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Abstract

(4K1, C4, C6)-free graphs are precisely the even-hole-free graphs of stability number at most
three. We show that (4K1, C4, C6)-free graphs can be recognized in O(n3) time, and fur-
thermore, that all the following can be computed in O(n3) time for such graphs: an optimal
coloring, a minimum clique cover, and the list of all maximal cliques. We also show that
every (4K1, C4, C6)-free graph on n vertices has at most n maximal cliques.

Keywords: (4K1, C4, C6)-free graphs; even-hole-free graphs; graph coloring; maximal cliques;
minimum clique cover

1 Introduction

All graphs in this paper are finite, simple, and nonnull. As usual, the vertex set and the
edge set of a graph G are denoted by V (G) and E(G), respectively. In all our algorithms, n is
the number of vertices and m the number of edges of the input graph.

For a positive integer k, Kk is the complete graph on k vertices, and Ck (for k ≥ 3) is the
cycle on k vertices. 4K1 is the edgeless graph on four vertices. For a graph H, a graph G is
said to be H-free if no induced subgraph of G is isomorphic to H. For a family of graphs H, a
graph G is said to be H-free if G is H-free for all H ∈ H. A hole in a graph G is an induced
cycle in G of length at least four. A hole is even or odd depending on the parity of its length.

A clique of a graph G is a (possibly empty) set of pairwise adjacent vertices of G; a clique
C of G is maximal if no clique of G contains C as a proper subset. The clique number of G,
denoted by ω(G), is the maximum size of a clique of G. A stable set of G is a (possibly empty)
set of pairwise nonadjacent vertices of G; the stability number of G, denoted by α(G), is the
maximum size of a stable set of G. Note that a graph G is 4K1-free if and only if α(G) ≤ 3.

A proper coloring of a graph G is an assignment of colors to the vertices of G in such a way
that no two adjacent vertices receive the same color. For an integer k, a graph G is said to
be k-colorable if there exists a proper coloring of G that uses at most k colors. The chromatic
number of G, denoted by χ(G), is the smallest integer k such that G is k-colorable. An optimal
coloring of G is a proper coloring of G that uses only χ(G) colors.

A clique cover of a graph G is a collection of cliques of G such that every vertex of G belongs
to at least one of those cliques. The clique cover number of G, denoted by χ(G), is the minimum
number of cliques in any clique cover of G. A minimum clique cover of G is a clique cover of G
that consists of only χ(G) cliques.

Even-hole-free graphs are a well-studied class of graphs, partly due to their structural sim-
ilarity with perfect graphs (for a structural description of even-hole-free graphs, see [8, 11]).1

*Computer Science Institute of Charles University (IÚUK), Prague, Czech Republic. Email:
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1A graph is perfect if all its induced subgraphs H satisfy χ(H) = ω(H).
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Perfect graphs can be recognized in polynomial time [6],2 and furthermore, the following four
optimization problems can all be solved in polynomial time for perfect graphs: Maximum
Clique, Maximum Stable Set, Graph Coloring (also called Vertex Coloring), and
Clique Cover [18]. Even-hole-free graphs can also be recognized in polynomial time [5, 9],
but of the four optimization problems mentioned above, only the Maximum Clique problem
is known to be solvable in polynomial time for even-hole-free graphs [10]. More precisely, it was
shown in [10] that every even-hole-free graph G has at most |V (G)|+2|E(G)| maximal cliques,
and they can all be computed in O(n2m) time; this immediately implies that the Maximum
Clique problem can be solved in O(n2m) time for even-hole-free graphs.3 The time complex-
ity of the remaining three optimization problems (namely, Maximum Stable Set, Graph
Coloring, and Clique Cover) is unknown for the class of even-hole-free graphs.

Another class for which the time complexity of Graph Coloring remains open is that
of (4K1, C4)-free graphs. Foley et al. [14] asked whether Graph Coloring can be solved in
polynomial time for graphs in the intersection of these two classes, that is, for even-hole-free
graphs of stability number at most three, or equivalently, for (4K1, C4, C6)-free graphs.

