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August 10, 2024

Abstract

A minimal separator of a graph G is a set S ⊆ V (G) such that there exist vertices
a, b ∈ V (G) \ S with the property that S separates a from b in G, but no proper subset of
S does. For an integer k ≥ 0, we say that a minimal separator is k-simplicial if it can be
covered by k cliques and denote by Gk the class of all graphs in which each minimal separator
is k-simplicial. We show that for each k ≥ 0, the class Gk is closed under induced minors,
and we use this to show that the Maximum Weight Stable Set problem can be solved in
polynomial time for Gk. We also give a complete list of minimal forbidden induced minors
for G2. Next, we show that, for k ≥ 1, every nonnull graph in Gk has a k-simplicial vertex,
i.e., a vertex whose neighborhood is a union of k cliques; we deduce that the Maximum
Weight Clique problem can be solved in polynomial time for graphs in G2. Further,
we show that, for k ≥ 3, it is NP-hard to recognize graphs in Gk; the time complexity of
recognizing graphs in G2 is unknown. We also show that the Maximum Clique problem
is NP-hard for graphs in G3. Finally, we prove a decomposition theorem for diamond-free
graphs in G2 (where the diamond is the graph obtained from K4 by deleting one edge), and
we use this theorem to obtain polynomial-time algorithms for the Vertex Coloring and
recognition problems for diamond-free graphs in G2, and improved running times for the
Maximum Weight Clique and Maximum Weight Stable Set problems for this class
of graphs.
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1 Introduction

All graphs in this paper are finite, simple, and undirected. Our graphs may possibly be null.
For a graph G and nonadjacent vertices a, b ∈ V (G),

• an (a, b)-separator of G is a set S ⊆ V (G) \ {a, b} such that a and b belong to distinct
components of G \ S;

• a minimal (a, b)-separator of G is an (a, b)-separator S of G such that no proper subset
of S is an (a, b)-separator of G.
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For a graph G, a set S ⊆ V (G) is a separator (resp. minimal separator) of G if there exist
distinct, nonadjacent vertices a, b ∈ V (G) \ S such that S is an (a, b)-separator (resp. minimal
(a, b)-separator) of G. Note that it is possible that S is a minimal separator of a graph G, even
though some S′ ⫋ S is also a separator of G. Indeed, there may be a pair a, b of nonadjacent
vertices such that S is a minimal (a, b)-separator of G, as well as some other pair a′, b′ of
nonadjacent vertices such that some S′ ⫋ S is an (a′, b′)-separator of G.

A graph is chordal if it contains no induced cycles of length greater than three. Minimal
separators have been studied since at least the 1960s, when chordal graphs were characterized
as precisely those graphs in which all minimal separators are cliques [18]. Minimal separators
were subsequently studied in [6] in the context of moplexes, have played an important role in
sparse matrix computations via minimal triangulations (for a survey, see [23]), and have also
had numerous algorithmic applications (see, e.g., [4, 8, 10, 28]). This paper is a contribution to
the study of minimal separators.

For a class C of graphs, we denote by GC the class of all graphs G such that every minimal
separator of G induces a graph from C. Since complete graphs have no separators, we see for all
classes C, the class GC contains all complete graphs (including the null graph). For a nonnegative
integer k, we denote by Gk the class of all graphs G that have the property that every minimal
separator of G is a union of k (possibly empty) cliques.1 Obviously, G0 ⊆ G1 ⊆ G2 ⊆ . . . , and
all these inclusions are proper, as verified by the class of complete bipartite graphs with exactly
two vertices in one part. Note that G0 is the class of all disjoint unions of (arbitrarily many)
complete graphs, and (by [18]) G1 is the class of all chordal graphs. For a nonnegative integer
k, we denote by Ck the class of all graphs whose vertex sets can be partitioned into k (possibly
empty) cliques; clearly, Gk = GCk .

In this paper, we prove a number of results about classes of the form GC , where C is a
hereditary class. We place particular emphasis on the class G2. By the above, G2 contains all
chordal graphs. Moreover, it is easy to see that all circular-arc graphs (that is, intersection
graphs of arcs on a circle) belong to G2.

In Section 2, we prove some basic properties of the class GC , when C satisfies various hy-
potheses.

In Section 3, we focus on hereditary graph classes that are closed under edge addition. We
show that for any such class C, both the class C and the corresponding class GC are closed
under induced minors, and we characterize the class GC in terms of forbidden induced minors.
In the case when C is also closed under the addition of universal vertices, the class of minimal
forbidden induced minors for GC is described precisely. As a consequence of these results, we
obtain that the classes Gk (k ≥ 0) are closed under induced minors and give a complete list of
minimal forbidden induced minors for the class G2. Combining these results with some results
from the literature [15, 22], we show that for every integer k ≥ 0, the Maximum Weight
Stable Set Problem can be solved in polynomial time for graphs in Gk, and we further show
that all 1-perfectly-orientable graphs belong to G2.

In Section 4, we show that for every k ≥ 1, every nonnull graph in Gk has a k-simplicial
vertex (i.e., a vertex whose neighborhood is a union of k cliques). We do this by showing that
every LexBFS ordering of a graph in Gk is a k-simplicial elimination ordering.2 This generalizes
a result by Rose, Tarjan, and Lueker on chordal graphs [27], which corresponds to the case
k = 1 Using [30] we deduce that the Maximum Weight Clique problem can be solved in
polynomial time for graphs in G2.

In Section 5, we show that for each k ≥ 3, it is NP-hard to recognize graphs in Gk; the

1Clearly, given a graph G and a set S ⊆ V (G), the set S is a union of k cliques if and only if S is a union of
k pairwise disjoint cliques.

2We postpone the statements of precise definitions to Section 4.
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diamond-free
graphs in G2 G2 Gk (k ≥ 3)

recognition O(nω log n) ? NP-hard

Maximum Weight Clique O(nω log n) O(n3+o(1)) NP-hard

Maximum Weight Stable Set O(n2(n+m)) O(n6) O(n2k+2)

Vertex Coloring O(nω log n) NP-hard NP-hard

Table 1: Summary of our algorithmic and complexity results. The number of vertices and edges
of the input graph are denoted by n and m, respectively, and ω < 2.3728596 denotes the matrix
multiplication exponent (see [2]).

time complexity of recognizing graphs in G2 is unknown. We further show that the Maximum
Clique problem is NP-hard for G3 (and consequently for Gk whenever k ≥ 3). Note that, since
Vertex Coloring is NP-hard for circular-arc graphs [21], which form a subclass of G2, the
problem is also NP-hard for Gk, whenever k ≥ 2.

The diamond is the four-vertex graph obtained from the complete graph K4 by deleting one
edge. In Section 6, we prove a decomposition theorem for diamond-free graphs in G2, and use
this theorem to obtain polynomial-time algorithms for the Vertex Coloring and recognition
problems for diamond-free graphs in G2, and improved running times for theMaximum Weight
Clique and Maximum Weight Stable Set problems in this class of graphs.

Table 1 summarizes our algorithmic and complexity results. Since G0 is the class of all
disjoint unions of complete graphs, and G1 is the class of all chordal graphs, all problems from
the table below can be solved in linear time for G0 and G1 (see [20,27]).

1.1 Terminology and notation

The vertex set and the edge set of a graph G are denoted by V (G) and E(G), respectively. The
complement of G is denoted by G.

A clique in a graph G is a (possibly empty) set of pairwise adjacent vertices, and a stable
set in G is a (possibly empty) set of pairwise nonadjacent vertices. Given a graph G and a
vertex x ∈ V (G), we denote by NG(x) the set of all neighbors of x in G, and we set NG[x] :=
{x} ∪ NG(x). For a nonnegative integer k, a vertex x ∈ V (G) is k-simplicial in G if NG(x) is
the union of k cliques. A 1-simplicial vertex is also called simplicial, and a 2-simplicial vertex
is also called bisimplicial. Analogously, for a graph G and a set X ⊆ V (G), we say that X is
k-simplicial in G if it is a union of k cliques and bisimplicial if it is 2-simplicial. In particular,
a graph G belongs to the class Gk if and only if every minimal separator of G is k-simplicial,
and to G2 if and only if every minimal separator of G is bisimplicial.

We say that a graph H is an induced subgraph of a graph G if H can be obtained from G
via a (possibly null) sequence of vertex deletions. Given graphs H and G, we say that G is
H-free if no induced subgraph of G is isomorphic to H. For a graph G and a set X ⊆ V (G),
we denote by G[X] the subgraph of G induced by X; if X = {x1, . . . , xt}, we sometimes write
G[x1, . . . , xt] instead of G[X]. Furthermore, G \ X is the graph obtained from G by deleting
all vertices in X, i.e., G \X := G[V (G) \X]; if X = {x}, we sometimes write G \ x instead of
G \ X. A path in G is a nonempty sequence p1, . . . , pk of pairwise distinct vertices of G such
that pi and pi+1 are adjacent for all i ∈ {1, . . . , k − 1}.

For a nonnegative integer n, we denote by Kn, Pn, and Cn, respectively, the complete graph,
path graph, and cycle graph on n vertices. For two nonnegative integers p and q, we denote by
Kp,q the complete bipartite graph with parts of size p and q. A class C of graphs is hereditary
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if for all G ∈ C, all (isomorphic copies of) induced subgraphs of G belong to C.
Given a graph G and an edge e = xy ∈ E(G), subdividing the edge e means replacing e

with a path of length two, that is, removing the edge e and adding a new vertex z adjacent to
precisely x and y. A subdivision of a graph G is any graph obtained from G by a (possibly null)
sequence of edge subdivisions. Given a graph G and an edge e ∈ E(G), contracting the edge
e = xy means replacing the vertices x and y in G with a new vertex vxy adjacent to every vertex
that is adjacent in G to x or y. We denote by G/e the graph obtained from G by contracting
e. We say that a graph H is an induced minor of a graph G if H can be obtained from G via a
(possibly null) sequence of vertex deletions and edge contractions. Given graphs H and G, we
say that G is H-induced-minor-free if no induced minor of G is isomorphic to H. For a family
H of graphs, we say that a graph G is H-induced-minor-free if G is H-induced-minor-free for
all graphs H ∈ H.

