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Abstract

A graph G is perfect if for all induced subgraphs H of G, χ(H) = ω(H).
A graph G is Berge if neither G nor its complement contains an induced
odd cycle of length at least five. The Strong Perfect Graph Theorem [9]
states that a graph is perfect if and only if it is Berge. The Strong Per-
fect Graph Theorem was obtained as a consequence of a decomposition
theorem for Berge graphs [4, 9], and one of the decompositions in this
decomposition theorem was the “balanced skew-partition.” A clique-
coloring of a graph G is an assignment of colors to the vertices of G in
such a way that no inclusion-wise maximal clique of G of size at least
two is monochromatic, and the clique-chromatic number of G, denoted
by χC(G), is the smallest number of colors needed to clique-color G.
There exist graphs of arbitrarily large clique-chromatic number, but it
is not known whether the clique-chromatic number of perfect graphs
is bounded. In this paper, we prove that every perfect graph that does
not admit a balanced skew-partition is 2-clique colorable. The main
tool used in the proof is a decomposition theorem for “tame Berge
trigraphs” due to Chudnovsky et al. [11]

1 Introduction

All graphs in this paper are finite and simple. Given a graph G, we denote
by V (G) the vertex-set of G, by E(G) the edge-set of G, and by χ(G) the
chromatic number of G. A clique of a graph G is a set of pairwise adja-
cent vertices of G. The clique number of G, denoted by ω(G), is the size
of a maximum clique of G. An assignment of colors to the vertices of G is
said to be a clique-coloring of G provided that no inclusion-wise maximal
clique of G of size at least two is colored monochromatically. (As usual,

∗Université de Lyon, LIP, UMR 5668, ENS de Lyon - CNRS - UCBL - INRIA. E-
mail: irena.penev@ens-lyon.fr. This work was supported by the LABEX MILYON (ANR-
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a set S ⊆ V (G) is said to be monochromatic with respect to a given col-
oring of G provided that no two vertices of S receive different colors.) A
k-clique-coloring of G is a clique-coloring q : V (G) → {1, . . . , k} of G, and
G is said to be k-clique-colorable if it admits a k-clique-coloring. The clique-
chromatic number of G, denoted by χC(G), is the smallest number k such
that G is k-clique-colorable. It is clear that any proper coloring of a graph
G is a clique-coloring of G, and so χC(G) ≤ χ(G). It is also clear that if
G is a triangle-free graph (that is, if ω(G) ≤ 2), then any clique-coloring of
G is also a proper coloring of G, and consequently, χC(G) = χ(G). (Since
there exist triangle-free graphs of arbitrarily large chromatic number [20, 25],
this implies that there exist triangle-free graphs of arbitrarily large clique-
chromatic number.) However, if G contains a triangle, then χ(G) may be
much larger than χC(G). For instance, if n ≥ 2, then χ(Kn) = n, while
χC(Kn) = 2. Furthermore, there exist connected graphs of arbitrarily large
clique number and clique-chromatic number; indeed, Bacsó et al. [2] showed
that the line graphs of complete graphs can have an arbitrarily large clique-
chromatic number.

A graph G is perfect if for every induced subgraph H of G, χ(H) = ω(H). A
graph is imperfect if it is not perfect. Given graphs G and H, we say that G
is H-free provided that G does not contain (an isomorphic copy of) H as an
induced subgraph. If H is a family of graphs, a graph G is said to be H-free
provided that for all graphs H ∈ H, G is H-free. A hole in a graph G is an
induced cycle of G of length at least four; a hole of G is odd if its length is
odd. A graph G is said to be Berge if neither G nor G (the complement of
G) contains an odd hole. The Strong Perfect Graph Theorem [9] states that
a graph is perfect if and only if it is Berge. As pointed out above, there exist
graphs of arbitrarily large clique-chromatic number. However, it remains an
open problem to determine whether the clique-chromatic number of perfect
graphs is bounded (this question was raised, for example, in [14]). Progress
in this direction has been made in some special cases. For example, Bacsó
et al. [2] proved that all {claw, odd-hole}-free graphs are 2-clique-colorable,
and Défossez [12] proved that all {bull, odd-hole}-free graphs are 2-clique-
colorable. (The claw is the complete bipartite graph K1,3, and the bull is
the five-vertex graph consisting of a triangle and two vertex-disjoint pen-
dant edges.) In addition, Bacsó et al. [2] proved that “generalized split
graphs” are 3-clique-colorable (a generalized split graph is a graph G whose
vertex-set can be partitioned into sets A,B1, . . . , Bk such that in either G
or G, A,B1, . . . , Bk are all cliques and there are no edges between any two
of B1, . . . , Bk; it is easy to see that generalized split graphs are perfect).
Using a result of Prömel and Steger [21] that “almost all” C5-free graphs
are generalized split graphs, Bacsó et al. [2] deduced that “almost all” per-
fect graphs are 3-clique-colorable. On the other hand, there exist perfect
graphs whose clique-chromatic number is three: one well-known example is
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the graph (which we will call C49 ) with vertex-set {a1, a2, . . . , a9} and edge-
set {a1a2, a2a3, a3a4, . . . , a8a9, a9a1} ∪ {a3a6, a6a9, a9a3}. (Thus, the graph

C49 is obtained from the cycle of length nine by choosing three evenly spaced
vertices and adding edges between them.) All this suggests that it might be
true that all perfect graphs are 3-clique-colorable.

One direction of the Strong Perfect Graph Theorem [9] cited above is a
simple exercise: it is easy to see that odd cycles of length at least five and
their complements are imperfect, and consequently, all perfect graphs are
Berge. The proof of the other direction (“all Berge graphs are perfect”)
is over a hundred pages long, and its main ingredient is a decomposition
theorem for Berge graphs. One version of this decomposition theorem was
proven in [9], and a stronger version was proven in [4]. The stronger version
of this decomposition theorem is stated below (we remark that we have not
yet defined all the terms that appear in the statement of this theorem).

Theorem 1.1. [4] Let G be a Berge graph. Then at least one of the following
holds:

• G or G is a bipartite graph;

• G or G is the line graph of a bipartite graph;

• G is a double-split graph;

• G or G admits a proper 2-join;

• G admits a balanced skew-partition.

Let us now define the balanced skew-partition. (We will define other terms
used in Theorem 1.1 in a slightly more general context in section 3.) Given a
graph G and a set S ⊆ V (G), we denote by G[S] the subgraph of G induced
by S. The length of a path is the number of edges that it contains, and a
path is odd if its length is odd. A skew-partition of G is a partition (X,Y )
of V (G) such that G[X] and G[Y ] are both disconnected. A skew-partition
(X,Y ) of G is balanced if it satisfies the following two conditions:

• G contains no induced odd path of length greater than one whose
endpoints belong to Y and all of whose interior vertices belong to X;

• G contains no induced odd path of length greater than one whose
endpoints belong to X and all of whose interior vertices belong to Y .

Note that (X,Y ) is a skew-partition (respectively: balanced skew-partition)
of a graph G if and only if (Y,X) is a skew-partition (respectively: balanced
skew-partition) of G. Thus, G admits a balanced skew-partition if and only
if G does. The main result of this paper is stated below (its proof is given
in section 6).
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Theorem 1.2. Every perfect graph that does not admit a balanced skew-
partition is 2-clique-colorable.

The balanced skew-partition decomposition is notoriously difficult to work
with, and it presents the main obstacle to using Theorem 1.1 for (for in-
stance) constructing combinatorial polynomial-time algorithms for perfect
(equivalently: Berge) graphs. The difficulty of dealing with balanced skew-
partitions has led to the study of perfect graphs that do not admit this
particular decomposition. Trotignon [23] proved a decomposition theorem
for Berge graphs (related to, but different from, the decomposition theo-
rems from [4, 9]) and used it to construct a polynomial-time algorithm that
decides whether a Berge graph admits a balanced skew-partition. (See [24]
for some further algorithmic consequences of the decomposition theorem
from [23]. We also remark that Berge graphs can be recognized in polyno-
mial time [8]; the algorithm from [8] does not rely on decomposition theorems
from [4, 9, 23].) Chudnovsky et al. [11] proved a decomposition theorem for
“tame Berge trigraphs,” a theorem that is particularly well suited for the
study of Berge (tri)graphs that do not admit a balanced skew-partition (a
more detailed discussion of this can be found in section 3 of the present
paper). Formal definitions are given in sections 2 and 3, but informally, a
trigraph is a generalization of a graph in which a pair of distinct vertices
can be “strongly adjacent,” “strongly anti-adjacent,” or “semi-adjacent.”
One natural way to think of this is to consider strongly adjacent pairs and
strongly anti-adjacent pairs to be edges and non-edges, respectively, whereas
semi-adjacent pairs have undetermined adjacency. (In particular, a graph
can be seen as a trigraph that has no semi-adjacent pairs.) Trigraphs were
originally introduced by Chudnovsky [4, 5] as a tool for studying decomposi-
tions of Berge graphs; in fact Theorem 1.1 cited above is a consequence of a
theorem about Berge trigraphs proven in [4]. (Later, trigraphs were also used
to study the structure of claw-free graphs [10] and bull-free graphs [6, 7].)
The use of trigraphs in [11] lead to a theorem that is simpler than the one
from [23]. Furthermore, Chudnovsky et al. [11] used the decomposition the-
orem from that same paper to give a combinatorial polynomial-time coloring
algorithm for perfect graphs that do not admit a balanced skew-partition.
(We remark that a polynomial-time coloring algorithm for perfect graphs
was given in [17]. However, the algorithm from [17] relies on the ellipsoid
method and is therefore not combinatorial.) The decomposition theorem
from [11] was also used by Lagoutte and Trunck [19] to study clique-stable
set separation in perfect graphs that do not admit a balanced skew-partition.
In the present paper, we use the decomposition theorem from [11] to prove
Theorem 1.2.

