′(x, y) +
∑

xy∈(V (G′)rS′
2 )

w′(xy)

= JS′K(G′,w′).

Case 2. X = {xv,u}.
In this case, the set S′′ = (S′ r {xv,u})∪ {xuv} is also a stable set of G′.

Since w(uv) ≥ w(v, u), and since neither xuv nor xv,u is an endpoint of a
semi-adjacent pair of G′, we have that

JS′′K(G′,w′) = JS′K(G′,w′) + w′(xuv)− w′(xv,u)

= JS′K(G′,w′) + w(uv)− w(v, u)

≥ JS′K(G′,w′).

This implies that α(G′, w′) = JS′K(G′,w′) ≤ JS′′K(G′,w′) ≤ α(G′, w′), and
consequently JS′′K(G′,w′) = α(G′, w′). Therefore, this case reduces to Case 1.

Case 3. X = {u, xu,v}.
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The set S = S′ r {xu,v} is a stable set of G. Its weight with respect to
(G,w) is

JSK(G,w) =
∑
x∈S

w(x) +
∑
x∈S

∑
y∈V (G)rS

w(x, y) +
∑

xy∈(V (G)rS
2 )

w(xy)

=

( ∑
x∈S′

w′(x)− w′(xu,v)

)
+

+

( ∑
x∈S′

∑
y∈V (G′)rS′

w′(x, y) + w(u, v)

)
+

∑
xy∈(V (G′)rS′

2 )

w′(xy)

=
∑
x∈S′

w′(x) +
∑
x∈S′

∑
y∈V (G′)rS′

w′(x, y) +
∑

xy∈(V (G′)rS′
2 )

w′(xy)

= JS′K(G′,w′).

Case 4. X = {u, v}.
The set S = S′ itself is a stable set of G. It is immediate to verify that

its weight with respect to (G,w) is the same as its weight with respect to
(G′, w′).

This completes the argument.

6 Computing the stability number of basic weighted
trigraphs

We remind the reader that a basic trigraph is a trigraph G that is either a
series-parallel trigraph, a complete bipartite trigraph, or a line trigraph.

Theorem 6.1. There exists an algorithm with the following specifications:

• Input: a weighted basic trigraph (G,w);

• Output: α(G,w);

• Running time: O(n4 log n) where n = |V (G)|.

Proof. Let (G,w) be a weighted basic trigraph. Then, G is either (i) a series-
parallel trigraph, (ii) a complete bipartite trigraph, or (iii) a line trigraph.

Testing (i) can be done by computing in O(n2) time the full realization
Gf of G, and testing whether Gf is series-parallel, which can be done in
time O(|V (Gf )|+ |E(Gf )|) = O(n2) [18].

Testing (ii) can be done in time O(n2) by first testing if G is a graph (that
is, if its adjacency function only takes values 1 and −1), and then testing
in O(n2) time (for example, using breadth-first search) if G is a complete
bipartite graph.
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Thus, it can be determined in time O(n2) whether (i), (ii), or neither of
these two cases occurs. If neither (i) nor (ii) occurs, then (iii) must occur.

We now discuss how to compute the stability number of (G,w) in each
of the three cases.

Case 1. G is a series-parallel trigraph.
Let (G′, w′) be the weighted trigraph obtained from (G,w) by replacing

each semi-adjacent pair of G (in any order) with a gem. By Proposition 5.1,
we have that α(G,w) = α(G′, w′). Since each replacement of a semi-adjacent
pair with a gem removes one semi-adjacent pair and produces no new ones,
the resulting trigraph G′ has no semi-adjacent pairs, that is, it is a graph.
Clearly, |V (G′)| = O(n2). Moreover, since G′ has exactly one edge for each
strongly adjacent pair of G, exactly seven edges for each semi-adjacent pair
of G, and no other edges, we also have that |E(G′)| = O(n2).

Since G is a series-parallel trigraph, its full realization Gf is a series-
parallel graph. Note that G′ is isomorphic to the graph G′′ obtained from
Gf by replacing each edge uv ∈ E(Gf ) that forms a semi-adjacent pair in
G with a gem with vertex set {u, xv,u, xu,v, v, xuv} and edge set

{uxv,u, xv,uxu,v, xu,vv, xuvu, xuvxv,u, xuvxu,v, xuvv}.

For a graph H, let us denote by tw(H) its treewidth. We claim that the
treewidth of G′′ (and consequently that of G′) is at most three. To this end,
it suffices to prove the following.