4 In [23],
the author of the present paper showed that this question has a positive answer. Let us discuss
this in more detail. First, Foley et al. [14] proved a structure theorem for (4K1, C4, C6)-free
graphs that contain an induced C7, and they showed that such graphs have bounded clique-
width, and that Graph Coloring can therefore (by [24]) be solved in polynomial time for such
graphs. We note that Koutecký [20] recently constructed an O(n+m) time coloring algorithm
for (4K1, C4, C6)-free graphs that contain an induced C7; this algorithm relies on the structural
results from [14] and on integer programming. Further, the author of the present paper proved a
structure theorem for (4K1, C4, C6, C7)-free graphs that contain no simplicial vertices,5 and used
this theorem to show that such graphs have bounded clique-width [23]. Thus, (4K1, C4, C6)-free
graphs that contain no simplicial vertices have bounded clique-width. Simplicial vertices pose no
obstacle to coloring in polynomial time, andGraph Coloring can be solved in polynomial time
for graphs of bounded clique-width [24]; thus, Graph Coloring can be solved in polynomial
time for (4K1, C4, C6)-free graphs (see Corollary 1.4 of [23]). However, all known polynomial-
time coloring algorithms for graphs of clique-width at most k have running time O(nf(k)) for
some fast growing function f (see [15] for an overview). Thus, it is of interest to construct a
faster coloring algorithm for (4K1, C4, C6)-free graphs.

Clearly, (4K1, C4, C6)-free graphs can be recognized in O(n6) time. In the present paper,
we use the structural results from [14, 23] to give an O(n3) time recognition algorithm for
(4K1, C4, C6)-free graphs. We remark that our recognition algorithm may possibly (correctly)
determine that the input graph is not (4K1, C4, C6)-free, without actually detecting any of
the three forbidden induced subgraphs in it; indeed, it may happen that the algorithm simply
determines that the input graph does not have the structure described in [14, 23], and is therefore
not (4K1, C4, C6)-free. Further, we show that any (4K1, C4, C6)-free graph G has at most
|V (G)| maximal cliques, and we construct an O(n3) time algorithm that computes them all;

2The algorithm from [6] is in fact a recognition algorithm for “Berge” graphs. A graph is Berge if neither it
nor its complement contains an odd hole. By the Strong Perfect Graph Theorem [7], a graph is perfect if and
only if it is Berge.

3More generally, any C4-free graph has only O(n2) maximal cliques [1, 13], and if a graph has K maximal
cliques, they can all be found in O(Kn3) time by combining results from [22, 27]. So, all maximal cliques of a
C4-free graph can be found in O(n5) time. In particular, the Maximum Clique problem can be solved in O(n5)
time for C4-free graphs.

4Obviously, even-hole-free graphs of stability number at most three are (4K1, C4, C6)-free. Conversely, every
hole of length at least eight contains an induced 4K1, and so all holes in a (4K1, C4, C6)-free graph are of length
five or seven; in particular, (4K1, C4, C6)-free graphs are even-hole-free, and obviously, their stability number is
at most three.

5A simplicial vertex is a vertex whose neighborhood is a (possibly empty) clique.
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this immediately implies that the Maximum Clique problem can be solved in O(n3) time for
(4K1, C4, C6)-free graphs. Finally, we give O(n3) time algorithms that compute an optimal
coloring and a minimum clique cover of a (4K1, C4, C6)-free graph. All our results rely on the
structural description of (4K1, C4, C6)-free graphs from [14, 23]; furthermore, all our algorithms
are purely combinatorial. We remark that our coloring algorithm for (4K1, C4, C6, C7)-free
graphs also relies on the recently obtained formula for the chromatic number of a “ring” [21],
and our coloring algorithm for (4K1, C4, C6)-free graphs that contain an induced C7 uses the
coloring algorithm for (4K1, C4, C6, C7)-free graphs as a subroutine. The reader will have noticed
that we could, instead, have used the O(n+m) time algorithm from [20] to color (4K1, C4, C6)-
free graphs that contain an induced C7. However, the algorithm from [20] relies on some fairly
sophisticated integer programming results, and it is therefore not combinatorial. Since our
coloring algorithm for (4K1, C4, C6, C7)-free graphs runs in O(n3) time, the overall running time
of our coloring algorithm for (4K1, C4, C6)-free graphs would still be O(n3), even if we relied on
the algorithm from [20]. Finally, we remark that a maximum stable set of a (4K1, C4, C6)-free
graph can trivially be found in O(n3) time, since all stable sets of a (4K1, C4, C6)-free graph
are of size at most three.