We complete the Introduction by giving an outline of the paper. In sec-
tion 2, we define “trigraphs” and “trigraph clique-coloring,” and we prove a
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few preliminary results about the latter. In section 3, we state Theorem 3.1,
which is the analogue of Theorem 1.2 for trigraphs (in fact, Theorem 1.2 is
an immediate corollary of Theorem 3.1). In section 3, we also state those
results of [11] that we need for the purposes of proving Theorem 3.1, and
(using the results of [4]) we slightly strengthen the main structural result
of [11] (see Theorem 3.10). We remark that the definitions of trigraphs and
related concepts given in sections 2 and 3 were mostly taken from [11] (with
some minor modifications). However, to the author’s knowledge, trigraph
clique-coloring has not previously been studied (in particular, the definition
of trigraph clique-coloring given in section 2 of the present paper is new).
In section 4, we prove that (with the exception of two small trigraphs) the
“basic” trigraphs from Theorem 3.10 are 2-clique-colorable, and in section 5,
we deal with decompositions that appear in Theorem 3.10. In section 6, we
use Theorem 3.10 and the results of sections 4 and 5 to prove Theorem 3.1,
from which we then easily derive Theorem 1.2 (the main result of this paper).
Finally, in section 7, we discuss a few open problems.

2 Trigraphs and clique-coloring

Given a set S and a non-negative integer k, we denote by
(
S
k

)
the set of all

subsets of S of size k. A trigraph is an ordered pair G = (V (G), θG), where
V (G) is a finite set, called the vertex-set of G, and θG :

(
V (G)
2

)
→ {−1, 0, 1}

is a function, called the adjacency function of G. The null trigraph is the
trigraph whose vertex-set is empty, and a non-null trigraph is any trigraph
whose vertex-set is non-empty. If G is a trigraph, then members of V (G)
are called vertices of G, and if u, v ∈ V (G) are distinct, then:

• if θG({u, v}) = 1, we say that uv is a strongly adjacent pair of G, or
that u and v are strongly adjacent in G, or that u is strongly adjacent
to v in G, or that v is a strong neighbor of u in G, or that u and v are
the endpoints of a strongly adjacent pair of G;

• if θG({u, v}) = 0, we say that uv is a semi-adjacent pair of G, or that
u and v are semi-adjacent in G, or that u is semi-adjacent to v in G, or
that v is a weak neighbor of u in G, or that u and v are the endpoints
of a semi-adjacent pair of G;

• if θG({u, v}) = −1, we say that uv is a strongly anti-adjacent pair of
G, or that u and v are strongly anti-adjacent in G, or that u is strongly
anti-adjacent to v in G, or that v is a strong anti-neighbor of u in G,
or that u and v are the endpoints of a strongly anti-adjacent pair of G;

• if θG({u, v}) ≥ 0, we say that uv is an adjacent pair of G, or that u
and v are adjacent in G, or that u is adjacent to v in G, or that v is
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a neighbor of u in G, or that u and v are the endpoints of an adjacent
pair of G;

• if θG({u, v}) ≤ 0, we say that uv is an anti-adjacent pair of G, or that
u and v are anti-adjacent in G, or that u is anti-adjacent to v in G, or
that v is an anti-neighbor of u in G, or that u and v are the endpoints
of an anti-adjacent pair of G.

We remark that in some papers on trigraphs (for instance, in [11]), semi-
adjacent pairs are called “switchable pairs.” If G is a trigraph and A,B ⊆
V (G) are disjoint sets, a semi-adjacent pair between A and B is a semi-
adjacent pair of G whose one endpoint belongs to A and whose other end-
point belongs to B. Note that a semi-adjacent pair is simultaneously an
adjacent pair and an anti-adjacent pair. Note also that any graph can
be thought of as a trigraph: a graph is simply a trigraph with no semi-
adjacent pairs. Indeed, if G is a graph with vertex-set V (G) and edge-set
E(G), we can turn G into a trigraph by defining the adjacency function
θG : V (G)→ {−1, 0, 1} of G by setting

θG({u, v}) =


1 if uv ∈ E(G)

−1 if uv /∈ E(G)

for all distinct u, v ∈ V (G).

Given a trigraph G, a vertex u ∈ V (G), and a set X ⊆ V (G) r {u}, we say
that u is complete (respectively: strongly complete, anti-complete, strongly
anti-complete) to X in G provided that u is adjacent (respectively: strongly
adjacent, anti-adjacent, strongly anti-adjacent) to every vertex of X in G.
Given a trigraph G and disjoint sets X,Y ⊆ V (G), we say that X is com-
plete (respectively: strongly complete, anti-complete, strongly anti-complete)
to Y in G provided that every vertex of X is complete (respectively: strongly
complete, anti-complete, strongly anti-complete) to Y in G.

Isomorphism between trigraphs is defined in the natural way. The com-
plement of a trigraph G = (V (G), θG) is the trigraph G = (V (G), θG) such
that V (G) = V (G) and θG = −θG. Thus, G is obtained from G by turn-
ing all strongly adjacent pairs of G into strongly anti-adjacent pairs, and
turning all strongly anti-adjacent pairs of G into strongly adjacent pairs;
semi-adjacent pairs of G remain semi-adjacent in G.

Given trigraphs G and G̃, we say that G̃ is a semi-realization of G pro-
vided that V (G̃) = V (G), and that for all distinct u, v ∈ V (G̃) = V (G), we
have that if θG({u, v}) = 1 then θ

G̃
({u, v}) = 1, and if θG({u, v}) = −1 then

θ
G̃

({u, v}) = −1. Thus, a semi-realization of a trigraph G is any trigraph
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that can be obtained from G by “deciding” the adjacency of some semi-
adjacent pairs of G, that is, by possibly turning some semi-adjacent pairs
of G into strongly adjacent or strongly anti-adjacent pairs. (In particular,
every trigraph is a semi-realization of itself.) A realization of a trigraph G is
a graph that is a semi-realization of G. Thus, a realization of a trigraph G
is any graph that can be obtained by “deciding” the adjacency of all semi-
adjacent pairs of G, that is, by turning each semi-adjacent pair of G into an
edge or a non-edge. Clearly, if a trigraph G has m semi-adjacent pairs, then
G has exactly 2m realizations. The full realization of a trigraph G is the
graph obtained from G by turning all semi-adjacent pairs of G into strongly
adjacent pairs (i.e. edges), and the null realization of G is the graph obtained
from G by turning all semi-adjacent pairs of G into strongly anti-adjacent
pairs (i.e. non-edges). Note that the complement of the full realization of a
trigraph G is equal to the null realization of the complement of G. Similarly,
the complement of the null realization of a trigraph G is equal to the full
realization of the complement of G.

Given a trigraph G and a set X ⊆ V (G), the subtrigraph of G induced
by X, denoted by G[X], is the trigraph with vertex-set X and adjacency
function θG �

(
X
2

)
. If v1, . . . , vk are vertices of a trigraph G, we often write

G[v1, . . . , vk] instead of G[{v1, . . . , vk}].

A light vertex of a trigraph G is a vertex w ∈ V (G) that satisfies all the
following:

• w has exactly two weak neighbors in G, call them u and v;

• w is strongly anti-complete to V (G) r {u, v, w} in G;

• uv is a strongly anti-adjacent pair in G;

• neither u nor v has a weak neighbor in V (G) r {u, v, w} in G.

A heavy vertex of a trigraph G is a vertex w ∈ V (G) that satisfies all the
following:

• w has exactly two weak neighbors in G, call them u and v;

• w is strongly complete to V (G) r {u, v, w} in G;

• uv is a strongly adjacent pair in G;

• neither u nor v has a weak neighbor in V (G) r {u, v, w} in G.

Note that w is a light vertex of a trigraph G if and only if w is a heavy
vertex of G. A trigraph G is said to be tame provided that no vertex of G
has more than two weak neighbors in G, and that every vertex of G that
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has exactly two weak neighbors is either light or heavy. A trigraph G is
said to be monogamous provided that no vertex of G has more than one
weak neighbor in G. Thus, every graph is a monogamous trigraph, and
every monogamous trigraph is a tame trigraph. Furthermore, note that a
trigraph is tame (respectively: monogamous) if and only if its complement
is tame (respectively: monogamous). It is also clear that if G is a tame
(respectively: monogamous) trigraph, then all semi-realizations of G and all
induced subtrigraphs of G are tame (respectively: monogamous) trigraphs.
Most of this paper will be devoted to tame trigraphs; in particular, the de-
composition theorem from [11] (which we state in section 3) deals with tame
“Berge” trigraphs (“Berge” trigraphs are defined in section 3).