Claim: Let H be a graph and let H1 be a graph obtained from H by re-
placing an edge uv ∈ E(H) with a gem with vertex set {u, xv,u, xu,v, v, xuv}
and edge set {uxv,u, xv,uxu,v, xu,vv, xuvu, xuvxv,u, xuvxu,v, xuvv}. Then,
tw(H1) ≤ max{tw(H), 3}.

This is indeed enough. Since series-parallel graphs are of treewidth at
most two [5], Gf is of treewidth at most two. Applying the claim repeat-
edly to each of the graphs in the sequence of graphs transforming Gf to
G′′ (by replacing one edge at a time with a gem) implies that tw(G′) ≤
max{tw(Gf ), 3} = 3.

Proof of Claim: Recall that a graph K = (V,E) is chordal if every cycle
in it of length at least four has a chord, and that ω(K) denotes the clique
number of K, that is, the maximum size of a clique in K. Moreover, the
treewidth of K equals the minimum value of ω(K ′)−1 over all chordal graphs
of the form K ′ = (V,E′) where E ⊆ E′ (see, e.g., [5, Theorem 11.1.4]).

Let H ′ be a chordal supergraph of H such that tw(H) = ω(H ′)−1. Then,
the graph H ′1 defined as V (H ′1) = V (H1) and E(H ′1) = E(H ′) ∪ E(H1) ∪
{uv, uxu,v} is a chordal supergraph of H1 with ω(H ′1) = max{ω(H ′), 4}.
Therefore, tw(H1) ≤ ω(H ′1)− 1 = max{ω(H ′)− 1, 3} = max{tw(H), 3}.

We have shown that the treewidth of G′ is at most three. It follows that
the stability number of (G′, w′), and hence that of (G,w), can be computed
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in time O(|V (G′)|) = O(n2), e.g., by first computing a tree-decomposition
of G′ of width at most three [4] and then applying a dynamic programming
algorithm along the tree decomposition [3].

Case 2. G is a complete bipartite trigraph.
In this case, G is a graph and all nonzero weights w(p) > 0 for p ∈

D(G) appear on its vertices. Thus, if (A,B) is a bipartition of G, we have

that α(G,w) = max

{ ∑
a∈A

w(a),
∑
b∈B

w(b)

}
. It follows that in this case the

stability number can be computed in time O(n) (to compute A and B,
choose v ∈ V (G) arbitrarily, and take A = N(v) and B = V (G) rA, where
N(v) is the set of all neighbors of v in G).

Case 3. G is a line trigraph.
We apply a transformation similar to the one from Case 1. Namely, let

(G′, w′) be the weighted trigraph obtained from (G,w) by replacing each
semi-adjacent pair of G (in any order) with a gem. Again, we have that the
resulting trigraph G′ has no semi-adjacent pairs, that is, that G′ is a graph,
and that |V (G′)| = |E(G′)| = O(n2).

Claim: Let (H,w) be a weighted line trigraph, let uv be a semi-adjacent
pair in H, and let (H ′, w′) be the trigraph obtained from (H,w) by replacing
uv with a gem. Then, H ′ is also a line trigraph.

Proof of Claim: Suppose that H is a line trigraph of a graph K. This
means that the full realization Hf of H is the line graph of K and all the
triangles of H are strong. Vertices u and v are adjacent in Hf , and so they
correspond to a pair of adjacent edges, say ab and bc, respectively, in K.
Since every triangle in H is strong, the edge uv ∈ E(Hf ) is not part of
any triangle in Hf . This implies that b is a vertex of degree two in K, and
ac 6∈ E(K). Let K ′ be the graph defined as follows: V (K ′) = (V (K) r
{b}) ∪ {d, e, f} and E(K ′) = (E(K) r {ab, bc}) ∪ {ad, de, ec, df, ef}. Then,
the line graph of K ′ is isomorphic to the full realization of H ′. Moreover,
all the triangles of H ′ are strong. Therefore, H ′ is a line trigraph.

Applying the above claim repeatedly to each of the trigraphs in the
sequence of trigraphs transforming (G,w) to (G′, w′) implies that G′ is a line
trigraph. Since G′ is in fact a graph, it is a line graph. Since the operation
of replacing a semi-adjacent pair with a gem preserves the stability number
(by Proposition 5.1), we have that α(G,w) = α(G′, w′).

It is therefore enough to compute the stability number of the weighted
line graph (G′, w′). This can be done as follows. First, compute a graph
H ′ such that G′ = L(H ′); this can be done in time O(|V (G′)|+ |E(G′)|) =
O(n2) [15]. Second, solve the instance of the maximum weight matching
problem on H ′ with edge weights corresponding to vertex weights in G′.
This can be done in time O(|V (H ′)|(|E(H ′)| + |V (H ′)| log |V (H ′)|)) using
the algorithm by Gabow [10].
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The time complexity of the whole algorithm in Case 3 is dominated by
the term O(|V (H ′)|(|E(H ′)|+ |V (H ′)| log |V (H ′)|)), which, since |V (H ′)| =
O(|V (G′)|) = O(n2) and |E(H ′)| = O(|V (G′)|) = O(n2), is of orderO(n4 log n).
This completes the description of the algorithm for Case 3.