We complete the introduction with an outline of the paper. In section 2, we introduce
some (mostly standard) terminology and notation that we will use throughout the paper. In
section 3, we state some results from the literature that we will need for our algorithms. In
section 4, we describe our O(n3) time recognition algorithm for (4K1, C4, C6, C7)-free graphs
(see Theorem 4.4). In section 5, we construct O(n3) time algorithms that compute all maximal
cliques and a minimum vertex cover of a (4K1, C4, C6, C7)-free graph (see Theorems 5.1 and 5.4,
respectively). In section 6, we give an O(n3) time coloring algorithm for (4K1, C4, C6, C7)-free
graphs (see Theorem 6.8). In section 7, we deal with (4K1, C4, C6)-free graphs that contain an
induced C7 (see Theorems 7.1, 7.4, and 7.8). Finally, in section 8, we prove the main results of
this paper (see Theorems 8.1 and 8.2).

2 Terminology and notation

N is the set of all nonnegative integers. For a set S of sets, we write
⋃
S :=

⋃
X∈S X. A

singleton is a set that has exactly one element.
For a vertex x in a graph G, the open neighborhood (or simply neighborhood) of x in G,

denoted by NG(x), is the set of all neighbors of x in G, and the closed neighborhood of x in G,
denoted by NG[x], is defined as NG[x] = {x} ∪NG(x). The degree of x in G, denoted by dG(x),
is the number of neighbors that x has in G, i.e. dG(x) = |NG(x)|. A nonneighbor of x is any
vertex in V (G) \ {x} that is nonadjacent to x,6 and the nonneighborhood of x in G is the set
V (G) \NG[x].

Given a graph G and distinct vertices x, y ∈ V (G), we say that x dominates y in G, or that
y is dominated by x in G, provided that NG[y] ⊆ NG[x].

7 A vertex v ∈ V (G) is universal in G
if v is adjacent to all other vertices of G, i.e. if NG[v] = V (G).

For a graph G and a nonempty set S ⊆ V (G), we denote by G[S] the subgraph of G induced
by S; for vertices x1, . . . , xt ∈ V (G), we sometimes write G[x1, . . . , xt] instead of G[{x1, . . . , xt}].
For a set S ⫋ V (G), G\S is the subgraph of G obtained by deleting S, i.e. G\S = G[V (G)\S].
If G has at least two vertices and x ∈ V (G), we sometimes write G \ x instead of G \ {x}.8

For an integer k ≥ 4, a k-hole in a graph G is an induced Ck in G. When we write
“x0, . . . , xk−1, x0 is a k-hole in G,” we mean that x0, . . . , xk−1 are pairwise distinct vertices of
G, and the edges of G[x0, . . . , xk−1] are precisely x0x1, x1x2, x2x3, . . . , xk−2xk−1, xk−1x0.

6So, x is neither a neighbor nor a nonneighbor of itself.
7In particular, x and y must be adjacent.
8Since our graphs are nonnull, if V (G) = {x}, then G \ x is not defined.
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Given a graph G, a vertex x ∈ V (G), and a set Y ⊆ V (G) \ {x}, we say that x is complete
(resp. anticomplete) to Y in G provided that x is adjacent (resp. nonadjacent) to all vertices of
Y in G.

Given a graph G and disjoint sets X,Y ⊆ V (G), we say that X is complete (resp. anticom-
plete) to Y in G provided that every vertex in X is complete to Y in G.