A clique (respectively: strong clique, stable set, strongly stable set) of a
trigraph G is a set of pairwise adjacent (respectively: strongly adjacent,
anti-adjacent, strongly anti-adjacent) vertices of G. Note that any subset of
V (G) of size at most one is both a strong clique and a strongly stable set
of G. Note also that if S ⊆ V (G), then S is a (strong) clique of G if and
only if S is a (strongly) stable set of G. Note furthermore that if K is a
strong clique and S is a stable set of G, then |K ∩ S| ≤ 1; similarly, if K is
a clique and S is a strongly stable set of G, then |K ∩ S| ≤ 1. However, if
K is a clique and S is a stable set of G, then we are only guaranteed that
vertices in K ∩S are pairwise semi-adjacent to each other, and it is possible
that |K ∩ S| ≥ 2. A (strong) triangle is a (strong) clique of size three. A
clique K in a trigraph G is said to be important provided that |K| ≥ 2 and
that no vertex in V (G) r K is strongly complete to K in G. Note that if
G is a trigraph, then a set K ⊆ V (G) is an important clique of G if and
only if there exists a realization G̃ of G such that K is an inclusion-wise
maximal clique of size at least two of G̃. (In fact, more is true: if G is a
trigraph, then a set K ⊆ V (G) is an important clique of G if and only if K
is an inclusion-wise maximal clique of size at least two of the realization of
G obtained by turning all semi-adjacent pairs of G, both of whose endpoints
lie in K, into edges, and turning all other semi-adjacent pairs of G into non-
edges.) Note also that if G̃ is a semi-realization of a trigraph G, then every
important clique of G̃ is an important clique of G, but an important clique
of G need not be an important clique of G̃ (indeed, an important clique K
of G need not be a clique of G̃, and even if K is a clique of G̃, it may fail to
be important in G̃). Furthermore, it is clear that if G is a graph, then a set
K ⊆ V (G) is an important clique of G if and only if K is an inclusion-wise
maximal clique of G of size at least two.

A clique-coloring of a trigraph G is an assignment of colors to the vertices of
G in such a way that no important clique of G is colored monochromatically.
A k-clique-coloring of a trigraph G is a clique-coloring q : V (G)→ {1, . . . , k}
of G. A trigraph G is k-clique-colorable if there exists a k-clique-coloring
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of G, and the clique-chromatic number of G, denoted by χC(G), is the
smallest number k such that G is k-clique-colorable. We now prove three
easy propositions concerning clique-coloring of trigraphs. The first of these
propositions (namely, Proposition 2.1) will be used extensively throughout
the paper. The remaining two propositions (Propositions 2.2 and 2.3) will
not be used in subsequent sections, but they may be useful for gaining a
better understanding of trigraph clique-coloring, and we include them for
this reason.

Proposition 2.1. Let k be a positive integer, and let G be a trigraph. Then
G is k-clique-colorable if and only if there exists a partition (S1, . . . , Sk) of
V (G) into k (possibly empty) sets such that no important clique of G is
included in any one of S1, . . . , Sk.

Proof. This follows immediately from the definition of a k-clique-coloring.
(The sets S1, . . . , Sk are the color classes of a k-clique-coloring of G.)

Proposition 2.2. Let G be a trigraph, and let G̃ be a semi-realization of
G. Then every clique-coloring of G is a clique-coloring of G̃ as well, and
consequently, χC(G̃) ≤ χC(G).

Proof. The first statement follows from the fact that every important clique
of G̃ is also an important clique of G. The second statement follows from
the first.

Proposition 2.3. Let G be a trigraph, and let q be an assignment of colors
to the vertices of G. Then q is a clique-coloring of G if and only if q is a
clique-coloring of all the realizations of G.

Proof. The “only if” part follows from Proposition 2.2. For the “if” part,
suppose that q is a clique-coloring of all the realizations of G. To show
that q is a clique-coloring of G, fix a clique K of G of size at least two,
monochromatic with respect to q. Let GK be the realization of G that turns
all semi-adjacent pairs of G, both of whose endpoints lie in K, into edges,
and that turns all other semi-adjacent pairs of G into non-edges. Then K
is a clique of GK of size at least two, monochromatic with respect to q.
By assumption, q is a clique-coloring of GK , and consequently, K is not a
maximal clique of GK . Fix v ∈ V (G) rK such that K ∪ {v} is a clique of
GK . By the construction of GK then, v is strongly complete to K in G, and
so K is not an important clique of G. This proves that q is a clique-coloring
of G.

Proposition 2.2 implies that for every trigraph G, we have that

max{χC(G̃) | G̃ is a realization of G} ≤ χC(G). (1)

One might wonder whether the inequality from (1) can be turned into an
equality. The answer to this question is “no,” even if one restricts one’s
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attention to tame trigraphs. To see this, consider the trigraph E1 with
vertex-set {a, b, c} in which ab is a strongly adjacent pair, and ac, bc are semi-
adjacent pairs. (The trigraph E1 appears in the statement of Theorem 3.1,
our main result for trigraphs. We remark that c is a heavy vertex of E1.) It is
easy to see that χC(E1) = 3, even though the clique-chromatic number of ev-
ery realization of E1 is two. We remark that we have not been able to deter-
mine whether this sort of “anomaly” can occur in the context of monogamous
trigraphs, that is, we have not been able to determine whether for all monog-
amous trigraphs G, one has χC(G) = max{χC(G̃) | G̃ is a realization of G}.
We do, however, know that there are monogamous trigraphs whose clique-
chromatic number is greater than both the clique-chromatic number of
their full realization, and the clique-chromatic number of their null real-
ization. One example is the trigraph G with vertex-set {a1, a2, a3, a4, a5} in
which a1a2, a2a3, a3a4, a4a5 are strongly adjacent pairs, a1a5, a2a4 are semi-
adjacent pairs, and a1a3, a1a4, a2a5, a3a5 are strongly anti-adjacent pairs.
Then χC(G) = 3, even though the clique-chromatic number of both the full
realization and the null realization of G is two. However, one realization of
G is a chordless cycle of length five, and the clique-chromatic number of this
realization of G is three.

3 Theorems 3.1 and 3.10, and results of [11]

In this section, we state Theorem 3.1, the main result of this paper for tri-
graphs. (Theorem 3.1 is proven in section 6. Theorem 1.2, stated in the
Introduction, is a special case of Theorem 3.1.) In this section, we also state
(and slightly strengthen) certain results from [11] that we need in this paper.
We begin with some definitions.

A trigraph is said to be a path provided that its vertex-set can be ordered
as {p0, . . . , pk} (where k ≥ 0), so that for all distinct i, j ∈ {0, . . . , k}, if
|i − j| = 1 then pipj is an adjacent pair, and if |i − j| > 1 then pipj is an
anti-adjacent pair; such a path is denoted by p0 − . . . − pk. The endpoints
of a path p0 − . . .− pk are the vertices p0 and pk (we also say that the path
p0 − . . .− pk is between p0 and pk), and the interior vertices of p0 − . . .− pk
are the vertices p1, . . . , pk−1. The length of a path p0 − . . .− pk is k. (Thus,
a path of length k contains k + 1 vertices.) A path is said to be odd if its
length is odd. A path in a trigraph G is an induced subtrigraph P of G such
that P is a path. Given disjoint sets A,B ⊆ V (G), a path p0 − . . . − pk
of G is said to be between A and B provided that p0 ∈ A, pk ∈ B, and
p1, . . . , pk−1 /∈ A∪B. A trigraph G is said to be connected provided that for
all distinct u, v ∈ V (G), there is a path in G between u and v. A component
of a non-null trigraph G is a maximal connected induced subtrigraph of G.
Note that a trigraph is connected if and only if its full realization is con-
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nected, and that an induced subtrigraph C of a trigraph G is a component of
G if and only if the full realization of C is a component of the full realization
of G.

An induced subtrigraph H of a trigraph G is a hole in G provided that
the vertex-set of H can be ordered as {h1, . . . , hk} (with k ≥ 4), so that for
all distinct i, j ∈ {1, . . . , k}, if |i − j| = 1 or |i − j| = k − 1 then hihj is
an adjacent pair, and if 1 < |i − j| < k − 1 then hihj is an anti-adjacent
pair; such a hole is often denoted by h1 − h2 − . . . − hk − h1. The length
of a hole is the number of vertices that it contains; a hole is said to be odd
if its length is odd. A trigraph G is said to be Berge if neither G nor G
contains an odd hole. By definition, a trigraph is Berge if and only if its
complement is Berge. It is also clear that if a trigraph is Berge, then so
are all its semi-realizations and all its induced subtrigraphs. Furthermore,
note that a trigraph is Berge if and only if all its realizations are Berge.
(We remark that the class F from [11] is precisely the class of tame Berge
trigraphs. In the present paper, however, rather than saying “G belongs to
the class F ,” we simply say “G is a tame Berge trigraph.”)

A skew-partition of a trigraph G is a partition (X,Y ) of V (G) such that
neither G[X] nor G[Y ] is connected. A skew-partition (X,Y ) of a trigraph
G is said to be balanced provided that both the following hold:

• G contains no odd path of length greater than one whose endpoints
belong to Y and all of whose interior vertices belong to X;

• G contains no odd path of length greater than one whose endpoints
belong to X and all of whose interior vertices belong to Y .

Note that if (X,Y ) is a (balanced) skew-partition of a trigraph G, then
(Y,X) is a (balanced) skew-partition of G. Note also that if (X,Y ) is a
(balanced) skew-partition of a trigraph G, then (X,Y ) is (balanced) skew-
partition of all semi-realizations of G. We say that a trigraph G admits a
(balanced) skew-partition if there exists a (balanced) skew-partition (X,Y )
of G.