Given two graphs G and H, an induced minor model of H in G is a family {Xv}v∈V (H) of
nonempty, pairwise disjoint subsets of V (G), each inducing a connected subgraph of G, and
having the property that for all distinct u, v ∈ V (H), there is an edge between Xu and Xv in
G if and only if uv ∈ E(H). Note that H is an induced minor of G if and only if G admits an
induced minor model of H.

Given a graph G, a vertex x ∈ V (G), and a set Y ⊆ V (G) \ {x}, we say that x is complete
(resp. anticomplete) to Y in G if x is adjacent (resp. nonadjacent) to all vertices in Y . Given
disjoint sets A,B ⊆ V (G), we say that A is complete (resp. anticomplete) to B in G if every
vertex in A is complete (resp. anticomplete) to B in G. A universal vertex of a graph G is a
vertex u such that NG[u] = V (G). Adding a universal vertex to a graph G means adding a new
vertex v and making it adjacent to all vertices of G; note that v is a universal vertex in the
resulting graph.

A cutset of a graph G is a (possibly empty) set C ⊆ V (G) such that G \C is disconnected.
A minimal cutset of a graph G is a cutset C of G such that no proper subset of C is a cutset of
G. A clique-cutset is a cutset that is a clique. Note that ∅ is a clique-cutset of any disconnected
graph.

A cut-partition of a graphG is a partition (A,B,C) of V (G) such that A and B are nonempty
and anticomplete to each other (the set C may possibly be empty). Note that if (A,B,C) is a
cut-partition of G, then C is a cutset of G; conversely, every cutset of G gives rise to at least
one cut-partition of G.

If H1 and H2 are graphs on disjoint vertex sets, the disjoint union of H1 and H2, denoted
by H1 ∪H2, is the graph with vertex set V (H1) ∪ V (H2) and edge set E(H1) ∪ E(H2). More
generally, the operation of gluing H1 and H2 along a clique produces a graph obtained from
H1 ∪H2 by choosing cliques C1 in H1 and C2 in H2 such that |C1| = |C2|, fixing a bijection f
from C1 to C2, and identifying each vertex v ∈ C1 with the vertex f(v).

Given a graph G and a vertex weight function w : V → Q+, the Maximum Weight Clique
problem is the problem of computing a clique C in G with maximum total weight, where the
weight of a set X ⊆ V (G) is defined as

∑
x∈X w(x). Similarly, the Maximum Weight Stable

Set problem is the problem of computing a stable set S in G with maximum total weight. In the
case of weight functions constantly equal to 1, we obtain the Maximum Clique and Maximum
Stable Set problems, respectively. A graph G = (V,E) is k-colorable if V is a union of k
stable sets in G. Vertex Coloring is the following problem: given a graph G, compute its
chromatic number χ(G), that is, the smallest integer k such that G is k-colorable. For a positive
integer k, k-Coloring is the following decision problem: given a graph G, determine whether
G is k-colorable.
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2 Basic properties

Recall that for any graph class C, we denote by GC the class of all graphs G such that every
minimal separator of G induces a graph from C. Note that if GC is hereditary, then C ⊆ GC .
The following proposition provides some equivalent characterizations of the class GC for the case
when C is hereditary.

Proposition 2.1. Let C be a hereditary class of graphs, and let G be a graph. Then the following
are equivalent:

(a) G ∈ GC;

(b) for all induced subgraphs H of G, every minimal separator S of H satisfies H[S] ∈ C;

(c) for all induced subgraphs H of G, every minimal cutset C of H satisfies H[C] ∈ C.

Proof. We prove the result by showing that (a) implies (b), that (b) implies (c), and that (c)
implies (a).

First, we assume that (a) holds, and we prove (b). Let H be an induced subgraph of G,
and suppose that a, b ∈ V (H) are distinct, nonadjacent vertices, and that S is a minimal (a, b)-
separator of H. Then S∪(V (G)\V (H)) is an (a, b)-separator of G. Let S∗ ⊆ S∪(V (G)\V (H))
be a minimal (a, b)-separator of G; by (a), G[S∗] ∈ C. Since S∗ is an (a, b)-separator of G, we
have that S∗∩V (H) is an (a, b)-separator ofH. Moreover, S∗∩V (H) ⊆ S, and so the minimality
of S guarantees that S∗ ∩ V (H) = S; consequently, S ⊆ S∗. Since G[S∗] ∈ C, and since C is
hereditary, it follows that G[S] ∈ C. Clearly, G[S] = H[S], and so H[S] ∈ C. Thus, (b) holds.

Next, we assume that (b) holds, and we prove (c). Let H be an induced subgraph of G,
and suppose that C is a minimal cutset of H. Let A and B be the vertex sets of two distinct
components of H \ C. The minimality of C guarantees that every vertex in C has a neighbor
both in A and in B, and this, in turn, guarantees that for all a ∈ A and b ∈ B, C is a minimal
(a, b)-separator of H. But now (b) implies that H[C] ∈ C. Thus, (c) holds.

Finally, we assume that (c) holds, and we prove (a). Suppose that a, b ∈ V (G) are distinct,
nonadjacent vertices, and that S is a minimal (a, b)-separator of G. Let A (resp. B) be the
vertex set of the component of G \ S that contains a (resp. b). Clearly, A and B are disjoint
and anticomplete to each other. Furthermore, the minimality of S implies that every vertex in
S has a neighbor both in A and in B. Set H := G[A∪B ∪S]. Then (A,B, S) is a cut-partition
of H; furthermore, since H[A] and H[B] are connected, and every vertex of S has a neighbor
both in A and in B, we see that S is a minimal cutset of H. Now (c) guarantees that H[S] ∈ C;
since H[S] = G[S], it follows that G[S] ∈ C. Thus, (a) holds.

Corollary 2.2. Let C be a hereditary class of graphs. Then GC is hereditary.

Proof. This readily follows from Proposition 2.1, and more precisely, from the equivalence of
(a) and (b) from Proposition 2.1.

Theorem 2.3. Let C be a hereditary class of graphs that contains all complete graphs.3 Then,
GC is closed under gluing along a clique.

Proof. Let G be a graph that admits a clique-cutset C and let (A,B,C) be an associated cut-
partition of G. Assume that GA := G[A∪C] and GB := G[B∪C] both belong to GC . It suffices
to show that G ∈ GC .

3However, not all graphs in C need be complete.
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Fix a pair of distinct, nonadjacent vertices x, y ∈ V (G), and let S be a minimal (x, y)-
separator of G. We must show that G[S] ∈ C. Since C is a clique, it contains at most one of
x, y; by symmetry, we may therefore assume that x ∈ A. We now consider two cases: when
y ∈ A ∪ C, and when y ∈ B.

Case 1: y ∈ A ∪ C. Then S ∩ (A ∪ C) is an (x, y)-separator of GA; let S′ ⊆ S ∩ (A ∪ C) be
a minimal (x, y)-separator of GA. Since GA ∈ GC , we see that GA[S

′] = G[S′] belongs to C. If
S′ = S, then we are done. So, assume that S′ ⫋ S. The minimality of S then implies that there
is a path p1, . . . , ps in G \ S′, with p1 = x and ps = y. Since S′ is an (x, y)-separator of GA,
we see that at least one vertex of the path p1, . . . , ps belongs to B. Let i be the smallest index
in {1, . . . , s} such that pi ∈ B, and let j be the largest index in {1, . . . , s} such that pj ∈ B.
Since p1, ps ∈ A ∪ C, we have that 2 ≤ i ≤ j ≤ s− 1. Moreover, since A is anticomplete to B,
we have that pi−1, pj+1 ∈ C; since C is a clique, we see that pi−1, pj+1 are adjacent. But now
p1, . . . , pi−1, pj+1, . . . , ps is a path between x and y in GA \S′, contrary to the fact that S′ is an
(x, y)-separator of GA.

Case 2: y ∈ B. Note that, in this case, C is an (x, y)-separator of G.

Claim. At least one of S ∩A and S ∩B is empty.

Proof of the Claim. Suppose otherwise, i.e., that both S ∩ A and S ∩ B are nonempty. Set
SA := S \B and SB := S \A. By the minimality of S, there is a path p1, . . . , ps, with p1 = x and
ps = y, in G\SA, and there is a path q1, . . . , qt, with q1 = x and qt = y, in G\SB. Since p1 ∈ A
and ps ∈ B, and since A is anticomplete to B, some internal vertex of the path p1, . . . , ps belongs
to C; let i be the smallest index in {2, . . . , s − 1} such that pi ∈ C (then p1, . . . , pi−1 ∈ A).
Similarly, at least one internal vertex of the path q1, . . . , qt belongs to C; let j be the largest
index in {2, . . . , t − 1} such that qj ∈ C (then qj+1, . . . , qt ∈ B). Since C is a clique, we see
that pi and qj are either equal or adjacent. In the former case, p1, . . . , pi, qj+1, . . . , qt is a path
between x and y in G \ S; and in the latter case, p1, . . . , pi, qj , . . . , qt is a path between x and y
in G \ S. But neither outcome is possible, since S is an (x, y)-separator of G. This proves the
Claim. ♦

By the Claim, and by symmetry, we may assume that S ∩B = ∅, i.e., S ⊆ A∪C. Let Y be
the vertex set of the component of G[B] that contains y.

Suppose first that C \S is anticomplete to Y . Then C ∩S is an (x, y)-separator of G, and so
the minimality of S guarantees that S ⊆ C. Thus, S is a clique; since C contains all complete
graphs, it follows that G[S] ∈ C, and we are done.