As usual, the complement of a graph G, denoted by G, is the graph whose vertex set is
V (G) and in which two distinct vertices are adjacent if and only if they are nonadjacent in G.
A graph is anticonnected if its complement is connected. Obviously, every anticonnected graph
on at least two vertices contains a pair of nonadjacent vertices.

An anticomponent of a graph G is an induced subgraph H of G such that H is a connected
component of G. An anticomponent is trivial if it has only one vertex, and it is nontrivial if
it has at least two vertices. Clearly, the vertex sets of the anticomponents of a graph G are
complete to each other in G. Thus, when we say that “Q is the only nontrivial anticomponent
of G,” we have that Q is an anticonnected induced subgraph of G, that |V (Q)| ≥ 2, and that
V (G) \ V (Q) is a (possibly empty) clique, complete to V (Q) in G; in particular, G can be
obtained from Q by repeatedly adding universal vertices (possibly, G = Q).

2.1 A convention for figures

In all our figures, crosshatched disks represent cliques. A disk or rectangle that is not crosshatched
represents a set of vertices, which need not be a clique. A straight line between two regions
(two disks, two rectangles, or a disk and a rectangle) indicates that the corresponding sets of
vertices are complete to each other. A wavy line between two regions indicates that there may
be edges between the corresponding sets of vertices.9 The absence of a line (straight or wavy)
between two regions indicates that the corresponding sets of vertices are anticomplete to each
other.

3 Some results from the literature

3.1 Simplicial vertices and chordal graphs

A chordal graph is a graph that does not contain any holes. A graph is perfect if all its induced
subgraphs H satisfy χ(H) = ω(H).

Theorem 3.1. [2, 12] Chordal graphs are perfect. In particular, every chordal graph G satisfies
χ(G) = ω(G).

A vertex x in a graph G is simplicial if NG(x) is a (possibly empty) clique of G. A simplicial
elimination ordering of a graph G is an ordering v1, . . . , vn of its vertices such that for all
i ∈ {1, . . . , n}, vi is simplicial in the graph G[vi, vi+1, . . . , vn] = G \ {v1, . . . , vi−1}.

Theorem 3.2. [16] A graph is chordal if and only if it admits a simplicial elimination ordering.

By examining the neighborhood of each vertex, one can find a simplicial vertex in the input
graph, or determine that the graph contains no simplicial vertices, in O(n3) time. By repeating
the process O(n) times, one can find a maximal sequence v1, . . . , vs (s ≥ 0) of pairwise distinct
vertices of G such that for all i ∈ {1, . . . , s}, vi is simplicial in the graph G \ {v1, . . . , vi−1};
this takes a total of O(n4) time. It is, however, possible to find the sequence v1, . . . , vs slightly
faster, in only O(n3) time (see Lemma 3.3 below). As stated, the algorithm from Lemma 3.3 is
taken from [21] (see Lemma 2.5 of [21]). However, as explained in [21], this algorithm is only a
minor modification of an algorithm described in the introduction of [19].

9However, wavy lines do not indicate that adjacency is arbitrary; it must have the properties specified in the
text.
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Lemma 3.3. [19, 21] There exists an algorithm with the following specifications:

� Input: A graph G;
� Output: A maximal sequence v1, . . . , vs (s ≥ 0) of pairwise distinct vertices of G such
that for all i ∈ {1, . . . , s}, vi is simplicial in the graph G \ {v1, . . . , vi−1};10

� Running time: O(n3).

We will use Lemma 3.3 repeatedly in our algorithms. We remark that Theorem 3.2 and
Lemma 3.3 together yield an O(n3) time recognition algorithm for chordal graphs.11 In fact,
chordal graphs can be recognized in O(n+m) time using lexicographic breadth-first-search [25];
however, we will not use this faster (but more complicated) algorithm, since it would not improve
the overall running time of any of our algorithms.

Gavril [17] showed that, given an input chordal graph G, together with a simplicial elimina-
tion ordering v1, . . . , vn, the stability number of G can be computed in O(n +m) time, which
is O(n2) time. We state this below for future reference.