We remind the reader that E1 is the trigraph with vertex-set {a, b, c} in
which ab is a strongly adjacent pair, and ac, bc are semi-adjacent pairs. Let
E2 be the trigraph with vertex-set {a, b, c, d} in which ab, cd are strongly
adjacent pairs, ac, bc are semi-adjacent pairs, and ad, bd are strongly anti-
adjacent pairs. It is easy to see that E1 and E2 are both tame Berge tri-
graphs that do not admit a balanced skew-partition. Using the fact that,
in both E1 and E2, the sets {a, b}, {b, c}, and {c, a} are important cliques
(and therefore cannot be colored monochromatically by any clique-coloring
of E1 or E2), we deduce that χC(E1) = χC(E2) = 3. Our main theorem for
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trigraphs (stated below, and proven in section 6) states that, with the ex-
ception of E1 and E2, all tame Berge trigraphs that do not admit a balanced
skew-partition are 2-clique-colorable.

Theorem 3.1. Every tame Berge trigraph that does not admit a balanced
skew-partition, and that is isomorphic to neither E1 nor E2, is 2-clique-
colorable.

A class of trigraphs is hereditary if it is closed under isomorphism and in-
duced subtrigraphs. (In particular then, a class of graphs is hereditary if it is
closed under isomorphism and induced subgraphs.) It may be worth point-
ing out that the class of tame Berge trigraphs that do not admit a balanced
skew-partition (that is, the class with which Theorem 3.1 is concerned) is
not hereditary. In fact, even the class of Berge (equivalently: perfect) graphs
that do not admit a balanced skew-partition is not hereditary. To see this,
note that graphs that are cycles of even length are Berge and do not ad-
mit a balanced skew-partition, whereas graphs that are paths of length at
least three do admit a balanced skew-partition. Do, however, note that the
class of tame Berge trigraphs that do not admit a balanced skew-partition
is closed under complementation, that is, if G is a tame Berge trigraph that
does not admit a balanced skew-partition, then G is also a tame Berge tri-
graph that does not admit a balanced skew-partition.

As stated in the Introduction, the main tool for proving Theorem 3.1 is the
decomposition theorem from [11] for tame Berge trigraphs, and its slight
strengthening (namely, Theorem 3.10), which we prove in this section. In-
formally, the decomposition theorem from [11] states that if G is a tame
Berge trigraph, then either G is “basic,” or one of G,G admits a “decom-
position.” One of the decompositions is the balanced skew-partition. The
other is the “proper 2-join” decomposition, which we now define.

A 2-join of a trigraph G is a partition (X1, X2) of V (G) such that there
exist pairwise disjoint sets A1, B1, C1, A2, B2, C2 ⊆ V (G) that satisfy all the
following:

• for each i ∈ {1, 2}, |Xi| ≥ 3 and Xi = Ai ∪Bi ∪ Ci;

• the sets A1, B1, A2, B2 are all non-empty;

• A1 is strongly complete to A2 and strongly anti-complete to B2 in G;

• B1 is strongly complete to B2 and strongly anti-complete to A2 in G;

• C1 is strongly anti-complete to A2 ∪B2 ∪ C2 in G;

• C2 is strongly anti-complete to A1 ∪B1 ∪ C1 in G;
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• for each i ∈ {1, 2}, if |Ai| = |Bi| = 1, then the full realization of G[Xi]
is not a chordless path of length two between the unique vertex of Ai

and the unique vertex of Bi.

Under these circumstances, we say that (A1, B1, C1, A2, B2, C2) is a split of
the 2-join (X1, X2) of G. The 2-join (X1, X2) of G is proper if for each
i ∈ {1, 2}, every component of G[Xi] meets both Ai and Bi. The 2-join
(X1, X2) is said to be odd (respectively: even) if for each i ∈ {1, 2}, every
path in G[Xi] between Ai and Bi is of odd (respectively: even) length. The
following was proven in [11] (see 2.4 of [11]).

Proposition 3.2. [11] Let G be a Berge trigraph. Then every proper 2-join
of G is either odd or even.

We remark that 3.1 of [11] implies that every 2-join of a tame Berge trigraph
that does not admit a balanced skew-partition is proper (and therefore, by
Proposition 3.2, either odd or even). The following two propositions, proven
in [11] (see 3.1, 4.1, and 4.2 from [11]) will be of use to us for “decomposing”
tame Berge trigraphs that do not admit a balanced skew-partition, but do
admit a 2-join.

Proposition 3.3. [11] Let G be a trigraph that admits an odd 2-join (X1, X2)
with split (A1, B1, C1, A2, B2, C2). Let a1, b1, a2, b2 be pairwise distinct ver-
tices that do not belong to V (G), and for each i ∈ {1, 2}, let Gi be the trigraph
on the vertex-set Ai ∪Bi ∪ Ci ∪ {a3−i, b3−i}, with adjacency as follows:

• Gi[Ai ∪Bi ∪ Ci] = G[Ai ∪Bi ∪ Ci];

• a3−ib3−i is a semi-adjacent pair;

• a3−i is strongly complete to Ai and strongly anti-complete to Bi ∪ Ci;

• b3−i is strongly complete to Bi and strongly anti-complete to Ai ∪ Ci.

If G is a tame Berge trigraph that does not admit a balanced skew-partition,
then the following hold:

• (X1, X2) is a proper 2-join of G;

• G1 and G2 are tame Berge trigraphs that do not admit a balanced
skew-partition;

• |Xi| ≥ 4 for each i ∈ {1, 2}.

Proposition 3.4. [11] Let G be a trigraph that admits an even 2-join
(X1, X2) with split (A1, B1, C1, A2, B2, C2). Let a1, b1, c1, a2, b2, c2 be pair-
wise distinct vertices that do not belong to V (G), and for each i ∈ {1, 2},
let Gi be the trigraph on the vertex-set Ai ∪Bi ∪Ci ∪ {a3−i, b3−i, c3−i}, with
adjacency as follows:
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• Gi[Ai ∪Bi ∪ Ci] = G[Ai ∪Bi ∪ Ci];

• a3−ic3−i and b3−ic3−i are semi-adjacent pairs;

• a3−ib3−i is a strongly anti-adjacent pair;

• a3−i is strongly complete to Ai and strongly anti-complete to Bi ∪ Ci;

• b3−i is strongly complete to Bi and strongly anti-complete to Ai ∪ Ci.

• c3−i is strongly anti-complete to Ai ∪Bi ∪ Ci.

If G is a tame Berge trigraph that does not admit a balanced skew-partition,
then the following hold:

• (X1, X2) is a proper 2-join of G;

• G1 and G2 are tame Berge trigraphs that do not admit a balanced
skew-partition;

• |Xi| ≥ 4 for each i ∈ {1, 2}.

We remark that in Propositions 3.3 and 3.4, the fact that |X1|, |X2| ≥ 4
implies that 6 ≤ |V (G1)|, |V (G2)| < |V (G)|. The fact that trigraphs G1 and
G2 have fewer vertices than G is essential for proofs by induction on the
number of vertices.

We next define “basic” trigraphs. A trigraph is bipartite if its vertex-set can
be partitioned into two (possibly empty) strongly stable sets. A trigraph is
complement-bipartite if its vertex set can be partitioned into two (possibly
empty) strong cliques. Clearly, a trigraph is bipartite if and only if its com-
plement is complement-bipartite. Note that every realization of a bipartite
trigraph is a bipartite graph, and that every realization of a complement-
bipartite trigraph is a complement-bipartite graph (i.e. a graph whose com-
plement is bipartite). It is easy to verify that bipartite and complement-
bipartite trigraphs are Berge.

The line graph of a graph H, denoted by L(H), is the graph whose vertex-set
is E(H), and such that for all distinct e1, e2 ∈ E(H), e1 and e2 are adjacent
in L(H) if and only if e1 and e2 share an endpoint in H. We say that a
trigraph G is a line trigraph provided that the full realization of G is (iso-
morphic to) the line graph of some bipartite graph, and that every clique
of G of size at least three is strong. The following two propositions are 2.1
from [11] and 2.1 from [4].

Proposition 3.5. [11] Let G be a line trigraph. Then every semi-realization
of G is a line trigraph, and in particular, every realization of G is the line
graph of a bipartite graph.
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Proposition 3.6. [4] Every line trigraph is Berge.

Next, a trigraph G is said to be double-split provided that its vertex-set can
be ordered as V (G) = {x1, x′1, x2, x′2, . . . , xs, x′s} ∪ {y1, y′1, y2, y′2, . . . , yt, y′t}
(where s, t ≥ 2), so that adjacency in G is as follows:

• {x1, x′1}, {x2, x′2}, . . . , {xs, x′s} are cliques in G, pairwise strongly anti-
complete to each other;

• {y1, y′1}, {y2, y′2}, . . . , {yt, y′t} are stable sets in G, pairwise strongly
complete to each other;

• for all i ∈ {1, 2, . . . , s} and j ∈ {1, 2, . . . , t}, one of the following holds:

– xiyj , x
′
iy
′
j are strongly adjacent pairs, and xiy

′
j , x
′
iyj are strongly

anti-adjacent pairs,

– xiy
′
j , x
′
iyj are strongly adjacent pairs, and xiyj , x

′
iy
′
j are strongly

anti-adjacent pairs.

Note that under these circumstances, {x1, x′1}, . . . , {xs, x′s} are the vertex-
sets of the components of G[x1, x

′
1, . . . , xs, x

′
s], and {y1, y′1}, . . . , {yt, y′t} are

the vertex-sets of the components of G[y1, y
′
1, . . . , yt, y

′
t]. Further, it is clear

that ({x1, x′1, . . . , xs, x′s}, {y1, y′1, . . . , yt, y′t}) is a skew-partition of G; how-
ever, since one of y1 − x1 − x′1 − y′1 and y1 − x′1 − x1 − y′1 is an odd path of
G, this skew-partition of G is not balanced. Clearly, double-split trigraphs
are monogamous, and furthermore, a trigraph is double-split if and only if
its complement is double-split. By 2.2 from [4], every double-split trigraph
is Berge. Further, it was shown in [23] (see Lemma 4.5 of [23]) that double-
split graphs (i.e. double-split trigraphs that have no semi-adjacent pairs)
do not admit a balanced skew-partition. In fact, it is not difficult to show
that double-split trigraphs do not admit a balanced skew-partition, but we
do not use this fact in this paper, and so we omit the proof. A trigraph
G is said to be doubled if it is an induced subtrigraph of some double-split
trigraph. Clearly, doubled trigraphs are monogamous, and furthermore, a
trigraph is doubled if and only if its complement is doubled.