From now on, we assume that C \ S is not anticomplete to Y . Fix a vertex c ∈ C \ S
that has a neighbor in Y . Since y ∈ Y , and G[Y ] is connected, the graph G contains a path
q1, . . . , qt, with q1 = c, qt = y, and q2, . . . , qt ∈ Y (so, q2, . . . , qt ∈ B). Now, suppose that there
is a path p1, . . . , ps in GA \ S, with p1 = x and ps = c. Then p1, . . . , ps, q2, . . . , qt is a path in
G \ S between x and y, contrary to the fact that S is an (x, y)-separator of G. So, S is an
(x, c)-separator of GA. Let S′ ⊆ S be a minimal (x, c)-separator of GA; since GA ∈ GC , we see
that GA[S

′] = G[S′] belongs to C. If S′ is an (x, y)-separator of G, then the minimality of S
guarantees that S = S′, and we are done. So, assume that S′ is not an (x, y)-separator of G.
Then there is a path r1, . . . , rk in G \ S′, with r1 = x and rk = y. Since x ∈ A, y ∈ B, and A
is anticomplete to B, we see that some internal vertex of r1, . . . , rk belongs to C; let i be the
smallest index in {2, . . . , k − 1} such that ri ∈ C. Since ri, c ∈ C, and C is a clique, we see
that ri and c are either equal or adjacent. In the former case, r1, . . . , ri is a path from x to c
in GA \ S′, and in the latter case, r1, . . . , ri, c is a path from x to c in GA \ S′. But neither
outcome is possible, since S′ is an (x, c)-separator of GA.
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Theorem 2.3 implies the following result on the classes of graphs in which every minimal
separator is a union of k cliques.

Corollary 2.4. For every positive integer k, the class Gk is closed under gluing along a clique.

Proof. This follows immediately from Theorem 2.3, the fact that Gk = GCk , and the fact that
the class Ck is a hereditary graph class containing all complete graphs.

Note that Corollary 2.4 fails for G0: the two-edge path P3 is an obvious counterexample.

3 Forbidden induced minors

For a class of graphs C, let us denote by MC the class of all graphs that do not belong to C, but
all of whose proper induced minors do belong to C. Note that nonisomorphic graphs in MC are
incomparable under the induced minor relation. If the class C is closed under induced minors,
then clearly, C is precisely the class of all MC-induced-minor-free graphs. In this case, we refer
to graphs in MC as the minimal forbidden induced minors for the class C. More generally, if
M is a class of graphs such that every graph in C is M-induced-minor-free, we refer to graphs
in M as forbidden induced minors for the class C.

We now consider hereditary graph classes that are closed under edge addition. We show that
for any such class C, both the class C and the corresponding class GC are closed under induced
minors, and we characterize the class GC in terms of forbidden induced minors. For graphs H1

and H2 on disjoint vertex sets, the complete join of H1 and H2, denoted by H1∨H2, is the graph
with vertex set V (H1)∪V (H2) and edge set E(H1)∪E(H2)∪{v1v2 | v1 ∈ V (H1), v2 ∈ V (H2)}.

Theorem 3.1. Let C be a hereditary class of graphs, closed under edge addition. Then both C
and GC are closed under induced minors, and GC is precisely the class of all {2K1∨H | H ∈ MC}-
induced-minor-free graphs.

Proof. Let C be a hereditary class of graphs, closed under edge addition. First, we prove that
C is closed under induced minors. It suffices to show that C is closed under vertex deletion and
edge contraction. The former follows immediately from the fact that C is hereditary. Let us
prove the latter. Fix a graph G ∈ C, and fix an edge xy ∈ E(G). Then G/xy is isomorphic to
the graph obtained from G by first deleting y, and then adding edges between x and all vertices
in NG[y]\NG[x]; since C is closed under vertex deletion and edge addition, it follows that G/xy
belongs to C. So, C is closed under edge contraction. This proves that C is closed under induced
minors.

By Corollary 2.2, GC is hereditary. So, in order to prove that GC is closed under induced
minors, it suffices to show that GC is closed under edge contractions. Fix G ∈ GC , let xy be
an edge of G, and set G′ := G/xy; the vertex of G′ to which the edge xy is contracted will be
denoted by vxy. We must show that G′ ∈ GC , i.e., that for any minimal separator S of G′, we
have that G′[S] ∈ C.

We first deal with minimal separators of G′ that contain vxy. So, suppose that S ⊆ V (G′)
is a minimal separator of G′ such that vxy ∈ S; we must show that G′[S] ∈ C. Fix distinct
a, b ∈ V (G′)\S such that S is a minimal (a, b)-separator of G′. Then S∗ := (S\{vxy})∪{x, y} is
an (a, b)-separator of G. Let S′ ⊆ S∗ be a minimal (a, b)-separator of G; since G ∈ GC , we have
that G[S′] ∈ C. If x, y /∈ S′, then S′ ⫋ S is an (a, b)-separator of G′, contrary to the minimality
of S. So, S′ contains at least one of x, y. Then (S′ \ {x, y}) ∪ {vxy} is an (a, b)-separator of G′;
since (S′ \ {x, y}) ∪ {vxy} ⊆ S, the minimality of S implies that S = (S′ \ {x, y}) ∪ {vxy}. As
we show next, the graph G′[S] can be obtained from an induced subgraph of G[S′] by possibly
adding some edges. By symmetry, we may assume that x ∈ S′. Since S \ {vxy} = S′ \ {x, y},
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the graph G′[S] is isomorphic to the graph obtained from the subgraph of G[S′] induced by
S′ \ {y} by adding to it the edges from x to all vertices in S′ \ {x, y} that are adjacent in G to
y but not to x. Since G[S′] ∈ C, and C is hereditary and closed under edge addition, we deduce
that G′[S] ∈ C, and we are done.

We still have to consider minimal separators of G′ that do not contain vxy. Here, we first
observe that for any pair of nonadjacent vertices a, b of G′, and any set S ⊆ V (G′)\{a, b, vxy} =
V (G) \ {a, b, x, y}, both the following hold:

(1) if vxy /∈ {a, b}, then S is an (a, b)-separator of G if and only if S is an (a, b)-separator of
G′;

(2) if vxy = a, then S is an (x, b)-separator of G if and only if S is an (a, b)-separator of G′.

Clearly, (1) and (2) imply that any set S ⊆ V (G′)\{vxy} = V (G)\{x, y} is a minimal separator
of G′ if and only if it is a minimal separator of G. But for any S ⊆ V (G′)\{vxy} = V (G)\{x, y},
we have that G′[S] = G[S], and moreover, if S is a minimal separator of G, then G[S] ∈ C. This
shows that if a set S ⊆ V (G′) \ {vxy} is a minimal separator of G′, then G′[S] ∈ C.

Finally, it remains to show that GC is precisely the class of all {2K1∨H | H ∈ MC}-induced-
minor-free graphs. Let us first show that all graphs in GC are {2K1 ∨H | H ∈ MC}-induced-
minor-free. Since GC is closed under induced minors, it suffices to show that, for all H ∈ MC ,
the graph 2K1 ∨H does not belong to GC . So, fix H ∈ MC , and let x and y be the two vertices
of the 2K1 from 2K1 ∨ H. Then V (H) is a minimal (x, y)-separator of 2K1 ∨ H. Since the
subgraph of 2K1 ∨H induced by V (H) is H, which does not belong to C (because H ∈ MC),
it follows that 2K1 ∨H does not belong to GC .

For the reverse direction, fix any {2K1 ∨ H | H ∈ MC}-induced-minor-free graph G; we
must show that G ∈ GC . Fix distinct, nonadjacent vertices a and b of G, and fix a minimal
(a, b)-separator S of G. We must show that G[S] ∈ C. Suppose otherwise. Then since C is
closed under induced minors, there exists some H ∈ MC such that H is an induced minor of
G[S]. We will derive a contradiction by showing that 2K1 ∨H is an induced minor of G. Let
{Xv}v∈V (H) be a family of nonempty, pairwise disjoint subsets of S, each inducing a connected
subgraph of G[S], and having the property that for all distinct u, v ∈ V (H), there is an edge
between Xu and Xv in G[S] if and only if uv ∈ E(H). Next, let Xa (resp., Xb) be the vertex
set of the component of G \ S that contains a (resp., b). Obviously, Xa and Xb are disjoint
and anticomplete to each other in G. Further, since S is a minimal (a, b)-separator of G, we
see that, in G, every vertex of S has a neighbor both in Xa and in Xb. In particular, for all
v ∈ V (H), there is an edge between Xa and Xv in G, and there is also an edge between Xb

and Xv in G. But now by considering the family {Xv}v∈{a,b}∪V (H), we see that 2K1 ∨H is an
induced minor of G (here, a and b are the two vertices of the 2K1).

We now apply Theorem 3.1 to the cases when C = Ck for k ∈ {0, 1}, and thus GC = Gk.
For k = 0, we have MC0 = {K1} and therefore {2K1∨H | H ∈ MC0} = {2K1∨K1} = {P3};

we obtain that G0 is precisely the class of all P3-induced-minor-free graphs. In particular, we
recover the known easy fact that the class G0 of all disjoint unions of complete graphs is precisely
the class of all P3-induced-minor-free graphs (which is also the class of all P3-free graphs). In
this case, since the set of forbidden induced minors is a singleton, it is in fact also the set of
minimal forbidden induced minors, that is, MG0 = {P3}.