Lemma 3.4. [17] There exists an algorithm with the following specifications:

� Input: A graph G and a simplicial elimination ordering of G;12

� Output: α(G);
� Running time: O(n2).

3.2 True twins

Given a graph G, two distinct vertices u, v ∈ V (G) are said to be true twins in G if NG[u] =
NG[v]. Clearly, the relation of being a true twin is an equivalence relation; a true twin class of G
is an equivalence class with respect to the true twin relation.13 Thus, V (G) can be partitioned
into true twin classes of G in a unique way, and clearly, every true twin class of G is a clique
of G. Note that two distinct true twin classes of G are either complete or anticomplete to each
other in G. An exercise from [26] states that, given an input graph G, all true twin classes of G
can be found in O(n+m) time, which is O(n2) time; a detailed proof of this result can be found
in [4]. Given a graph G and a partition P of V (G) into true twin classes of G, we define the
graph GP (called the quotient graph of G with respect to P) to be the graph whose vertex set
is P, and in which distinct A,B ∈ P are adjacent if and only if A and B are complete to each
other in G. Clearly, given G and P, the graph GP can be found in O(n2) time. We summarize
these results below for future reference.

Lemma 3.5. [4, 26] There exists an algorithm with the following specifications:

� Input: A graph G;
� Output: The partition P of V (G) into true twin classes of G, and the quotient graph GP ;
� Running time: O(n2).

10If s = 0, then the sequence v1, . . . , vs is empty and G has no simplicial vertices.
11Indeed, suppose that for an input graph G, the O(n3) time algorithm from Lemma 3.3 produces a sequence

v1, . . . , vs. If V (G) = {v1, . . . , vs}, then v1, . . . , vs is a simplicial elimination ordering of G, and so Theorem 3.2
guarantees that G is chordal. On the other hand, if {v1, . . . , vs} ⫋ V (G), then the maximality of v1, . . . , vs guar-
antees that G \ {v1, . . . , vs} has no simplicial vertices, and consequently, does not admit a simplicial elimination
ordering; in this case, Theorem 3.2 guarantees that G \ {v1, . . . , vs} is not chordal, and it follows that G is not
chordal, either.

12By Theorem 3.2, this means that G is chordal.
13Technically, the equivalence relation in question is the “is a true twin of or is equal to” relation. (A vertex

is not a true twin of itself.)
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Figure 3.1: Top: A k-ring R (k ≥ 4) with ring partition (X0, . . . , Xk−1). Bottom: The subgraph
R[Xi−1 ∪Xi ∪Xi+1] (i ∈ Zk); note that u1i is complete to Xi−1 ∪Xi+1.

3.3 Rings and hyperholes

A ring is a graph R whose vertex set can be partitioned into k ≥ 4 nonempty sets, X0, . . . , Xk−1

(with indices understood to be in Zk), such that for all i ∈ Zk, the set Xi can be ordered as

Xi = {u1i , . . . , u
|Xi|
i } so that Xi ⊆ NR[u

|Xi|
i ] ⊆ · · · ⊆ NR[u

1
i ] = Xi−1 ∪Xi ∪Xi+1.

14 Under these
circumstances, we also say that R is a k-ring or a ring of length k; furthermore, we say that
(X0, . . . , Xk−1) is a ring partition of the ring R. (See Figure 3.1.)

Rings were originally introduced in [3]. They can be recognized in polynomial (quadratic)
time; more precisely, the following is Lemma 8.14 from [3].

Lemma 3.6. [3] There exists an algorithm with the following specifications:

� Input: A graph G;
� Output: Either the true statement that G is a ring, together with the length and ring
partition of the ring, or the true statement that G is not a ring;

� Running time: O(n2).

The following is Lemma 2.4(a)-(c) from [3].

Lemma 3.7. [3] Let R be a k-ring with ring partition (X1, . . . , Xk). Then all the following
hold:

(a) every hole in R intersects each of X1, . . . , Xk in exactly one vertex;
(b) every hole in R is of length k;
(c) for all i ∈ Zk, R \Xi is chordal.