We now state the decomposition theorem for tame Berge trigraphs from [11].

Theorem 3.7. [11] Let G be a tame Berge trigraph. Then at least one of
the following holds:

• G or G is bipartite;

• G or G is a line trigraph;

• G is doubled trigraph;

• G admits a balanced skew-partition;
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• G or G admits a proper 2-join.

Unfortunately, Theorem 3.7 is not sufficient for the purposes of proving
Theorem 3.1. The reason for this is that the graph C49 (defined in the

Introduction) is doubled, and yet χC(G49 ) = 3. However, C49 admits a bal-
anced skew-partition. In view of this, our goal is to strengthen Theorem 3.7
by replacing the word “doubled” with the word “double-split” in the state-
ment of that theorem. We first need a definition. A star-cutset of a trigraph
G is a set Y ⊆ V (G) such that (V (G) r Y, Y ) is a skew-partition of G, and
some component of G[Y ] contains only one vertex. The following is 5.9 from
[4].

Lemma 3.8. [4] If G is a Berge trigraph such that G or G admits a star-
cutset, then G admits a balanced skew-partition.

Proposition 3.9. Let G be a double-split trigraph, and let S ⊆ V (G). Then
at least one of the following holds:

• G[S] is a double-split trigraph;

• G[S] is a bipartite or complement-bipartite trigraph;

• G[S] or G[S] admits a star-cutset.

Proof. Set V (G) = {x1, x′1, x2, x′2, . . . , xs, x′s}∪{y1, y′1, y2, y′2, . . . , yt, y′t} (with
s, t ≥ 2), as in the definition of a double-split trigraph. If S meets at most
one component of G[x1, x

′
1, x2, x

′
2, . . . , xs, x

′
s], then it is easy to see that G[S]

is complement-bipartite. Similarly, if S meets at most one component of
G[y1, y

′
1, y2, y

′
2, . . . , yt, y

′
t], then G[S] is bipartite. Thus, we may assume that

S meets at least two components of G[x1, x
′
1, x2, x

′
2, . . . , xs, x

′
s], and at least

two components of G[y1, y
′
1, y2, y

′
2, . . . , yt, y

′
t]. If for some j ∈ {1, 2, . . . , t}, S

contains exactly one of yj and y′j , then S∩{y1, y′1, y2, y′2, . . . , yt, y′t} is a star-
cutset of G[S], and if for some i ∈ {1, 2, . . . , s}, S contains exactly one of
xi and x′i, then S ∩{x1, x′1, x2, x′2, . . . , xs, x′s} is a star-cutset of G[S]. So we
may assume that for all i ∈ {1, 2, . . . , s}, either xi, x

′
i ∈ S or xi, x

′
i /∈ S, and

that for all j ∈ {1, 2, . . . , t}, either yj , y
′
j ∈ S or yj , y

′
j /∈ S. Since S meets at

least two components of G[x1, x
′
1, x2, x

′
2, . . . , xs, x

′
s], and at least two com-

ponents of G[y1, y
′
1, y2, y

′
2, . . . , yt, y

′
t], this implies that G[S] is a double-split

trigraph.

We are now ready to prove a slightly stronger version of Theorem 3.7.

Theorem 3.10. Let G be a tame Berge trigraph. Then at least one of the
following holds:

• G or G is bipartite;

• G or G is a line trigraph;
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• G is a double-split trigraph;

• G admits a balanced skew-partition;

• G or G admits a proper 2-join.

Proof. This follows from Theorem 3.7, Lemma 3.8, and Proposition 3.9.

We remark here that by replacing the word “tame” with the word “monog-
amous” in Theorem 3.10, one obtains 3.2 from [4]. (Note that Theorem 1.1,
stated in the Introduction, is an immediate corollary of 3.2 from [4].) One
may wonder why we use Theorem 3.10, rather than 3.2 from [4]. The reason
for this is that if G is a monogamous Berge trigraph that does not admit
a balanced skew-partition, but does admit an even 2-join, there does not
appear to be a way to conveniently “decompose” G into two smaller monog-
amous Berge trigraphs that do not admit a balanced skew-partition. On the
other hand, Proposition 3.4 gives us a way to do precisely this in the context
of tame trigraphs. This is the reason why we work with tame (rather than
monogamous) trigraphs, and why we need Theorem 3.10. We also remark
that since all doubled trigraphs are monogamous, Theorem 3.10 could also
be obtained as a corollary of 3.2 from [4] and Theorem 3.7. The proof given
here is more direct, and we include it for this reason.

We complete this section by proving Theorem 3.1 for the special case of
trigraphs that contain at least one heavy vertex.

Lemma 3.11. Let G be a tame Berge trigraph that does not admit a balanced
skew-partition, and that contains at least one heavy vertex. Then either G
is isomorphic to one of E1 and E2, or G is 2-clique-colorable.

Proof. Let w be a heavy vertex of G, let u and v be the two weak neighbors
of G, and let X = V (G) r {u, v, w}. Then w is strongly complete to X,
uv is a strongly adjacent pair, and there are no semi-adjacent pairs between
{u, v} and X. If u and v have a common neighbor x+ ∈ X, then x+ is
strongly complete to {u, v, w} and w is strongly complete to X in G, and
consequently, no important clique of G is included in either {u, v, w} or X;
Proposition 2.1 now implies that G is 2-clique-colorable. Next, suppose that
u and v have a common anti-neighbor x− ∈ X. If X = {x−}, then G is
isomorphic to E2, and if {x−} $ X, then {w}∪(Xr{x−}) is a star-cutset of
G, and Lemma 3.8 implies that G admits a balanced skew-partition, which is
a contradiction. So from now on, we assume that u and v have no common
neighbors and no common anti-neighbors in X. Let Xu be the set of all
neighbors of u in X, let Xv be the set of all neighbors of v in X. Then
X = Xu ∪Xv and Xu ∩Xv = ∅. We note that Xu is strongly complete to
Xv in G, for otherwise, we fix anti-adjacent vertices u′ ∈ Xu and v′ ∈ Xv,
and we observe that w − u′ − u − v − v′ − w is an odd hole in G, contrary
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to the fact that G is Berge. We may assume that at least one of Xu and
Xv is non-empty, for otherwise, G is isomorphic to E1, and we are done. By
symmetry, we may assume that Xu 6= ∅. Then Xu 6= ∅ is strongly complete
to {u,w}∪Xv, and u is strongly complete to {v}∪Xu, and so no important
clique of G is included in either {u,w} ∪ Xv or {v} ∪ Xu. Proposition 2.1
applied to the partition ({u,w} ∪Xv, {v} ∪Xu) of V (G) now implies that
G is 2-clique-colorable.

4 Basic trigraphs

In this section, we deal with the basic building blocks of Theorem 3.10, that
is, with bipartite and complement-bipartite trigraphs, line trigraphs and
their complements, and double-split trigraphs. We show that, with some
restrictions, trigraphs from these classes are 2-clique-colorable. Lemma 4.9,
proven at the end of this section, essentially constitutes the basis case of the
proof by induction of Theorem 3.1.

Proposition 4.1. Every bipartite trigraph is 2-clique-colorable.

Proof. Let G be a bipartite trigraph, and let (A,B) be a partition of V (G)
into two strongly stable sets of G. Then every clique of G included in A or
B is of size at most one, and is therefore not important. By Proposition 2.1
then, G is 2-clique-colorable.

Proposition 4.2. Every tame complement-bipartite trigraph that contains
no heavy vertices is 2-clique-colorable.

Proof. Let G be a tame complement-bipartite trigraph with no heavy ver-
tices. Since G is bipartite, it contains no triangles and therefore no heavy
vertices; consequently, G contains no light vertices. Thus, G is monoga-
mous. If G is the null trigraph, then the result is immediate, so assume that
V (G) 6= ∅. If V (G) is a strong clique of G, then we assign the color 1 to one
vertex of G, and the color 2 to all the other vertices of G, and we are done.
So assume that V (G) is not a strong clique of G. Let (A,B) be a partition of
V (G) into two strong cliques; since V (G) is not a strong clique of G, we know
that A and B are both non-empty, and that they are not strongly complete
to each other. Note that all semi-adjacent pairs in G are between A and B.
If G contains at least one semi-adjacent pair, then fix semi-adjacent vertices
a ∈ A and b ∈ B, and otherwise, fix strongly anti-adjacent vertices a ∈ A
and b ∈ B. Let Ab be the set of all strong neighbors of b in A, and let Ba be
the set of all strong neighbors of a in B. Since G is monogamous, the choice
of a and b guarantees that a is strongly anti-complete to B r ({b} ∪ Ba),
and that b is strongly anti-complete to Ar ({a} ∪Ab).