For k = 1, we haveMC1 = {2K1} and we obtain that {2K1∨H | H ∈ MC1} = {2K1∨2K1} =
{C4}; that is, G1 is precisely the class of all C4-induced-minor-free graphs. Note that a graph is
C4-induced-minor-free if and only if it contains no induced cycles of length greater than three,
that is, it is a chordal graph. By the definition of G1, graphs in G1 are precisely the graphs
in which all minimal separators are cliques. Thus, we have again recovered a known result: a
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graph is chordal if and only if all its minimal separators are cliques (see [18]). Since the set of
forbidden induced minors is a singleton, we again conclude that MG1 = {C4}.

The reader may wonder whether, in Theorem 3.1, it is necessary to assume that C is closed
under edge addition. Here, we note that if C is the class of all edgeless graphs, then K2,3 ∈ GC ,
but contracting one edge of K2,3 produces the diamond, which does not belong to GC . Thus,
the assumption about edge additions cannot be simply removed from Theorem 3.1, although it
is possible that some other (weaker) assumption would suffice instead.

Corollary 3.2. For all integers k ≥ 0, classes Ck and Gk are closed under induced minors, and
all graphs in Gk are K2,k+1-induced-minor-free.

Proof. Fix an integer k ≥ 0. Obviously, Ck is hereditary and closed under edge addition. So, by
Theorem 3.1, Ck is closed under induced minors, and Gk = GCk is closed under induced minors.
It remains to show that K2,k+1 /∈ Gk. But this is obvious: one minimal separator of K2,k+1

induces an edgeless subgraph on k + 1 vertices in K2,k+1, and Ck does not contain edgeless
graphs on more than k vertices.

We now proceed to showing that when C is is a hereditary class of graphs closed not only
under edge addition, but also under the addition of universal vertices, the conclusion of The-
orem 3.1 can be strengthened to a characterization of the class of minimal forbidden induced
minors for the class GC (see Theorem 3.6). We start with some preparatory statements. A
nonnull graph is anticonnected if its complement is connected. An anticomponent of a nonnull
graph G is a maximal anticonnected induced subgraph of G. Clearly, every nonnull graph is
the complete join of its anticomponents.

Proposition 3.3. Let H be an anticonnected graph on at least two vertices, and assume that
H is an induced minor of a graph G. Let {Xv}v∈V (H) be an induced minor model of H in G.
Then there exists an anticomponent C of G such that

⋃
v∈V (H)Xv ⊆ V (C).

Proof.

Claim. For all v ∈ V (H), there exists an anticomponent C of G such that Xv ⊆
V (C).

Proof of the Claim. Suppose otherwise. Then there exists some vertex u ∈ V (H) and distinct
anticomponents C1 and C2 of G such that Xu intersects both V (C1) and V (C2). Let us show
that u is a universal vertex of H. Fix any w ∈ V (H) \ {u}. Let C be any anticomponent of
G such that Xw ∩ V (C) ̸= ∅. By symmetry, we may assume that C ̸= C1.

4 Then Xu ∩ V (C1)
and Xw ∩V (C) are both nonempty and complete to each other in G, and in particular, there is
at least one edge between Xu and Xw in G. So, uw ∈ E(H). This proves that u is a universal
vertex of H. But this is impossible, since H is an anticonnected graph on at least two vertices,
and consequently, H has no universal vertices. ♦

Fix any anticomponent C of G such that
(⋃

v∈V (H)Xv

)
∩ V (C) ̸= ∅, and set U := {v ∈

V (H) | Xv ∩ V (C) ̸= ∅}. By construction, we have that U ̸= ∅, and by the claim, we have
that U = {v ∈ V (H) | Xv ⊆ V (C)}. It now suffices to show that U = V (H), for it will then
follow that

⋃
v∈V (H)Xv ⊆ V (C), which is what we need. Since U ̸= ∅ and H is anticonnected,

it is in fact enough to show that U is complete to V (H) \ U in H. So, fix some u ∈ U and
w ∈ V (H) \ U . Since u ∈ U , we have that Xu ⊆ V (C). On the other hand, by the claim, there
exists an anticomponent D of G such that Xw ⊆ V (D); since w /∈ U , we have that D ̸= C.

4Indeed, either C ̸= C1 or C ̸= C2, and by symmetry, we may assume that C ̸= C1.
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Since C and D are distinct anticomponents of G, we know that V (C) and V (D) are complete
to each other in G; consequently, Xu is complete to Xw in G, and it follows that uw ∈ E(H).
This proves that U is complete to V (H) \ U , and we are done.

Proposition 3.4. Let H1 and H2 be graphs. Assume that H1 contains no universal vertices
and that 2K1 ∨H1 is an induced minor of 2K1 ∨H2. Then H1 is an induced minor of H2.

Proof. If H1 is the null graph, then it is obviously an induced minor of H2. So, we may assume
that H1 is nonnull. Since 2K1 ∨H1 is an induced minor of 2K1 ∨H2, it follows that the graph
H2 is also nonnull.

Now, using the fact that 2K1∨H1 is an induced minor of 2K1∨H2, we fix an induced minor
model {Xv}v∈V (2K1∨H1) of 2K1 ∨ H1 in 2K1 ∨ H2. If

⋃
v∈V (H1)

Xv ⊆ V (H2), then H1 is an
induced minor of H2, and we are done. So, we may assume that

⋃
v∈V (H1)

Xv ̸⊆ V (H2). Fix an
anticomponent H of H1 such that

⋃
v∈V (H)Xv ̸⊆ V (H2). Since H1 has no universal vertices, we

have that |V (H)| ≥ 2. In view of Proposition 3.3, it follows that
⋃

v∈V (H)Xv ⊆ V (2K1). Since
H has at least two vertices, it follows that H ∼= 2K1 and

⋃
v∈V (H)Xv = V (2K1). Consequently,⋃

v∈V (2K1∨H1)\V (H)Xv ⊆ V (H2), and see that (2K1 ∨ H1) \ V (H) is an induced minor of H2.
But note that (2K1 ∨H1) \ V (H) ∼= H1. So, H1 is an induced minor of H2.

We note that the assumption that H1 contains no universal vertices cannot be removed from
Proposition 3.4. To see this, note that 2K1 ∨K2 is an induced minor of 2K1 ∨ 3K1 (indeed, we
obtain 2K1 ∨K2 by contracting any one edge of 2K1 ∨ 3K1), but K2 is not an induced minor
of 3K1.

Lemma 3.5. Let C be a class of graphs, closed under the addition of universal vertices. Then
no graph in MC contains a universal vertex. Moreover, for any two nonisomorphic graphs
H1, H2 ∈ MC, the graphs 2K1 ∨H1 and 2K1 ∨H2 are incomparable with respect to the induced
minor relation.

Proof. Let us first show that no graph in MC contains a universal vertex. Suppose otherwise,
and fix a graph H ∈ MC that contains a universal vertex u. By the definition of MC , we have
that H \ u belongs to C. But then since C is closed under the addition of universal vertices, we
have that H ∈ C, contrary to the fact that H ∈ MC .

Now, fix any two nonisomorphic graphs H1, H2 ∈ MC . By the definition of MC , the graphs
H1 and H2 are incomparable with respect to the induced minor relation. Moreover, by what
we just proved, H1 and H2 have no universal vertices. So, by Proposition 3.4, 2K1 ∨ H1 and
2K1 ∨H2 are incomparable with respect to the induced minor relation.

Theorem 3.6. Let C be a hereditary class of graphs, closed under edge addition, and closed
under the addition of universal vertices. Then MGC = {2K1 ∨H | H ∈ MC}.

Proof. By Theorem 3.1, GC is precisely the class of all {2K1∨H | H ∈ MC}-induced-minor-free
graphs. On the other hand, Lemma 3.5 guarantees that nonisomorphic graphs in {2K1 ∨ H |
H ∈ MC} are incomparable with respect to the induced minor relation. So, MGC = {2K1 ∨H |
H ∈ MC}.

We now apply Theorem 3.6 to the cases when C = C2, and thus GC = G2. It can be shown
that MG2 = {K2 ∪ C2k+1 | k ∈ N} (see Fig. 1). To this end, the following auxiliary proposition
will be useful.

Proposition 3.7. If a graph H1 is an induced minor of a graph H2, then H1 is isomorphic to
a (not necessarily induced) subgraph of H2.
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K2 ∪ C3 K2 ∪ C5 K2 ∪ C7

Figure 1: Some small graphs in MG2 .

Proof. The result follows from the following technical claim via simple induction.

Claim. If a graphH is obtained from a graph G by deleting one vertex or contracting
one edge, then H is isomorphic to a subgraph of G.

Proof of the Claim. Fix graphs H and G, and assume that H is obtained from G by deleting
one vertex or contracting one edge. We must show that H is isomorphic to a (not necessarily
induced) subgraph of G. If H is obtained from G by deleting one vertex, then this is obvious.
So, assume that H is obtained from G by contracting an edge xy of G. Then H is isomorphic
to the graph obtained from G by first deleting y and then deleting all edges between x and
NG[y] \NG[x] = NG(x) \NG(y). So, H is isomorphic to a subgraph of G. ♦

Corollary 3.8. MG2 = {K2 ∪ C2k+1 | k ∈ N}.

Proof. Note that for all positive integers k, we have that K2 ∪ C2k+1
∼= 2K1 ∨ C2k+1. So, in

view of Theorem 3.6, it is enough to show that MC2 = {C2k+1 | k ∈ N}. Note that graphs in C2
are precisely the complements of bipartite graphs, and it is well known that a graph is bipartite
if and only if it contains no odd cycle as an induced subgraph. So, C2 is precisely the class of
all {C2k+1 | k ∈ N}-free graphs. Since C2 is closed under induced minors (by Corollary 3.2), it
follows that C2 is in fact the class of all {C2k+1 | k ∈ N}-induced-minor-free graphs. It remains
to show that (nonisomorphic) graphs in {C2k+1 | k ∈ N} are incomparable with respect to the
induced minor relation. But this follows from Proposition 3.7, and from the fact that no cycle
is a subgraph of a cycle of different length.