A hyperhole is any graph H whose vertex set can be partitioned into k ≥ 4 nonempty cliques,
X0, . . . , Xk−1 (with indices understood to be in Zk), such that for all i ∈ Zk, Xi is complete to
Xi−1 ∪Xi+1 and anticomplete to V (H) \ (Xi−1 ∪Xi ∪Xi+1); under such circumstances, we also
say that H is a hyperhole of length k, or that H is a k-hyperhole. Note that every k-hyperhole
is a k-ring. When we say that “H is a k-hyperhole in G,” or “G contains a k-hyperhole H,” we

14Note that this implies that X0, . . . , Xk−1 are cliques; that for all i ∈ Zk, Xi is anticomplete to V (R)\ (Xi−1∪
Xi ∪Xi+1); and that u1

0, u
1
1, . . . , u

1
k−1, u

1
0 is a k-hole in R.
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Figure 3.2: The 5-pyramid.

mean that H is a k-hyperhole that is an induced subgraph of G. The following is Corollary 1.3
from [21].

Theorem 3.8. [21] Let k ≥ 4 be an integer, and let R be a k-ring. Then χ(R) = max
(
{ω(R)}∪{⌈

|V (H)|
⌊k/2⌋

⌉
| H is a k-hyperhole in R

})
.

It was further shown in [21] that the chromatic number of a ring can be computed in O(n3)
time, and that an optimal coloring of a ring can be found in O(n6) time. In the present paper, we
will repeatedly need to color rings (or their induced subgraphs), but the rings that we encounter
are of a special type and can be colored faster (see Lemma 6.5; we remark that the algorithm
from Lemma 6.5 relies on Theorem 3.8 above, but not on the coloring algorithms from [21]).

3.4 On the structure of (4K1, C4, C6, C7)-free graphs

In this subsection, we state the decomposition theorem for (4K1, C4, C6, C7)-free graphs from [23]
(see Theorem 3.12 of the present paper). First, we need some definitions.

The 5-pyramid is the graph on seven vertices represented in Figure 3.2.
A 5-basket is a graphQ whose vertex set can be partitioned into setsA,B1, B2, B3, C1, C2, C3, F

such that all the following hold:

� A,B1, B2, B3, C1, C2, C3 are nonempty cliques;
� F is a (possibly empty) clique;
� cliques B1, B2, B3 are pairwise anticomplete to each other;
� cliques C1, C2, C3 are pairwise complete to each other;
� there exists an index i∗ ∈ {1, 2, 3} such that

– A is complete to (B1 ∪B2 ∪B3) \Bi∗ , and
– A can be ordered as A = {a1, . . . , at} so that NQ(at) ∩ Bi∗ ⊆ · · · ⊆ NQ(a1) ∩ Bi∗ =

Bi∗ ;
15

� A is anticomplete to C1 ∪ C2 ∪ C3;
� for all indices i ∈ {1, 2, 3}, Bi is complete to Ci and anticomplete to (C1 ∪ C2 ∪ C3) \ Ci;
� there exists an index j∗ ∈ {1, 2, 3} such that F is complete to V (Q) \ (Bj∗ ∪Cj∗ ∪F ) and
anticomplete to Bj∗ ∪ Cj∗ .

Under such circumstances, we say that (A;B1, B2, B3;C1, C2, C3;F ) is a 5-basket partition of
the 5-basket Q.

Note that there are effectively two different types of 5-basket (depending on whether or not
i∗ and j∗ are the same). These two types of 5-basket (up to a permutation of the index set
{1, 2, 3}) are represented in Figure 3.3.

15Thus, a1 is complete to B1 ∪ B2 ∪ B3. Furthermore, Bi∗ can be ordered as Bi∗ = {b1, . . . , bp} so that
a1 ∈ NQ(bp) ∩A ⊆ · · · ⊆ NQ(b1) ∩A.
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A

B1

B2

B3

C1 C3

C2

F

A

B1

B2

B3

C1 C3

C2

F

Figure 3.3: A 5-basket with 5-basket partition (A;B1, B2, B3;C1, C2, C3;F ), and with i∗ = j∗ =
1 (top), or i∗ = 1 and j∗ = 3 (bottom).