Suppose first that Ab = Ba = ∅. Fix a clique K of G of size at least
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two, and suppose that either K ⊆ {a} ∪ (B r {b}) or K ⊆ {b} ∪ (Ar {a}).
By hypothesis, a is strongly anti-complete to B r {b}, and b is strongly
anti-complete to Ar {a}. Since K is a clique of size at least two, we deduce
that either K ⊆ B r {b} or K ⊆ Ar {a}. In the former case, b is strongly
complete to K, and in the latter case, a is strongly complete to K. This
proves that no important clique of G is included in either {a}∪ (Br{b}) or
{b}∪(Ar{a}), and Proposition 2.1 now implies that G is 2-clique-colorable.

Suppose now that at least one of Ab and Ba is non-empty; by symmetry, we
may assume that Ab 6= ∅. By construction, Ab 6= ∅ is strongly complete to
{b}∪(ArAb), and b is strongly complete to Ab∪(Br{b}); consequently, no
important clique of G is included in either {b}∪ (ArAb) or Ab ∪ (Br {b}).
Proposition 2.1 applied to the partition ({b} ∪ (ArAb), Ab ∪ (B r {b})) of
V (G) now implies that G is 2-clique-colorable.

We next deal with line trigraphs. Theorem 2 of [1] and Theorem 5 of [2]
independently imply the following.

Proposition 4.3. [1, 2] Line graphs of bipartite graphs are 2-clique-colorable.

As a corollary, we have the following.

Proposition 4.4. Every line trigraph is 2-clique-colorable.

Proof. Let G be a line trigraph, and let Gf be the full realization of G. By
Proposition 4.3, Gf is 2-clique-colorable. Since G is a line trigraph, every
clique of G of size at least three is strong, and consequently, every important
clique of G is also an important clique of Gf . Thus, every clique-coloring of
Gf is also a clique-coloring of G. The fact that Gf is 2-clique-colorable now
implies that G is 2-clique-colorable.

We next handle complements of line trigraphs. Theorem 3 of [1] states that
there exists a list H1, . . . ,H9 of graphs, none of them bipartite, such that
every graph H that is not isomorphic to any one of H1, . . . ,H9, satisfies
χC(L(H)) ≤ 2. As an immediate corollary, we have the following.

Proposition 4.5. [1] The complement of the line graph of a bipartite graph
is 2-clique-colorable.

Given a graph H, we say that a trigraph G is H-free provided that every
realization of G is H-free, that is, provided that no realization of G contains
(an isomorphic copy of) H as an induced subgraph. As usual, we denote by
Kn the complete graph on n vertices. We denote by K1 ∪ K3 the disjoint
union of K1 and K3, and we denote by 2K1 ∪ K2 the four-vertex graph
that contains exactly one edge. The claw is the complete bipartite graph
K1,3, and the diamond is the graph obtained from K4 by deleting one edge.
Note that K1 ∪K3 is the complement of the claw, and that 2K1 ∪K2 is the
complement of the diamond.
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Proposition 4.6. Let G be the complement of a line trigraph. Then G is
both (K1 ∪K3)-free and (2K1 ∪K2)-free.

Proof. It is routine to verify that every line graph of a bipartite graph is
claw-free and diamond-free (this also follows from [18] and, independently,
from Lemma 3.19 of [22]). By Proposition 3.5, every realization of a line
trigraph is the line graph of a bipartite graph. This proves that every line
trigraph is claw-free and diamond-free. The result now follows from the
fact that K1 ∪K3 is the complement of the claw, and that 2K1 ∪K2 is the
complement of the diamond.

Proposition 4.7. Let G be the complement of a tame line trigraph, and
assume that G contains no heavy vertices. Then G is 2-clique-colorable.

Proof. Since G is a line trigraph, we know that all triangles in G are strong,
and so G contains no heavy vertices; consequently, G contains no light ver-
tices, and it follows that G is monogamous. If G contains no semi-adjacent
pairs (that is, if G is a graph), then we are done by Proposition 4.5. It
remains to consider the case when G contains at least one semi-adjacent
pair, say uv. Since all triangles in G are strong, we know that no ver-
tex in V (G) r {u, v} is complete to {u, v} in G; consequently, no vertex in
V (G) is anti-complete to {u, v} in G. Since uv is a semi-adjacent pair in
G, and since G is monogamous, we know that G contains no semi-adjacent
pairs between {u, v} and V (G) r {u, v}. Let U be the set of all vertices in
V (G) r {u, v} that are strongly adjacent to u and strongly anti-adjacent to
v in G; let V be the set of all vertices in V (G) r {u, v} that are strongly
adjacent to v and strongly anti-adjacent to u in G; and let W be the set of
all vertices in V (G)r{u, v} that are strongly complete to {u, v} in G. Then
V (G) = {u, v}∪U∪V ∪W , and the sets {u, v}, U, V,W are pairwise disjoint.

We first show that {v} ∪ U and {u} ∪ V are strongly stable sets. Since
v and u are strongly anti-complete to U and V , respectively, it suffices to
show that U and V are strongly stable sets. Suppose otherwise. By symme-
try, we may assume that there exist adjacent vertices u1, u2 ∈ U . But then
{u, u1, u2} is a triangle, and v is anti-complete to {u, u1, u2}; consequently,
K1∪K3 is a realization of G[v, u, u1, u2], contrary to Proposition 4.6. Thus,
{u} ∪ V and {v} ∪ U are strongly stable sets. In particular, if W = ∅, then
G is bipartite, and we are done by Proposition 4.1. So from now on, we
assume that W 6= ∅.

Next, we claim that each vertex in U ∪W has at most one anti-neighbor in
V , and that each vertex in V ∪W has at most one anti-neighbor in U . Sup-
pose otherwise. By symmetry, we may assume that some vertex x ∈ U ∪W
has two distinct anti-neighbors, call them v1 and v2, in V . Since {u} ∪ V is
a strongly stable set, and since u is strongly complete to U ∪W , we easily
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deduce that 2K1 ∪K2 is a realization of G[u, x, v1, v2], contrary to Proposi-
tion 4.6. This proves our claim.

Let U0 be the set of all vertices in U that are anti-complete to W , and
let V0 be the set of all vertices in V that are anti-complete to W . Sup-
pose first that both U0 and V0 are non-empty. Since each vertex in W 6= ∅
has at most one anti-neighbor in U and at most one anti-neighbor in V ,
we deduce that |U0| = |V0| = 1, say U0 = {u0} and V0 = {v0}, and
that W is strongly complete to (U r {u0}) ∪ (V r {v0}). Since W is
also strongly complete to {u, v}, it follows that W is strongly complete
to {u, v}∪ (Ur{u0})∪ (V r{v0}) = V (G)r ({u0, v0}∪W ). Since W 6= ∅, it
follows that no important clique of G is included in V (G) r ({u0, v0} ∪W ).
In view of Proposition 2.1, it only remains to show that no important clique
of G is included in {u0, v0} ∪W . Fix a clique K of G of size at least two
such that K ⊆ {u0, v0} ∪W . If K ⊆ {u0} ∪W , then u is strongly complete
to K, and if K ⊆ {v0} ∪W , then v is strongly complete to K, and in either
case, K is not important. So suppose that u0, v0 ∈ K. Since K is a clique,
it follows that u0v0 is an adjacent pair. We now fix w ∈W , and we observe
that w − u− u0 − v0 − v − w is an odd hole in G, contrary to the fact that
(by Proposition 3.6) G is Berge. Thus, no important clique of G is included
in {u0, v0} ∪W , and it follows that G is 2-clique-colorable.

It remains to consider the case when at least one of U0 and V0 is empty;
by symmetry, we may assume that V0 = ∅, so that every vertex in V has
a strong neighbor in W . Since u is strongly complete to W 6= ∅, it follows
that every vertex in {u} ∪ V has a strong neighbor in W . Suppose that K
is a clique of G such that K ⊆ {u, v}∪V . Since {u}∪V is a strongly stable
set, it follows that there exists some v′ ∈ {u} ∪ V such that K ⊆ {v, v′}.
We know that v′ has a strong neighbor, call it w, in W . But now w is a
strongly complete to K, and so K is not important. Thus, no important
clique of G is included in {u, v}∪V . Since u is strongly complete to U ∪W ,
we know that no important clique of G is included in U ∪W either, and so
Proposition 2.1 applied to the partition ({u, v}∪V,U ∪W ) of V (G) implies
that G is 2-clique-colorable.

Proposition 4.8. Every double-split trigraph is 2-clique-colorable.