A graph is 1-perfectly-orientable if it admits an orientation in which the out-neighborhood of
each vertex is a clique of the underlying graph. It was shown by Hartinger and Milanič in [22]
that all 1-perfectly-orientable graphs are {K2 ∪ C2k+1 | k ∈ N}-induced-minor-free. Thus,
Corollary 3.8 implies that 1-perfectly-orientable graphs form a subclass of G2. Let us also remark
that the proof of the mentioned result in [22] also gives a proof of the fact that nonisomorphic
graphs in {K2 ∪ C2k+1 | k ∈ N} are incomparable with respect to the induced minor relation,
which, when combined with Theorem 3.6, gives an alternative proof of Corollary 3.8.

3.1 Algorithmic considerations

It was shown by Dallard et al. in [15] that, for each positive integer k, the Maximum Weight
Stable Set problem can be solved in O(n2k) time for n-vertex K2,k-induced-minor-free graphs.
To connect this result with the classes Gk, by Corollary 3.2 every graph in Gk is K2,k+1-induced-
minor-free. Therefore, the result by Dallard et al. implies the following.
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Corollary 3.9. For each integer k ≥ 0, the Maximum Weight Stable Set problem can be
solved in O(n2k+2) time for n-vertex graphs in Gk.

Similar results hold for a number of other related problems, including the Maximum In-
duced Matching problem, the Dissociation Set problem, etc. We refer to [17] for the
details.

Furthermore, Dallard et al. showed in [16] that in any class of K2,k-induced-minor-free
graphs, the treewidth of the graphs in the class is bounded from above by some polynomial
function of the clique number (see also [15]). Combining this with a result of Chaplick et
al. [11, Theorem 12], it follows that for any two positive integers k and ℓ, the ℓ-Coloring
problem is solvable in time O(n) in the class of n-vertex K2,k-induced-minor-free graphs, and
thus in the class Gk as well. (The O-notation hides a constant depending on k and ℓ.) The
same result holds in fact for the more general List ℓ-Coloring problem, in which every vertex
is equipped with a list of available colors from the set {1, . . . , ℓ}.

4 Vertex neighborhoods

Recall that a vertex v in a graph G is k-simplicial it its neighborhood is a union of k cliques.
Given a graph G and an integer k ≥ 0, a k-simplicial elimination ordering of G is an ordering
v1, . . . , vn of the vertices of G such that for all i ∈ {1, . . . , n}, vi is k-simplicial in the graph
G[v1, . . . , vi] For k = 1, resp. k = 2, a k-simplicial elimination ordering is also called a perfect
elimination ordering, resp. a bisimplicial elimination ordering.

A classical result due to Dirac [18] states that every nonnull chordal graph has a simplicial
vertex. An alternative proof of this result was given by Rose, Tarjan, and Lueker [27], who
showed that every LexBFS ordering of a chordal graph is a perfect elimination ordering. In this
section we generalize these results by showing that for every positive integer k, every LexBFS
ordering of a graph in Gk is a k-simplicial elimination ordering. In particular, this shows
that every nonnull graph in Gk has a k-simplicial vertex. We also examine some algorithmic
consequences of these results for the case k = 2.

For a family F of graphs, an ordering v1, . . . , vn of the vertices of a graph G is an
F-elimination ordering if for every index i ∈ {1, . . . , n}, the graph G[NG[v1,...,vi](vi)] is F-free.
Note that a graph G admits an F-elimination ordering if and only if every nonnull induced
subgraph of G contains a vertex whose neighborhood induces an F-free subgraph in G.

LexBFS is a linear-time algorithm of Rose, Tarjan, and Lueker [27] whose input is any
nonnull graph G together with a vertex s ∈ V (G), and whose output is an ordering of the
vertices of G starting at s. It is a restricted version of Breadth First Search, where the usual
queue of vertices is replaced by a queue of unordered subsets of the vertices, which is sometimes
refined, but never reordered (for details, see [27]). An ordering of the vertices of a graph G is
a LexBFS ordering if there exists a vertex s of G such that the ordering can be produced by
LexBFS when the input is G, s.

In certain cases, F-elimination orderings can be found using LexBFS. This relies on the
concept of locally F-decomposable graphs and graph classes, introduced by Aboulker et al. in [1].
Let F be a family of graphs. A graph G is locally F-decomposable if for every vertex v of G, every
F ∈ F contained, as an induced subgraph, in G[NG(v)] and every component C of G \NG[v],
there exists y ∈ V (F ) such that y has a nonneighbor in F and has no neighbors in C. A class
of graphs G is locally F-decomposable if every graph G ∈ G is a locally F-decomposable graph.

Theorem 4.1 (Aboulker et al. [1]). If F is a family of noncomplete graphs and G is a locally
F-decomposable graph, then every LexBFS ordering of G is an F-elimination ordering.
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For a hereditary graph class C, we denote by FC the class of all graphs G such that G does
not belong to C, but all proper induced subgraphs of G do belong to C.

Theorem 4.2. Let C be a hereditary class of graphs that is closed under the addition of universal
vertices. Then, for every graph G ∈ GC, every LexBFS ordering of G is an FC-elimination
ordering.

Proof. First, we note that no graph in FC contains a universal vertex (and thus, FC is a family
of noncomplete graphs). Indeed, if some F ∈ FC contained a universal vertex u, then the
definition of FC would imply that F \ u belongs to C, and since C is closed under the addition
of universal vertices, it would follow that F ∈ C, a contradiction.

Now, fix a graph G ∈ GC . We claim that G is locally FC-decomposable. Consider a vertex
x ∈ V (G). Suppose that F is an induced subgraph of G[NG(x)] such that F ∈ FC . By the above,
F does not contain a universal vertex, and consequently, every vertex of F has a nonneighbor
in F . Let C be a component of G \NG[x]; we must show that some vertex in F is anticomplete
to V (C). Suppose otherwise, that is, suppose that every vertex in V (F ) has a neighbor in
V (C). Let z ∈ V (C). Clearly, NG(x) is an (x, z)-separator of G, and moreover, any minimal
(x, z)-separator of G included in NG(x) includes V (F ); since G ∈ GC and C is hereditary, it
follows that F ∈ C, contrary to the fact that F ∈ FC . Thus, some vertex in V (F ) is indeed
anticomplete to V (C). It follows that G is locally FC-decomposable, and so by Theorem 4.1,
every LexBFS ordering of G is an FC-elimination ordering. This completes the proof.

The reader may wonder whether, in Theorem 4.2, it might be possible to eliminate the
hypothesis that C is closed under the addition of universal vertices. This would in fact not be
possible (at least not without adding some other, perhaps weaker, hypothesis). To see this,
fix any positive integer ℓ, and any hereditary class C that does not contain Kℓ. The class GC
contains all complete graphs, and in particular, Kℓ+1 ∈ GC . However, the neighborhood of any
vertex of Kℓ+1 induces a Kℓ, and Kℓ /∈ C.

Corollary 4.3. Let k be a positive integer. Then, for every graph G in Gk, every LexBFS
ordering of G is a k-simplicial elimination ordering.

Proof. Fix an integer k ≥ 1. Recall that Ck is the class of graphs whose vertex set can be
partitioned into k cliques. Let G ∈ Ck, and let C1, . . . , Ck be k cliques in G partitioning
the vertex set of G. If G′ is the graph obtained by adding a universal vertex u to G, then
C1 ∪ {u}, C2, . . . , Ck are k cliques in G′ forming a partition of the vertex set of G′. It follows
that Ck is closed under the addition of universal vertices. By Theorem 4.2, for every graph G
in Gk, every LexBFS ordering of G is a k-simplicial elimination ordering.

Corollary 4.4. For every positive integer k, every nonnull graph in Gk has a k-simplicial vertex.

Remark 4.5. Corollary 4.3 can also be obtained from the fact that every nonnull graph G
contains a moplex [6], that is, a clique C such that every two vertices in C have the same closed
neighborhood and the neighborhood of C is either empty or a minimal separator of G. (In fact,
the last vertex visited by any execution of LexBFS on G necessarily belongs to a moplex.) Given
a graph G ∈ Gk and a vertex v that belongs to a moplex C of G, there exist k cliques C1, . . . , Ck

covering the neighborhood of C. But then C1, . . . , Ck ∪ (C \ {v}) are k cliques covering NG(v),
showing that v is a k-simplicial vertex.

Remark 4.6. For k > 1, the statement of Corollary 4.3 does not generalize to the class of
graphs that admit a k-simplicial elimination ordering. To see this, let G be the complete
bipartite graph K2,k+1. Then, G admits a bisimplicial elimination ordering obtained by placing
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the two vertices of degree k+1 before all the k+1 the vertices of degree 2 in the ordering. On
the other hand, any LexBFS ordering of G starting at a vertex with degree k + 1 will end in
the other vertex of degree k + 1, which is not a k-simplicial vertex in G.

4.1 Algorithmic implications

The Maximum Weight Clique problem can be solved in polynomial time for n-vertex graphs
that admit a bisimplicial elimination ordering, see [30]. The algorithm iteratively removes
bisimplicial vertices and reduces the problem to solving n instances of the Maximum Weight
Stable Set problem in bipartite graphs. The polynomial running time of the algorithm given
in [30] was based on polynomial-time solvability of the Maximum Weight Stable Set prob-
lem in the class of perfect graphs. Using maximum flow techniques, an improved running time
of O(n4) can be achieved, see [5]. For graphs in G2, a further improvement can be obtained
using LexBFS and recent developments on maximum flow algorithms.

Theorem 4.7. For every ϵ > 0, the Maximum Weight Clique problem can be solved in
O(n3+ϵ) time for n-vertex graphs in G2.