The running time O(n4 log n) of Case 3 dominates the running time of
each of the other steps of the algorithm. This completes the proof.

7 Computing the stability number of {ISK4,wheel}-
free weighted trigraphs

We now derive the main result of the paper: a polynomial-time algorithm
that finds the stability number of a weighted {ISK4,wheel}-free trigraph.
We remark that since every weighted {ISK4,wheel}-free graph (with non-
negative integer weights) is a weighted {ISK4,wheel}-free trigraph, this
algorithm can be used to compute the stability number of a weighted
{ISK4,wheel}-free graph (and this is, in fact, the main purpose of our algo-
rithm).

Theorem 7.1. There exists an algorithm with the following specifications:

• Input: a weighted {ISK4,wheel}-free trigraph (G,w);

• Output: α(G,w);

• Running time: O(n7) where n = |V (G)|.

Proof. Let (G,w) be the input {ISK4,wheel}-free trigraph with n = |V (G)|.
We first call the O(n6) time algorithm from Theorem 4.8 with input G. This
algorithm either returns the statement that G is a basic trigraph, or returns
a good cut-partition (A,B,C) of G such that the A-block of G with respect
to (A,B,C) is a basic trigraph.

If the algorithm returns the statement that G is a basic trigraph, then
we apply Theorem 6.1 and compute α(G,w) in time O(n4 log n).

Suppose now that the algorithm returned a good cut-partition (A,B,C)
of G such that the A-block of G with respect to (A,B,C) is a basic trigraph.
For X ∈ {A,B}, let GX be the X-block of G with respect to (A,B,C). Since
(A,B,C) is a good cut-partition of G, we know that |C| ≤ 3, and so it can
be determined in O(1) time whether (A,B,C) is of type clique or of type
stable. Clearly, we can compute the trigraphs GA and GB in O(n2) time: if
(A,B,C) is of type clique, then we have GX = G[X ∪ C] for X ∈ {A,B},
and if (A,B,C) is of type stable, then GX (for X ∈ {A,B}) is the trigraph
obtained from G[X ∪ C] by making the two vertices of C semi-adjacent.
Now, for each of the 2|C| = O(1) sets of the form C ′ ⊆ C, compute the
weighted trigraph Red[GA, w;A ∪ C ′] and the quantity Ext[GA, w;A ∪ C ′].
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By Proposition 3.5, this can be done in time O(n2). Note that each of the
reductions Red[GA, w;A∪C ′] is a weighted induced subtrigraph of the basic
trigraph GA (with an appropriate weight function); since the class of basic
trigraphs is closed under taking induced subtrigraphs, it follows that each
reduction Red[GA, w;A ∪ C ′] is a weighted basic trigraph. Therefore, by
Theorem 6.1, for each C ′ ⊆ C, the stability number of Red[GA, w;A ∪ C ′]
can be computed in time O(n4 log n). For each C ′ ⊆ C, set

αA∪C′ = α(Red[GA, w;A ∪ C ′]) + Ext[GA, w;A ∪ C ′].

Now, if (A,B,C) is of type clique, then we define wB : D(GB) → N as
in Lemma 3.10, we recursively compute α(GB, wB), and we remark that
by Lemma 3.10, we have that α(G,w) = αA + α(GB, wB). On the other
hand, if (A,B,C) is of type stable, then we define wB : D(GB) → N as
in Lemma 3.11, we recursively compute α(GB, wB), and we observe that
by Lemma 3.11, we have that α(G,w) = α(GB, wB). This completes the
description of the algorithm.

As there are at most n−1 recursive calls and the remaining computations
take O(n6) time, the overall running time of the algorithm is O(n7).

As an immediate corollary of Theorem 7.1 and Proposition 1.1, we obtain
the following result.

Corollary 7.2. There exists an algorithm with the following specifications:

• Input: a weighted {ISK4,wheel}-free graph (G,w) with non-negative
integer weights;

• Output: a maximum weight stable set S of (G,w);

• Running time: O(n8) where n = |V (G)|.