X0

X1

X2 X3

X4

Figure 3.4: A 5-crown with 5-crown partition (X0, X1, X2, X3, X4) and i∗ = 0.
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A 5-crown is a 5-ring R with ring partition (X0, X1, X2, X3, X4) such that for some index
i∗ ∈ Z5, we have that Xi∗−1 is complete to Xi∗−2, and Xi∗+1 is complete to Xi∗+2.

16 Under
such circumstances, we say that (X0, X1, X2, X3, X4) is a 5-crown partition of the 5-crown R.
(See Figure 3.4.)

Lemma 3.9 (below) is an immediate consequence of Lemmas 2.1, 2.5 and 2.11 from [23].

Lemma 3.9. [23] 5-Baskets and 5-crowns are anticonnected, contain no simplicial vertices,
and are (4K1, C4, C6, C7)-free.

Theorems 3.10, 3.11, and 3.12 (below) are, respectively, Theorems 2.3, 2.4, and 2.2 from [23].

Theorem 3.10. [23] Let G be a graph. Then the following are equivalent:

� G is a (4K1, C4, C6, C7)-free graph that contains an induced 5-pyramid and does not con-
tain a simplicial vertex;

� G has exactly one nontrivial anticomponent, and this anticomponent is a 5-basket.

Theorem 3.11. [23] Let G be a graph. Then the following are equivalent:

� G is a (4K1, C4, C6, C7, 5-pyramid)-free graph that does not contain a simplicial vertex;
� G has exactly one nontrivial anticomponent, and this anticomponent is a 5-crown.

Theorem 3.12. [23] Let G be a graph. Then the following two statements are equivalent:

� G is a (4K1, C4, C6, C7)-free graph that does not contain a simplicial vertex;
� G has exactly one nontrivial anticomponent, and this anticomponent is either a 5-basket
or a 5-crown.

3.5 (4K1, C4, C6)-free graphs that contain an induced C7

A special partition of a graph G is a partition (X0, . . . , X6;Y0, . . . , Y6;Z0, . . . , Z6;W ) of V (G)
into (possibly empty) cliques such that all the following are satisfied:17

(a) cliques X0, . . . , X6 are all nonempty;18

(b) for all i ∈ Z7, Xi is complete to Xi−1, Xi+1 and anticomplete to Xi+2, Xi+3, Xi+4, Xi+5;
(c) for all i ∈ Z7, Xi is complete to Yi, Yi+3, Yi+6, Zi, Zi+3, Zi+4, Zi+5, Zi+6,W and anticom-

plete to Yi+1, Yi+2, Yi+4, Yi+5, Zi+1, Zi+2;
(d) for all i ∈ Z7, if Yi ̸= ∅, then Yi+1, Yi+2, Yi+5, Yi+6, Zi+5, Zi+6 are all empty, and at most

one of Yi+3, Yi+4 is nonempty;19

(e) for all i ∈ Z7, if Zi ̸= ∅, then Zi+2, Zi+5 are empty;20

(f) for all i ∈ Z7, Yi is complete to Yi+3, Yi+4, Zi, Zi+1, Zi+3, Zi+4,W and anticomplete to
Zi+2;

(g) for all i ∈ Z7, Zi is complete to Zi+1, Zi+3, Zi+4, Zi+6,W .

Note that if (X0, . . . , X6;Y0, . . . , Y6;Z0, . . . , Z6;W ) is a special partition of a graph G, then
by definition, the following hold:

16Rings were defined in subsection 3.3. To help the reader, here is an equivalent definition of a 5-crown that
makes no reference to rings: a 5-crown is a graph R whose vertex set can be partitioned into five nonempty sets,
say X0, X1, X2, X3, X4 (with indices understood to be in Z5), such that the following two conditions are satisfied:

� for all i ∈ Z5, Xi can be ordered as Xi = {u1
i , . . . , u

|Xi|
i } so that Xi ⊆ NR[u

|Xi|
i ] ⊆ · · · ⊆ NR[u

1
i ] =

Xi−1 ∪Xi ∪Xi+1;
� for some index i∗ ∈ Z5, we have that Xi∗−1 is complete to Xi∗−2, and Xi∗+1 is complete to Xi∗+2.