Proof. Let G be an n-vertex graph in G2. In time O(n2), we compute a LexBFS ordering
v1, . . . , vn of G. By Corollary 4.3, v1, . . . , vn is a bisimplicial elimination ordering of G. For
each i ∈ {1, . . . , n}, let Gi be the graph induced by the closed neighborhood of vi in the graph
G[v1, . . . , vi]. We will show that for each i ∈ {1, . . . , n}, we can compute a maximum-weight
clique Ci in Gi in time O(n2+ϵ). This will suffice, since a clique Ci with maximum total weight
is also a clique in G with maximum total weight.

Fix an i ∈ {1, . . . , n}. A maximum-weight clique in the graph Gi consists of vi and a
maximum-weight stable set in the complement of the graph Gi − vi. Since vi is a bisimplicial
vertex in the graph G[v1, . . . , vi], the complement of the graph Gi−vi is bipartite. The problem
of finding a maximum-weight stable set in a vertex-weighted bipartite graph can be reduced in
linear time to a maximum flow problem in a derived network (see, e.g., [19]). Using a recent
result due to Chen et al. [12] showing that the maximum flow problem can be solved in almost
linear time, we conclude that a maximum-weight independent set in the complement of the
graph Gi − vi can be computed in time O(n2+ϵ). The claimed O(n3+ϵ) overall time complexity
follows.

As we will show in the next section (more specifically in Theorem 5.3), this result cannot
be generalized to graphs in Gk for k ≥ 3, unless P = NP.

5 NP-hardness results for Gk, k ≥ 3

In this section we prove that for all k ≥ 3, it is NP-hard to recognize graphs in Gk. The time
complexity of recognizing graphs in G2 is still unknown. We also show that the Maximum
Clique problem is NP-hard for G3 (and consequently for Gk whenever k ≥ 3).

Recall that for an integer k, the k-Coloring problem is the problem of determining whether
the input graph is k-colorable. It is well known that for any integer k ≥ 3, the k-Coloring
problem is NP-complete; we prove the NP-hardness of recognizing graphs in Gk (k ≥ 3) by a
reduction from this problem. We begin with a technical proposition.

Proposition 5.1. Let k ≥ 0 be an integer, and let G be a graph. Let G′ be the graph obtained
from G by adding two new, nonadjacent vertices, and making them adjacent to all vertices of
G. Then χ(G) ≤ k if and only if G′ ∈ Gk.
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Figure 2: The diamond.

Proof. Let a and b be the two vertices added to G to form G′.
Suppose first that G′ ∈ Gk. Clearly, V (G) is a minimal (a, b)-separator of G′, and so V (G)

is a union of k cliques of G′. But then χ(G) ≤ k.
Suppose now that χ(G) ≤ k; we must show that G′ ∈ Gk. Fix two distinct, nonadjacent

vertices x, y ∈ V (G′) and let S be a minimal (x, y)-separator of G′. We must show that S is a
union of k cliques of G′.

Suppose first that {x, y} ∩ {a, b} ̸= ∅. By symmetry, we may assume that x = a. Since b
is the only nonneighbor of a in G′, it follows that y = b. Since {a, b} = {x, y} is complete to
V (G) = V (G′) \ {a, b}, it follows that V (G) is the only (x, y)-separator of G′. So, S = V (G).
Since χ(G) ≤ k, it follows that S is a union of k cliques of G′.

From now on, we assume that {x, y} ∩ {a, b} = ∅, so that x, y ∈ V (G). Since x and y are
nonadjacent, we see that V (G) is not a clique, and consequently k ≥ χ(G) ≥ 2. Note that {a, b}
is complete to {x, y}, and so a, b ∈ S. Now, χ(G) ≤ k, and so S \ {a, b} is a union of k cliques
of G, say C1, . . . , Ck. Using the fact that {a, b} is complete to V (G) in G′, and the fact that
k ≥ 2, we see that S is a union of k cliques of G′, namely C1 ∪ {a}, C2 ∪ {b}, C3, . . . , Ck.

We have now shown that G′ ∈ Gk, and we are done.

Theorem 5.2. For every integer k ≥ 3, it is NP-hard to recognize graphs in Gk.

Proof. Fix an integer k ≥ 3, and let G be any graph. We form a graph G′ by adding two

new, nonadjacent vertices to G, and making them adjacent to all vertices of G. Since G = G,
Proposition 5.1 guarantees that χ(G) ≤ k if and only if G′ ∈ Gk. Since k-Coloring is NP-
complete, it follows that recognizing graphs in Gk is NP-hard.

Theorem 5.3. The Maximum Clique problem is NP-hard for graphs in G3.

Proof. Note that G3 contains all graphs whose vertex set can be partitioned into three cliques;
moreover, note that the vertex set of a graph can be partitioned into three cliques if and only if
the complement of the graph is 3-colorable. Thus, it suffices to show that theMaximum Stable
Set problem is NP-hard for 3-colorable graphs. But this readily follows from [26]. Indeed, as
observed by Poljak [26], for any graph G, the graph G∗ obtained from G by subdividing each
edge twice has the property that α(G∗) = α(G) + |E(G)|. But notice that for any graph G,
the graph G∗ is 3-colorable. Thus, since the Maximum Stable Set problem is NP-hard for
general graphs, it is NP-hard for 3-colorable graphs.

6 Diamond-free graphs in G2

We remind the reader that the diamond is the four-vertex graph obtained from the complete
graph K4 by deleting one edge (see Fig. 2). In this section, we prove a decomposition theorem
for diamond-free graphs in G2, which implies a polynomial-time recognition algorithm for this
class of graphs. We begin with some definitions.

A hole in a graph G is an induced cycle of G of length at least four. A wheel is a graph
that consists of a hole and an additional vertex that has at least three neighbors in the hole. A
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Figure 3: Some small wheels, classified as broken or not broken.

Figure 4: Three-path-configurations: theta (left), pyramid (center), and prism (right). A full
line represents an edge, and a dashed line represents a path that has at least one edge.
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broken wheel (see Fig. 3) is a wheel that consists of a hole H and an additional vertex v such
that v has at least three neighbors in H, and furthermore, the neighbors of v in V (H) induce
a disconnected subgraph of H.

A prism is any subdivision of C6 in which the two triangles remain unsubdivided; in particu-
lar, C6 is a prism. A pyramid is any subdivision of the complete graph K4 in which one triangle
remains unsubdivided, and of the remaining three edges, at least two edges are subdivided at
least once. A theta is any subdivision of the complete bipartite graph K2,3; in particular, K2,3

is a theta. A 3-path-configuration (or 3PC for short) is any theta, pyramid, or prism. The three
types of 3PC are represented in Fig. 4.

The short prism is the graph C6, and a long prism is any prism other than C6. (Thus, a
long prism is any prism on at least seven vertices.)

For an integer n ≥ 3, a short n-prism is a graph whose vertex set can be partitioned into two
n-vertex cliques, say A = {a1, . . . , an} and B = {b1, . . . , bn}, such that for all i, j ∈ {1, . . . , n},
ai is adjacent to bj if and only if i = j. Note that C6 is a short 3-prism, while for n ≥ 4, no
short n-prism is a prism. A complete prism is any graph that is a short n-prism for some integer
n ≥ 3.

We will need the following decomposition theorem for (3PC, wheel)-free graphs.

Theorem 6.1 (Conforti et al. [13]). If a graph G is (3PC, wheel)-free, then either G is a
complete graph or a cycle, or G admits a clique-cutset.

Lemma 6.2. K2,3 is an induced minor of every theta, pyramid, long prism, or broken wheel.

Proof. First, we show that K2,3 is an induced minor of every theta. Let H be a theta. Let a
and b be distinct, nonadjacent vertices of H, and let P 1, P 2, P 3 be distinct induced paths in
H, each between a and b, such that any two of P 1, P 2, P 3 have exactly two vertices (namely
a and b) in common. Contracting in H all but two edges of each path P i results in a graph
isomorphic to K2,3.

Next, we show that K2,3 is an induced minor of every pyramid. Let H be a pyramid. Let a
be a vertex of H, let B = {b1, b2, b3} be a 3-vertex clique in H \ a, and let P 1, P 2, and P 3 be
induced paths in H such that

• for each i ∈ {1, 2, 3}, the endpoints of P i are a and bi;

• any two of the paths P 1, P 2, P 3 have exactly one vertex (namely a) in common.

Since H is a pyramid, we know that at least two of P 1, P 2, P 3 have more than one edge; by
symmetry, we may assume that P 1 and P 2 each have at least two edges. Contracting in H all
but two edges of each of the paths P 1 and P 2, all but one edge of the path P 3, and the edge
b1b2 results in a graph isomorphic to K2,3.

Next, we show that K2,3 is an induced minor of every long prism. Let H be a long prism.
Let A = {a1, a2, a3} and B = {b1, b2, b3} be disjoint 3-vertex cliques in H, and let P 1, P 2, and
P 3 be induced paths in H such that

• for each i ∈ {1, 2, 3}, the endpoints of P i are ai and bi;

• no two of the paths P 1, P 2, P 3 have any vertices in common.

Since H is a long prism, we know that at least one of P 1, P 2, P 3 has more than one edge; by
symmetry, we may assume that P 1 has more than one edge. Contracting in H all but two edges
of the path P 1, all but one edges of each of the paths P 2 ad P 3, and the edges a1a2 and b1b3
results in a graph isomorphic to K2,3.
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Finally, we show that K2,3 is an induced minor of every broken wheel. Let W be a broken
wheel, consisting of a hole H = h0, h1, . . . , hk−1, h0 (with k ≥ 4, and indices in Zk) and an
additional vertex v that has at least three neighbors in H, and such that the neighbors of v
induce a disconnected subgraph of H. By symmetry, we may assume that v is nonadjacent to
h0 and adjacent to h1. Let the path h1, . . . , hi be one component of H[NW (v)]. Contracting in
W all edges of the hole H except for the four edges h0h1, h0hk−1, hihi+1, hi+1hi+2 results in a
graph isomorphic to K2,3.