We remark that the algorithm from Corollary 7.2 cannot readily be gen-
eralized to trigraphs. One reason for this is that in the graph case, one
can always find a maximum weight stable set that is also an inclusion-wise
maximal stable set (and this fact is implicitly used in the proof of Propo-
sition 1.1), whereas this is not the case for trigraphs. We believe that one
could use techniques similar to the ones from Section 3 in order to general-
ize Corollary 7.2 to trigraphs. However, our main interest here is in graphs,
and we used trigraphs only as a tool for obtaining algorithms for graphs;
for this reason, we did not attempt to construct an algorithm for trigraphs
analogous to the one given by Corollary 7.2. It may also be worth pointing
out that, while we have not attempted to construct a recognition algorithm
for {ISK4,wheel}-free trigraphs, it was shown in [12] that {ISK4,wheel}-free
graphs can be recognized in O(n2m) time (where n is the number of vertices
and m the number of edges of the input graph).
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8 Bipartite trigraphs

As stated in the Introduction, computing the stability number of a weighted
bipartite trigraph is NP-hard. We now prove this result.

Theorem 8.1. The problem of computing the stability number of a weighted
bipartite trigraph is NP-hard.

Proof. Suppose there is a polynomial-time algorithm A for the problem.
We prove the theorem by using A as a subroutine to compute the stability
number of a general graph in polynomial time.

Let H be an arbitrary graph, and let n = |V (H)| and m = |E(H)|. The
idea is as follows. We build a bipartite trigraph G by first subdividing each
edge of H once, and then turning all edges of the resulting graph into semi-
adjacent pairs. (Thus, |V (G)| = n + m.) We construct a weight function
w for G such that α(G,w) = α(H) + 2m. We can use A to find α(G,w),
and because α(G,w) = α(H) + 2m, we deduce that α(H) can be found in
polynomial time. Now, describing the weight function w is bit complicated
because if uv is an edge of H, the weights assigned to the two semi-adjacent
pairs of G that correspond to uv are not symmetric between u and v. So,
in order to properly define the weight function w, we must first introduce
some more notation.

First, let ~H = (V ( ~H), A( ~H)) be any orientation of H (in other words, ~H
is a digraph that satisfies V ( ~H) = V (H), for each edge uv ∈ E(H), exactly
one of the arcs ~uv and ~vu belongs to A( ~H), and A( ~H) contains no other
arcs). For each ~uv ∈ A( ~H), we introduce a new vertex x ~uv, and we set X =
{x ~uv | ~uv ∈ A( ~H)}. We now let G be the bipartite trigraph with bipartition
(X,V (H)) in which for all ~uv ∈ A(H), vertex x ~uv is semi-adjacent to u and
v and strongly anti-adjacent to all other vertices of V (H). (Thus, each arc
~uv of ~H effectively gets replaced by a narrow path u− x ~uv − v.) We remark
that G contains no strongly adjacent pairs, and so all subsets of V (G) are
stable sets of G.

We now define a function w : D(G)→ N as follows:

• w(v) = 1 for all v ∈ V (G);

• w(ux ~uv) = w(x ~uvv) = w(x ~uv, v) = w(v, x ~uv) = 1 for all ~uv ∈ A( ~H);

• w(e) = 0 for all other e ∈ D(G).

Clearly, w is a weight function for G, and by assumption, we can find α(G,w)
in polynomial time. (Since |V (G)| = n + m, the running time is in fact
polynomial in n.) We claim that α(G,w) = α(H) + 2m. This is enough, for
then we can clearly compute α(H) in polynomial time.

We now need some more notation. For each ~uv ∈ A( ~H) and S ⊆ V (G),
set

cont( ~uv;S) = JS ∩ {u, x ~uv, v}K(G[u,x ~uv ,v],w) −
∑

x∈S∩{u,v}
w(x).
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We refer to cont( ~uv;S) as the contribution of the arc ~uv to the weight of S
with respect to (G,w). Clearly, for all S ⊆ V (G), we have that

JSK(G,w) =
∑

x∈S∩V (H)

w(x) +
∑

~uv∈A( ~H)

cont( ~uv;S)

= |S ∩ V (H)|+
∑

~uv∈A( ~H)

cont( ~uv;S).