Proof. Let G be a double-split trigraph, and let vertices x1, x
′
1, . . . , xs, x

′
s,

y1, y
′
1, . . . , yt, y

′
t (with s, t ≥ 2) be as in the definition of a double-split tri-

graph. Using the definition of a double-split trigraph, we may assume by
symmetry that x1 is strongly complete to {y1, . . . , yt} and strongly anti-
complete to {y′1, . . . , y′t}; then x′1 is strongly complete to {y′1, . . . , y′t} and
strongly anti-complete to {y1, . . . , yt}. Further, we may assume that for all
i ∈ {2, . . . , s}, xi has at least one neighbor in {y1, . . . , yt} (if not, we simply
swap the roles of xi and x′i). In view of Proposition 2.1, it now suffices to
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show that no important clique of G is included in either {x1, . . . , xs} ∪
{y′1, . . . , y′t} or {x′1, . . . , x′s} ∪ {y1, . . . , yt}. Fix a clique K of G of size
at least two, and assume that either K ⊆ {x1, . . . , xs} ∪ {y′1, . . . , y′t} or
K ⊆ {x′1, . . . , x′s} ∪ {y1, . . . , yt}; we must show that K is not important. By
construction, x1 is strongly anti-complete to {x2, . . . , xs}∪ {y′1, . . . , y′t}, and
x′1 is strongly anti-complete to {x′2, . . . , x′s}∪{y1, . . . , yt}; since K is a clique
of size at least two, it follows that either K ⊆ {x2, . . . , xs} ∪ {y′1, . . . , y′t}
or K ⊆ {x′2, . . . , x′s} ∪ {y1, . . . , yt}. Since {x2, . . . , xs} is a strongly stable
set and K is a clique, we know that K contains at most one member of
{x2, . . . , xs}; similarly, K contains at most one member of {x′2, . . . , x′s}.
By symmetry, we may now assume that either K ⊆ {x2, y′1, . . . , y′t} or
K ⊆ {x′2, y1, . . . , yt}. Further, if K ⊆ {y1, . . . , yt}, then x1 is strongly
complete to K, and if K ⊆ {y′1, . . . , y′t}, then x′1 is strongly complete to K,
and in either case K is not important. Thus, we may assume that either
x2 ∈ K ⊆ {x2, y′1, . . . , y′t} or x′2 ∈ K ⊆ {x′2, y1, . . . , yt}. By hypothesis,
x2 has a neighbor in {y1, . . . , yt}; by symmetry, we may assume that x2 is
adjacent to y1. Then x2y1 and x′2y

′
1 are strongly adjacent pairs, and x2y

′
1

and x′2y1 are strongly anti-adjacent pairs. Since K is a clique, we deduce
that either K ⊆ {x2, y′2, . . . , y′t} or K ⊆ {x′2, y2, . . . , yt}. In the former case,
y1 is strongly complete to K, and in the latter case, y′1 is strongly com-
plete to K. In either case, K is not important, and it follows that G is
2-clique-colorable.

Lemma 4.9. Let G be tame Berge trigraph that does not admit a balanced
skew-partition. If G is a bipartite trigraph, a complement-bipartite trigraph,
a line trigraph, the complement of a line trigraph, or a double-split trigraph,
then either G is isomorphic to E1 or E2, or G is 2-clique-colorable.

Proof. If G contains a heavy vertex, this follows from Lemma 3.11. Other-
wise, the result follows from Propositions 4.1, 4.2, 4.4, 4.7, and 4.8.

5 Decompositions

In this section, we show that odd and even 2-joins in a sense “preserve”
the property of being 2-clique-colorable. We deal with the case when a
trigraph G admits an odd or even 2-join (see Proposition 5.1), when G
admits an odd 2-join (see Proposition 5.2), and when G admits an even
2-join (see Proposition 5.3). The results of this section essentially represent
the induction step of the proof by induction of Theorem 3.1.

Proposition 5.1. Let G be a trigraph that admits a 2-join (X1, X2) that is
either odd or even, and let (A1, B1, C1, A2, B2, C2) be a split of this 2-join.
If (X1, X2) is odd, then let vertices a1, b1, a2, b2 and trigraphs G1, G2 be as in
Proposition 3.3; and if (X1, X2) is even, then let vertices a1, b1, c1, a2, b2, c2
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and trigraphs G1, G2 be as in Proposition 3.4. If G1 and G2 are both 2-
clique-colorable, then G is 2-clique-colorable.

Proof. Assume that G1 and G2 are 2-clique-colorable. Our first goal is to
construct clique-colorings q1 : V (G1) → {1, 2} and q2 : V (G2) → {1, 2} of
G1 and G2, respectively, such that q1(a2) 6= q2(a1) and q1(b2) 6= q2(b1).

Suppose first that (X1, X2) is odd. For each i ∈ {1, 2}, we fix a clique-
coloring qi : V (Gi)→ {1, 2} of Gi; since {a3−i, b3−i} is an important clique
in Gi, we know that qi(a3−i) 6= qi(b3−i). By symmetry, we may assume that
q1(a2) = q2(b1). Since the codomain of both q1 and q2 is the two-element set
{1, 2}, we deduce that q1(b2) = q2(a1), q1(a2) 6= q2(a1), and q1(b2) 6= q2(b1).

Suppose now that (X1, X2) is even. For each i ∈ {1, 2}, we fix a clique-
coloring qi : V (Gi)→ {1, 2} of Gi; since {a3−i, c3−i} and {b3−i, c3−i} are im-
portant cliques in Gi, we know that qi(a3−i) 6= qi(c3−i) 6= qi(b3−i). The fact
that the codomain of qi has only two elements now implies that qi(a3−i) =
qi(b3−i). Since the codomain of both q1 and q2 is the two-element set {1, 2},
we may assume that q1(a2) 6= q2(a1) and q1(b2) 6= q2(b1).

Thus, we may assume that q1 : V (G1)→ {1, 2} and q2 : V (G2)→ {1, 2} are
clique-colorings of G1 and G2, respectively, such that q1(a2) 6= q2(a1) and
q1(b2) 6= q2(b1). Let q : V (G)→ {1, 2} be given by

q(v) =


q1(v) if v ∈ A1 ∪B1 ∪ C1

q2(v) if v ∈ A2 ∪B2 ∪ C2

for all v ∈ V (G). We need to show that q is a clique-coloring of G. Fix a
clique K of G of size at least two, monochromatic with respect to q. We
need to show that some vertex in V (G) r K is strongly complete to K in
G. Since K is a clique of G, we may assume by symmetry that one of the
following holds:

(a) K ⊆ A1 ∪B1 ∪ C1;

(b) K ⊆ A1 ∪A2, K ∩A1 6= ∅, and K ∩A2 6= ∅.

Suppose first that (a) holds. Then K is a clique of G1 of size at least two,
monochromatic with respect to the clique-coloring q1 of G1. Thus, there
exists some w1 ∈ V (G1) rK such that w1 is strongly complete to K in G1.
If w1 ∈ A1 ∪ B1 ∪ C1, then let w = w1; if w1 = a2, then let w be an arbi-
trary vertex of A2; and if w1 = b2, then let w be an arbitrary vertex of B2.
In any case, w ∈ V (G)rK is strongly complete to K in G, and we are done.

Suppose now that (b) holds. Since q1(a2) 6= q2(a1), and the codomain of both
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q1 and q2 is the two-element set {1, 2}, we deduce that {q1(a2), q2(a1)} =
{1, 2}, so that the codomain of q is {q1(a2), q2(a1)}. Since K is monochro-
matic with respect to q, we may assume by symmetry that q[K] = {q1(a2)}.
Set K1 = (K r A2) ∪ {a2}. Then q1[K1] = {q1(a2)}. Furthermore, since K
intersects both A1 and A2, K1 is a clique of size at least two in G1. Since
q1 is a clique-coloring of G1, we know that some vertex w1 ∈ V (G1) rK1

is strongly complete to K1 in G. Since a2 ∈ K1, and since all the strong
neighbors of a2 in G1 belong to A1, we deduce that w1 ∈ A1 rK1. It now
follows that w1 ∈ V (G)rK, and that w1 is strongly complete to K in G.

Proposition 5.2. Let G be a trigraph that admits an odd 2-join with split
(A1, B1, C1, A2, B2, C2). Let vertices a1, b1, a2, b2 and trigraphs G1, G2 be as
in Proposition 3.3, and assume that G1 and G2 are 2-clique-colorable. Then
G is 2-clique-colorable.

Proof. Note that C2 is strongly complete to A1 ∪ B1 ∪ C1 in G, and C1 is
strongly complete to A2 ∪B2 ∪ C2 in G. If C1 and C2 are both non-empty,
this implies that no important clique of G is included in either A1 ∪B1 ∪C1

or A2 ∪ B2 ∪ C2, and so by Proposition 2.1, G is 2-clique-colorable. So
assume that at least one of C1 and C2 is empty; by symmetry, we may
assume that C2 = ∅. Fix a clique-coloring q1 : V (G1) → {1, 2} of G1, and
define q : V (G)→ {1, 2} by setting

q(v) =


q1(v) if v ∈ A1 ∪B1 ∪ C1

q1(a2) if v ∈ A2

q1(b2) if v ∈ B2

for all v ∈ V (G). To show that q is a clique-coloring of G, we fix a clique K
of G of size at least two, monochromatic with respect to q; we need to show
that some vertex in V (G) rK is strongly complete to K in G.

Suppose first that K intersects both A2 and B2. Set K1 = (K r (A2 ∪
B2)) ∪ {a2, b2}. Then K1 is a clique in G1 of size at least two, and by con-
struction, q1[K1] = q[K]. Since K is monochromatic with respect to q, it
follows that K1 is monochromatic with respect to q1. Since q1 is a clique-
coloring of G1, we know that some vertex w1 ∈ V (G1) r K1 is strongly
complete to K1 in G1. Since a2, b2 ∈ K1, we know that w1 /∈ {a2, b2}. Thus,
w1 ∈ V (G)rK, and it is easy to see that w1 is strongly complete to K in G.

Suppose next that K intersects exactly one of A2 and B2; by symmetry, we
may assume that K ∩A2 6= ∅ and K ∩B2 = ∅. Then K ⊆ A1∪B1∪C1∪A2.
If K ⊆ A2, then B1 6= ∅ is strongly complete to K in G, and we are done.
So assume that K r A2 6= ∅. Set K1 = (K r A2) ∪ {a2}. Then K1 is a
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clique of size at least two in G1, and by construction, q1[K1] = q[K]. Since
K is monochromatic with respect to q, it follows that K1 is monochromatic
with respect to q1. Since q1 is a clique-coloring of G1, there exists a vertex
w1 ∈ V (G1) r K1 that is strongly complete to K1 in G1. Since a2 ∈ K1

and a2b2 is a semi-adjacent pair in G1, we know that w1 /∈ {a2, b2}. Thus,
w1 ∈ A1∪B1∪C1. It follows that w1 ∈ V (G)rK, and it is easy to see that
w1 is strongly complete to K in G.