Corollary 6.3. Every graph in G2 is (theta, pyramid, long prism, broken wheel)-free.

Proof. Since G2 is hereditary (by Corollary 2.2), it suffices to show that G2 contains no theta, no
pyramid, no long prism, and no broken wheel. By Corollary 3.2, G2 is a subclass of the class of
K2,3-induced-minor-free graphs. Thus, it suffices to show that the class of K2,3-induced-minor-
free graphs contains no theta, no pyramid, no long prism, and no broken wheel, or equivalently,
that K2,3 is an induced minor of every theta, pyramid, long prism, or broken wheel. This is
exactly the statement of Lemma 6.2.

Lemma 6.4. Let G be a diamond-free graph that belongs to G2. Then G is (theta, pyramid,
long prism, wheel)-free.

Proof. Clearly, every wheel either contains an induced diamond or is a broken wheel. The result
now follows from Corollary 6.3.

Lemma 6.5. Let G be a (diamond, theta, pyramid, long prism, wheel)-free graph that contains
an induced C6. Then either G is a complete prism, or G admits a clique-cutset.

Proof. Recall that C6 is a short 3-prism; fix a maximum integer n ≥ 3 such that G contains an
induced short n-prism H. Set V (H) = A∪B, where A = {a1, . . . , an} and B = {b1, . . . , bn} are
disjoint, n-vertex cliques, such that for all i, j ∈ {1, . . . , n}, ai is adjacent to bj in H if and only
if i = j. We may assume that V (H) ⫋ V (G), for otherwise, G is a complete prism, and we are
done. We may further assume that G is connected, for otherwise, ∅ is a clique-cutset of G, and
again we are done.

Claim 1. For all v ∈ V (G) \ V (H), either NG(v)∩ V (H) = A, or NG(v)∩ V (H) = B, or there
exists some i ∈ {1, . . . , n} such that NG(v) ∩ V (H) ⊆ {ai, bi}.

Proof of Claim 1. Fix v ∈ V (G) \ V (H). We may assume that |NG(v) ∩ V (H)| ≥ 2, for
otherwise, the result is immediate. Next, if there exist distinct i, j ∈ {1, . . . , n} such that v
is complete to {ai, bj}, then G[v, ai, aj , bi, bj ] is either a theta or a wheel, contrary to the fact
that G is (theta, wheel)-free. So, if v has a neighbor both in A and in B, then there exists
some i ∈ {1, . . . , n} such that NG(v) ∩ V (H) = {ai, bi}, and we are done. From now on, we
assume that either NG(v)∩V (H) ⊆ A or NG(v)∩V (H) ⊆ B; by symmetry, we may assume that
NG(v)∩V (H) ⊆ A, and we deduce that |NG(v)∩A| ≥ 2. Then v is complete to A, for otherwise,
we fix pairwise distinct ai, aj , ak ∈ A such that v is adjacent to ai, aj and nonadjacent to ak,
and we observe that G[v, ai, aj , ak] is a diamond, contrary to the fact that G is diamond-free.
It now follows that NG(v) ∩ V (H) = A, and we are done. This proves Claim 1. ♦

Claim 2. If there exists some v ∈ V (G) \ V (H) such that NG(v) ∩ V (H) = A (resp. such that
NG(v) ∩ V (H) = B), then A (resp. B) is a clique-cutset of G.

Proof of Claim 2. By symmetry, we may assume that some v ∈ V (G) \ V (H) satisfies NG(v) ∩
V (H) = A; we must show that A is a clique-cutset of G. By construction, A is a clique of G, and
so it suffices to show that A is a cutset of G separating v from B. Suppose otherwise. Then there
exists an induced path P in G\V (H) between v and some vertex that has a neighbor in B. Let
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Q = q0, . . . , qt (with t ≥ 0) be minimum-length subpath of P such that q0 is complete to A and
qt has a neighbor in B; by Claim 1, NG(q0) ∩ V (H) = A and q0 ̸= qt, i.e., t ≥ 1. By symmetry,
we may assume that qt is adjacent to b1. By Claim 1, we have that either NG(qt)∩ V (H) = B,
or NG(qt) ∩ V (H) = {a1, b1}, or NG(qt) ∩ V (H) = {b1}.

Assume first that NG(qt) ∩ V (H) = B. If t = 1, then G[A ∪B ∪ {q0, q1}] is a short (n+ 1)-
prism, contrary to the maximality of n. So, t ≥ 2. By the minimality of Q, all internal vertices
of Q are anticomplete to B. If the internal vertices of Q are also anticomplete to A, then
G[{a1, a2, b1, b2} ∪ V (Q)] is a long prism, contrary to the fact that G is long-prism-free. Hence,
some internal vertex of Q has a neighbor in A; let i ∈ {1, . . . , t − 1} be maximum with the
property that qi has a neighbor in A. By the minimality of Q, and by Claim 1, we know that
qi has a unique neighbor in A; fix j ∈ {1, . . . , n} such that aj is the unique neighbor of qi in A,
and fix any k ∈ {1, . . . , n} \ {j}. But now G[aj , ak, bj , bk, qi, qi+1, . . . , qt] is a pyramid, contrary
to the fact that G is pyramid-free.

Assume next that NG(qt) ∩ V (H) = {a1, b1}. Let qi be the vertex of Q with highest index
such that qi is adjacent to a2. Then qi, . . . , qt, b1, b2, a2, qi is a hole, and a1 has at least three
neighbors (namely, a2, qt, b1) in it, contrary to the fact that G is wheel-free.

Assume finally that NG(qt)∩V (H) = {b1}. Let qi (resp. qj) be the vertex of Q with highest
index such that qi (resp. qj) is adjacent to a2 (resp. a1). If j ≥ i then qi, . . . , qt, b1, b2, a2, qi is a
hole and a1 has at least three neighbors in it (namely, a2, qj , b1), contrary to the fact that G is
wheel-free. So, i > j. Then qj , . . . , qt, b1, a1, qj is a hole and a2 has two nonadjacent neighbors
in it (namely, a1, qi), and hence G[qj , . . . , , qt, b1, a1, a2] is a theta or a wheel, contrary to the
fact that G is (theta, wheel)-free. This proves Claim 2. ♦

In view of Claims 1 and 2, we assume from now on that for all v ∈ V (G) \ V (H), there
exists some i ∈ {1, . . . , n} such that NG(v) ∩ V (H) ⊆ {ai, bi}.

Claim 3. For all i ∈ {1, . . . , n}, if some vertex in V (G) \ V (H) is complete to {ai, bi}, then
{ai, bi} is a clique-cutset of G.

Proof of Claim 3. By symmetry, we may assume that some vertex of V (G)\V (H) is complete to
{a1, b1}; we must show that {a1, b1} is a clique-cutset of G. Let p0 be a vertex of V (G) \ V (H)
that is complete to {a1, b1}. Since a1 is adjacent to b1, it suffices to show that G \ {a1, b1}
is disconnected. Suppose otherwise. Then, there exists an induced path in G \ {a1, b1} from
the vertex p0 to a vertex in V (H) \ {a1, b1}. Consequently, there exists an induced path P =
p0, . . . , ps (with s ≥ 0) in G \ (A ∪ B) such that ps has a neighbor in V (H) \ {a1, b1}; we may
assume that the path P was chosen so that its length is minimum. By Claim 1, we have that
NG(p0) ∩ V (H) = {a1, b1}, and so s ≥ 1. Furthermore, by the minimality of P , {p0, . . . , ps−1}
is anticomplete to V (H) \ {a1, b1}. By symmetry, we may assume that a2 ∈ NG(ps) ∩ V (H) ⊆
{a2, b2}. Let i be the largest index in {0, . . . , s} such that pi is adjacent to b1 (such an i
exists because p0 is adjacent to b1). Now pi, . . . , ps, a2, a3, b3, b1, pi is a hole, and a1 has at least
three neighbors (namely, a2, a3, b1) in it, contrary to the fact that G is wheel-free. This proves
Claim 3. ♦

In view of Claim 3, we may now assume that no vertex in V (G) \ V (H) has more than
one neighbor in V (H). Let NA be the set of all vertices in V (G) \ V (H) that have a neighbor
in A, and let NB be the set of all vertices in V (G) \ V (H) that have a neighbor in B. Then
NA ∩NB = ∅. Since V (H) ⫋ V (G) and G is connected, we have that NA ∪NB ̸= ∅. If NA = ∅,
then B is a clique-cutset of G, and if NB = ∅, then A is a clique-cutset of G. So, we may assume
that NA and NB are both nonempty. Furthermore, we may assume that there is an induced
path in G \ V (H) between NA and NB, for otherwise, both A and B are clique-cutsets of G,
and we are done. Let P = p0, . . . , ps (with s ≥ 0) be a minimum-length path in G \ V (H) such
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that p0 ∈ NA and ps ∈ NB; since NA∩NB = ∅, we see that s ≥ 1. Furthermore, the minimality
of P implies that the interior of P is anticomplete to V (H).

Since no vertex of V (G) \ V (H) has more than one neighbor in V (H), we may assume by
symmetry that NG(p0) ∩ V (H) = {a1}, and that either NG(ps) ∩ V (H) = {b1} or NG(ps) ∩
V (H) = {b2}. But if NG(ps)∩V (H) = {b2}, then G[a1, a2, b1, b2, p0, . . . , ps] is a theta, contrary
to the fact that G is theta-free. So, NG(ps) ∩ V (H) = {b1}. We now have that V (P ) is
anticomplete to V (H) \ {a1, b1}.