Furthermore, we see by inspection that for all ~uv ∈ A(H) and S ⊆ V (G),
we have that

cont( ~uv;S) =



1 if either S ∩ {u, x ~uv, v} = {u, x ~uv, v}
or S ∩ {u, x ~uv, v} = {x ~uv, v}
or S ∩ {u, x ~uv, v} = {u, v}
or S ∩ {u, x ~uv, v} = {u}

2 if either S ∩ {u, x ~uv, v} = {u, x ~uv}
or S ∩ {u, x ~uv, v} = {v}
or S ∩ {u, x ~uv, v} = {x ~uv}
or S ∩ {u, x ~uv, v} = ∅

In particular, 1 ≤ cont( ~uv;S) ≤ 2 for all ~uv ∈ A( ~H) and S ⊆ V (H).
We can now show that α(H) + 2m ≤ α(G,w). Let SH be a stable set

of H such that |SH | = α(H). Since SH is a stable set of H, we know that
|SH ∩ {u, v}| ≤ 1 for all ~uv ∈ A( ~H). Now, let Y = {x ~uv | ~uv ∈ A( ~H), u ∈
SH}, and set SG = SH∪Y . By construction, for all ~uv ∈ A( ~H), we have that
SG ∩ {u, x ~uv, v} ∈ {{u, x ~uv}, {v}, ∅}, and consequently, cont( ~uv;SG) = 2.
Since |A( ~H)| = m, and since SG is a stable set of G (because G contains no
strongly adjacent pairs), it now follows that

α(H) + 2m = |SH |+
∑

~uv∈A( ~H)

cont( ~uv;SG)

= JSGK(G,w)

≤ α(G,w).

It remains to show that α(G,w) ≤ α(H) + 2m. Recall that all subsets
of V (G) are stable sets of G. Now, among all subsets SG of V (G) that
satisfy JSGK(G,w) = α(G,w), choose one for which the size of the set { ~uv ∈
A( ~H) | u, v ∈ SG} is as small as possible. We need to show that JSGK(G,w) ≤
α(H)+2m. Since cont( ~uv;S) ≤ 2 for all ~uv ∈ A( ~H), and since |A( ~H)| = m,
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we see that
∑

~uv∈A( ~H)

cont( ~uv;SG) ≤ 2m, and consequently,

JSGK(G,w) = |SG ∩ V (H)|+
∑

~uv∈A( ~H)

cont( ~uv;SG)

≤ |SG ∩ V (H)|+ 2m.

Thus, it only remains to show that |SG ∩ V (H)| ≤ α(H). To prove this, we
need only show that SG ∩ V (H) is a stable set of H. Suppose otherwise,
and choose an arc ~u0v0 ∈ A( ~H) such that u0, v0 ∈ SG. Our goal is to
construct a set S′G ⊆ V (G) such that JS′GK(G,w) = α(G,w) and such that

|{ ~uv ∈ A( ~H) | u, v ∈ S′G}| < |{ ~uv ∈ A( ~H) | u, v ∈ SG}|. This will contradict
the minimality of SG, which is all we need.

Let S′G be the subset of V (G) defined as follows:

• S′G ∩ V (H) = (SG ∩ V (H)) r {u0};

• for all ~uv ∈ A( ~H),

– if u0 /∈ {u, v}, then we set x ~uv ∈ S′G if and only if x ~uv ∈ SG;

– if u0 = u, then we set x ~u0v /∈ S′G;

– if u0 = v, then we set x ~u0v ∈ S′G.

Because of the arc ~u0v0, we see that |{ ~uv ∈ A( ~H) | u, v ∈ S′G}| < |{ ~uv ∈
A( ~H) | u, v ∈ SG}|. In order to verify that S′G contradicts the minimality
of SG, it remains to show that JS′GK(G,w) = α(G,w). By construction, |S′G ∩
V (H)| = |SG∩V (H)|−1. Next, for all ~uv ∈ A( ~H) such that u0 ∈ {u, v}, we
have that cont( ~uv;S′G) = 2, and consequently, cont( ~uv;S′G) ≥ cont( ~uv;SG).
Furthermore, cont( ~u0v0;SG) = 1, and so cont( ~uv;S′G) = 1 + cont( ~uv;SG).

On the other hand, for all ~uv ∈ A( ~H) such that u0 /∈ {u, v}, we have that
cont( ~uv;S′G) = cont( ~uv;SG). Thus,∑

~uv∈A( ~H)

cont( ~uv;S′G) ≥ 1 +
∑

~uv∈A( ~H)

cont( ~uv;SG),
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and it follows that

JS′GK(G,w) = |S′G ∩ V (H)|+
∑

~uv∈A( ~H)

cont( ~uv;S′G)

≥ (|SG ∩ V (H)| − 1) + (1 +
∑

~uv∈A( ~H)

cont( ~uv;SG))

= |SG ∩ V (H)|+
∑

~uv∈A( ~H)

cont( ~uv;SG)

= JSGK(G,w)

= α(G,w).

Since S′G is a stable set of G (because G contains no strongly adjacent
pairs), we deduce that JS′GK(G,w) = α(G,w). Thus, S′G indeed contradicts
the minimality of SG. This completes the argument.
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