It remains to consider the case when K intersects neither A2 nor B2. Then
K is a clique of size at least two in G1, monochromatic with respect to the
clique-coloring q1 of G1. Thus, some vertex w1 ∈ V (G1) r K is strongly
complete to K in G1. If w1 ∈ A1 ∪ B1 ∪ C1, then let w = w1; if w1 = a2,
then let w be any vertex in A2; and if w1 = b2, then let w be any vertex in
B2. Then w ∈ V (G) rK, and w is strongly complete to K in G.

Proposition 5.3. Let G be a trigraph that admits an even 2-join. Then G
is 2-clique-colorable.

Proof. Let (A1, B1, C1, A2, B2, C2) be a split of an even 2-join of G. Since
this 2-join of G is even, we know that for each i ∈ {1, 2}, Ai is strongly
anti-complete to Bi in G, and therefore, that Ai is strongly complete to Bi

in G. It now follows that B1 6= ∅ is strongly complete to A1 ∪A2 ∪C2 in G,
and that A2 6= ∅ is strongly complete to B1 ∪ B2 ∪ C1 in G; consequently,
no important clique of G is included in either A1 ∪A2 ∪C2 or B1 ∪B2 ∪C1,
and the result follows from Proposition 2.1.

6 Proof of the main theorem

We are finally ready to prove Theorem 3.1 (restated below for the reader’s
convenience). We remind the reader that E1 is the trigraph with vertex-set
{a, b, c} in which ab is a strongly adjacent pair, and ac, bc are semi-adjacent
pairs, and that E2 is the trigraph with vertex-set {a, b, c, d} in which ab, cd
are strongly adjacent pairs, ac, bc are semi-adjacent pairs, and ad, bd are
strongly anti-adjacent pairs.

Theorem 3.1. Every tame Berge trigraph that does not admit a balanced
skew-partition, and that is isomorphic to neither E1 nor E2, is 2-clique-
colorable.

Proof. Let B be the class of all tame Berge trigraphs that do not admit a
balanced skew-partition. We claim that all trigraphs in B are either isomor-
phic to one of E1 and E2, or 2-clique-colorable. Fix G ∈ B, and assume
inductively that the claim holds for trigraphs in B that have fewer vertices
than G does. We need to show that the claim holds for G. In view of The-
orem 3.10 and Lemma 4.9, we may assume that G or G admits a proper
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2-join. (Note that G ∈ B, as B is closed under complementation.) To com-
plete the induction, we will prove the following stronger statement: both G
and G are 2-clique-colorable. We now have symmetry between G and G,
and so we may assume that G admits a proper 2-join.

Let (X1, X2) be a proper 2-join of G, and let (A1, B1, C1, A2, B2, C2) be
its split. By Proposition 3.2, the 2-join (X1, X2) of G is either odd or even.
If (X1, X2) is odd, then let vertices a1, b1, a2, b2 and trigraphs G1, G2 be as in
Proposition 3.3; and if (X1, X2) is even, then let vertices a1, b1, c1, a2, b2, c2
and trigraphs G1, G2 be as in Proposition 3.4. By Propositions 3.3 and 3.4,
we know that G1, G2 ∈ B; since the class B is closed under complementation,
it follows that that G1, G2 ∈ B. Further, using Propositions 3.3 and 3.4, we
easily deduce that 6 ≤ |V (Gi)| < |V (G)| for each i ∈ {1, 2}. Since E1

and E2 have fewer than six vertices, we know that none of G1, G2, G1, G2

is isomorphic to either E1 or E2. The induction hypothesis now guaran-
tees that G1, G2, G1, G2 are all 2-clique-colorable. The fact that G is 2-
clique-colorable now follows from Proposition 5.1, and the fact that G is
2-clique-colorable follows from Propositions 5.2 and 5.3. This completes the
argument.

Corollary 6.1. Every monogamous Berge trigraph that does not admit a
balanced skew-partition is 2-clique-colorable.

Proof. Since the trigraphs E1 and E2 are not monogamous, this is an im-
mediate consequence of Theorem 3.1.

Theorem 1.2, stated in the Introduction and restated below, is simply a
special case of Corollary 6.1.

Theorem 1.2. Every perfect graph that does not admit a balanced skew-
partition is 2-clique-colorable.

Proof. Let G be a perfect graph that does not admit a balanced skew-
partition. Since G is perfect, it is Berge (as discussed in the Introduction,
this is the “easy direction” of the Strong Perfect Graph Theorem [9]). Since
every graph is a monogamous trigraph, Corollary 6.1 implies that G is 2-
clique-colorable.

In view of Theorem 1.2, one might ask whether there are any perfect graphs
with no balanced skew-partition that do not belong to any class of graphs
known to be 2-clique-colorable (or at least k-clique-colorable, for some fixed
constant k) from previous results about clique-coloring [1, 2, 12, 13, 14]. The
answer to this question is positive. It is routine to prove that double-split
graphs are perfect, and Trotignon [23] showed that double-split graphs do
not admit a balanced skew-partition (see Lemma 4.5 of [23]). It is easy to
construct a double-split graph that contains all the following graphs and
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their complements as induced subgraphs: the claw, the diamond, and the
net (the net is the 6-vertex graph that consists of a triangle and three vertex-
disjoint pendant edges; clearly, the bull is an induced subgraph of the net).
Note that such a double-split graph is neither a line graph nor the com-
plement of a line graph, nor is it a comparability graph (here, we use the
well-known and easy to check fact that line graphs are claw-free [3], and
comparability graphs are net-free [15]). Furthermore, double-split graphs
are not generalized split graphs (this follows from the fact that if G is a
generalized split graph, then either one of G,G is a bipartite graph, or
one of G,G admits a clique-cutset, whereas no double-split graph has this
property). Thus, a double-split graph of the sort considered above (i.e. a
double-split graph that contains the claw and its complement, the diamond
and its complement, and the net and its complement as induced subgraphs)
does not belong to any class shown to have a bounded clique-chromatic
number in [1, 2, 12, 13, 14].

It may also be worth pointing out that Gravier et al. [16] showed that for all
k ≥ 2, graphs that do not contain an induced (k+1)-edge path are k-clique-
colorable, and it is easy to see that double-split graphs contain no induced
5-edge paths. However, “path-double-split graphs” (introducted in [23]) are
perfect graphs with no balanced skew-partition, and they can contain arbi-
trarily long induced paths. A path-double-split graph is any graph obtained
from a double-split graph by subdividing each edge xix

′
i an even (possi-

bly zero) number of times (thus, each edge xix
′
i becomes an induced odd

path; here, vertices x1, x
′
1 . . . , xs, x

′
s are as in the definition of a double-split

graph). The reader can verify that path-double-split graphs are perfect,
and by Lemma 4.5 of [23], they do not admit a balanced skew-partition.
Clearly, path-double-split graphs can contain arbitrarily long even cycles as
induced subgraphs, and it is easy to construct a path-double-split graph
that contains all the following as induced subgraphs: the claw and its com-
plement, the diamond and its complement, the net and its complement, and
an arbitrarily long even cycle (and therefore an arbitrarily long path).

7 Open problems

In this section, we discuss some open problems related to the results of
this paper. First, it remains an open problem to determine whether there
exists a constant c such that every perfect graph is c-clique colorable. If one
were to attack this problem using the decomposition theorems for Berge
(tri)graphs from [4, 9, 11], one would inevitably be confronted with the
problem of dealing with balanced skew-partitions, which seems to be a rather
daunting task. With this in mind, we propose a couple of potentially easier
problems. We remind the reader that a class of graphs is said to be hereditary
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if it is closed under isomorphism and induced subgraphs. A clique-cutset
of a graph G is a (possibly empty) clique K of G such that G r K (the
graph obtained from G by deleting K) is disconnected. We propose the
following two problems concerning clique-cutsets and clique-coloring (the
second question is a special case of the first, restricted to perfect graphs).

Question 7.1. Let c be a positive integer, and let G be a hereditary class
of graphs. If all graphs in G are either c-clique-colorable or admit a clique-
cutset, then must there exist a constant d such that every graph in G is
d-clique-colorable?

Question 7.2. Let c be a positive integer, and let G be a hereditary class
of perfect graphs. If all graphs in G are either c-clique-colorable or admit a
clique-cutset, then must there exist a constant d such that every graph in G
is d-clique-colorable?

Note that the graph C49 (defined in the Introduction) admits a clique-cutset,

and all of its proper induced subgraphs are 2-clique-colorable. However, C49
itself is not 2-clique-colorable. Thus, if one hopes to obtain positive answers
to Questions 7.1 and 7.2, one cannot set d = c.

Finally, we repeat the question raised in section 2.

Question 7.3. Is it true that for every monogamous trigraph G, one has
that χC(G) = max{χC(G̃) | G̃ is a realization of G}?

Acknowledgments

I would like to thank Nicolas Trotignon and Maria Chudnovsky for a number
of helpful suggestions related to the work presented in this paper.

References

[1] T. Andreae, M. Schughart, and Zs. Tuza, “Clique-transversal sets of
line graphs and complements of line graphs”, Discrete Math., 88 (1991),
11–20.
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[12] D. Défossez, “Clique-coloring some classes of odd-hole-free graphs”, J.
Graph Theory, 53 (3) (2006), 233–249.
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