Our goal is to show that {a1, b1} is a clique-cutset of G. Suppose otherwise; then G\{a1, b1}
is connected. Then, there exists an induced path in G \ {a1, b1} from a vertex in P to a vertex
in V (H) \ {a1, b1}. Since V (P ) is anticomplete to V (H) \ {a1, b1}, any such path has length at
least two. Deleting the endpoints of any such path, we obtain an induced path Q = q0, . . . , qt
(with t ≥ 0) in G \ (V (H) ∪ V (P )) such that q0 has a neighbor in V (P ), and qt has a neighbor
in V (H) \ {a1, b1}; we may assume that Q is a minimum-length path with this property, so
that q0 is the only vertex of Q with a neighbor in V (P ), and qt is the only vertex of Q with a
neighbor in V (H) \ {a1, b1}. By symmetry, we may further assume that qt is adjacent to a2;
then NG(qt)∩ V (H) = {a2}. Let i be the largest index in {0, . . . , s} such that q0 is adjacent to
pi. Then pi, . . . , ps, b1, b3, a3, a2, qt, . . . , q0, pi is a hole in G, and b2 has at least three neighbors
(namely, a2, b1, b3) in it, contrary to the fact that G is wheel-free. This completes the proof.

Lemma 6.6. Let G be a (diamond, theta, pyramid, long prism, wheel)-free graph. Then either
G is a complete prism, a cycle, or a complete graph, or G admits a clique-cutset.

Proof. If G contains an induced C6, then the result follows from Lemma 6.5. Otherwise, we
have that G is (3PC, wheel)-free, and the result follows from Theorem 6.1.

Theorem 6.7. Let G be a diamond-free graph that belongs to G2. Then either G is a complete
prism, a cycle, or a complete graph, or G admits a clique-cutset.

Proof. This follows immediately from Lemmas 6.4 and 6.6.

6.1 Algorithmic considerations

Clearly, complete prisms, cycles, and complete graphs are diamond-free and belong to G2,
and furthermore, they can all be recognized in polynomial time. So, using Corollary 2.4 and
Theorem 6.7, we show that diamond-free graphs in G2 can be recognized in polynomial time.
In order to derive the result, we decompose a graph by means of clique-cutsets. This common
algorithmic tool, first proposed by Tarjan ( [28]), applies to any n-vertex graph G and produces
a family H of O(n) induced subgraphs of G that do not have any clique-cutsets and such that
G can be obtained by an iterative application of gluing graphs from H along cliques. The
original algorithm proposed by Tarjan runs in time O(n(n+m)), where m denotes the number
of edges of G. A more efficient approach for decomposing a graph along clique-cutsets was
suggested by Coudert and Ducoffe [14]. They improved the time complexity to O(nω log n),
where ω < 2.3728596 is the matrix multiplication exponent (see [2]).

Proposition 6.8. There exists an algorithm running in time O(nω log n) that correctly deter-
mines if an input n-vertex graph G is a diamond-free graph in G2.

Proof. Given a graph G with n vertices, testing if G is diamond-free can be done in time O(nω)
(see [29]). Assuming G is diamond-free, we compute the connected components of G and run
the algorithm by Coudert and Ducoffe [14] on each nontrivial component of G. This can be
done in time O(nω log n). The algorithm produces a family H of O(n) induced subgraphs of G
that do not have any clique-cutsets and such that G can be obtained by an iterative application
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of gluing graphs from H along cliques. We then check, for each graph H ∈ H, whether H is a
complete prism, cycle, or a complete graph. If this is the case, the algorithm determines that
G belongs to G2, and otherwise, it determines that G does not belong to G2. The correctness
follows from Corollary 2.4 and Theorem 6.7.

To complete the proof, we show that testing whether a given H ∈ H satisfies one of the
desired properties can be done in time O(n+m), where m denotes the number of edges of G.
Since H is connected, testing if it is a cycle or a complete graph can be done in linear time
simply by checking if all the vertex degrees are equal to 2 or to |V (H)| − 1, respectively. If
none of these cases occurs, we can assume that n = 2k for some k ≥ 3 and that every vertex
in H has degree exactly k, since otherwise, we can infer that H is not a complete prism. We
choose an arbitrary vertex v ∈ V (H) and compute the components of the graph H[NH(v)]. If
H is a short k-prism, then H[NH(v)] has exactly two components, say C and D, such that C
is isomorphic to a complete graph Kk−1 and D is a trivial component. Set A = C ∪ {v} and
B = V (G) \A. Since we already checked that all the vertices are of degree k + 1, it remains to
verify if B is a clique of cardinality k. If this is the case, then H is a complete prism, otherwise
it is not. Each of the above constantly many steps can be carried out in linear time.

Moreover, it is clear that the Maximum Weight Clique, Maximum Weight Stable
Set, and Vertex Coloring can be solved in polynomial time for complete prisms, cycles,
and complete graphs. Thus, Theorem 6.7 and the algorithm by Coudert and Ducoffe [14] allow
us to solve these three optimization problems in polynomial time for diamond-free graphs in
G2. A more precise time complexity analysis is provided by the following.

Theorem 6.9. When restricted to the class of diamond-free graphs in G2 with n vertices and
m edges, the Maximum Weight Clique and Vertex Coloring problems can be solved in
O(nω log n) time and the Maximum Weight Stable Set problem in O(n2(n+m)) time.

Proof. Let G be a diamond-free graph with n vertices and m edges that belongs to G2. For the
Maximum Weight Clique and Vertex Coloring problems, the approach is as follows. We
compute the connected components of G and run the algorithm by Coudert and Ducoffe [14]
on each component of G. This can be done in time O(nω log n). We obtain a family H of O(n)
induced subgraphs of G that do not have any clique-cutsets and such that G can be obtained by
an iterative application of gluing graphs from H along cliques. We now iterate over all H ∈ H
and solve the Maximum Weight Clique and Vertex Coloring problems on H in linear
time. By Theorem 6.7, each graph H ∈ H is a complete prism, cycle, or a complete graph;
as explained in the proof of Proposition 6.8, which of these cases occurs can be determined in
linear time in the size of H. If H is a complete graph, then its chromatic number is |V (H)|
and its vertex set solves the Maximum Weight Clique problem. Otherwise, if H is a cycle
with at least four vertices, then its chromatic number is either 2 or 3, depending on whether
|V (H)| is even or odd, respectively, and to solve the Maximum Weight Clique problem, we
only need to examine its edges. Finally, if H is a complete prism, say with |V (H)| = 2k for
some k ≥ 3, then we can identify in linear time the two cliques A and B, each of size k, that
partition V (H). Then, the chromatic number of H is k, and to solve the Maximum Weight
Clique problem, we only need to examine the two cliques A and B and the k edges connecting
them. In all these cases, the Maximum Weight Clique and Vertex Coloring problems
can be solved in linear time for graphs in H. Since each clique of G is fully contained in one of
the graphs in H, this provides an efficient solution to the Maximum Weight Clique problem
on G. Similarly, the chromatic number of G is the maximum chromatic number of the graphs
in H.

For the Maximum Weight Stable Set problem, the approach is similar, except that
in each decomposition step decomposes G along a cut-partition (A,B,C) of G such that C
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is a clique and the subgraph of G induced by A ∪ C belongs to H. For each vertex v ∈ C,
we determine a maximum-weight stable set of the subgraph of G induced by A \ NG(v), a
maximum-weight stable set of the subgraph of G induced by A, redefine the weights on C, and
solve the problem recursively on the graph G−A. (We refer to [28] for details; see also [9, Section
8.1].) Thus, we solve O(|V (G)|) subproblems for each graph H ∈ H for a total of O(|V (G)|2)
subproblems. Each of these subproblems can be solved in linear time. If H is a complete graph,
then a heaviest vertex forms a maximum-weight stable set. If H is a cycle, then we can use the
fact that cycles have bounded treewidth and apply the results from [3,7]. Finally, assume that
H is a complete prism. Then, for each vertex v a maximum-weight stable set Sv containing v
can be computed in O(|V (H)|) time: indeed, Sv is of the form Sv = {v, zv} where zv is a vertex
of maximum weight among the nonneighbors of v in H. The heaviest among the sets Sv forms
a maximum-weight stable set. The complexity of this approach is O(|V (H)|2), which in this
case is O(|V (H)|+ |E(H)|).

In conclusion, let us put the results of Theorem 6.9 in perspective by comparing them with
the known complexities of the three problems in the larger classes of diamond-free graphs and
graphs in G2. First, the Vertex Coloring problem is NP-hard for diamond-free graphs [24],
as well as for graphs in G2, since it is already hard for the subclass of circular-arc graphs [21].
The situation is somewhat different for the Maximum Weight Stable Set problem, which
is NP-hard (even in the unweighted case) in the class of diamond-free graphs, as can be seen
using Poljak’s reduction [26], but solvable in O(n5) time for n-vertex graphs in G2 (see [15]).

Finally, while the Maximum Weight Clique problem is known to be solvable in polyno-
mial time both for diamond-free graphs as well as for graphs in G2, the running time of the
algorithm given by Theorem 6.9 improves on both time complexities. By Theorem 4.7, the
problem can be solved in O(n4) time for n-vertex graphs in G2. For the class of diamond-free
graphs, observe that every edge in such a graph is contained in a unique maximal clique. Thus,
a diamond-free graph with n vertices and m edges has O(n + m) maximal cliques, and the
Maximum Weight Clique problem can be solved in polynomial time by enumerating all
maximal cliques and returning one of maximum weight. Using, for example, the maximal clique
enumeration algorithm due to Makino and Uno [25], this would result in an overall running
time of O(n2.373(n+m)) on diamond-free graphs with n vertices and m edges.
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[22] T. R. Hartinger and M. Milanič. Partial characterizations of 1-perfectly orientable graphs.
J. Graph Theory, 85(2):378–394, 2017.

[23] P. Heggernes. Minimal triangulations of graphs: a survey. Discrete Mathematics,
306(3):297–317, 2006.
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