Note that the first bullet point above implies that X0, X1, X2, X3, X4 are all cliques.
17Indices are understood to be in Z7.
18Cliques Y0, . . . , Y6, Z0, . . . , Z6,W may possibly be empty.
19In particular, at most two of the cliques Y0, . . . , Y6 are nonempty.
20In particular, at most three of the cliques Z0, . . . , Z6 are nonempty.
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� for all i ∈ Z7, Yi is complete to Xi∪Xi+1∪Xi+4 and anticomplete to Xi+2∪Xi+3∪Xi+5∪
Xi+6;

� for all i ∈ Z7, Zi is complete to Xi ∪ Xi+1 ∪ Xi+2 ∪ Xi+3 ∪ Xi+4 and anticomplete to
Xi+5 ∪Xi+6.

The following was proven in section 3 of [14].21

Theorem 3.13. [14] Let G be a (4K1, C4, C6)-free graph that contains an induced C7. Then G
admits a special partition.

We remark that the converse of Theorem 3.13 also holds: if a graph admits a special parti-
tion, then it is (4K1, C4, C6)-free and contains an induced C7. This follows by routine checking,
but it was not proven (indeed, it was not even stated) in [14]. We prove this in Lemma 7.3.

For a positive integer k, a k-uniform partition of a graph G is a partition of V (G) into k
cliques, any two of which are either complete or anticomplete to each other. The following is
Theorem 2.6 from [14] (this result is an immediate corollary of Theorem 3.13 above).

Theorem 3.14. [14] Let G be a (4K1, C4, C6)-free graph that contains an induced C7. Then G
admits a k-uniform partition, with 7 ≤ k ≤ 13.

Note that any two vertices that belong to the same clique of a k-uniform partition of a
graph G, are true twins in G. So, if G admits a k-uniform partition, but does not contain a
pair of true twins, then G has at most k vertices. In particular, Theorem 3.14 implies that any
(4K1, C4, C6)-free graph that contains an induced C7, and does not contain a pair of true twins,
has at most 13 vertices.

4 Recognizing (4K1, C4, C6, C7)-free graphs

Clearly, (4K1, C4, C6, C7)-free graphs can be recognized in O(n7) time. However, by using
Theorem 3.12, we can recognize graphs in this class in only O(n3) time (see Theorem 4.4). In
particular, our recognition algorithm for (4K1, C4, C6, C7)-free graphs does not directly search
for the four forbidden induced subgraphs; instead, it checks whether the input graph has the
structure described in Theorem 3.12.22 Thus, it is possible that our algorithm (correctly)
determines that the input graph is not (4K1, C4, C6, C7)-free without actually finding any of
the four forbidden induced subgraphs in the input graph.

Our first goal is to give O(n2) time recognition algorithms for 5-crowns and 5-baskets (see
Lemmas 4.1 and 4.3, respectively).

Lemma 4.1. There exists an algorithm with the following specifications:

� Input: A graph G;
� Output: Either the true statement that G is a 5-crown, together with a 5-crown partition
of G, or the true statement that G is not a 5-crown;

� Running time: O(n2).

21We remark that the term “special partition” was never used in [14]; we use that term as a convenient
shorthand. The reader can easily check that the structure described in section 3 of [14] is precisely what we
named a “special partition,” with one exception. Item (d) from our definition of a special partition states that
at most one of Yi+3, Yi+4 is nonempty. The reader may have noticed that, in [14], it is stated that exactly one of
Yi+3, Yi+4 is nonempty. However, this is quite obviously a typo: it is possible that both Yi+3, Yi+4 are empty, and
in fact, it may well be that Y0, . . . , Y6, Z0, . . . , Z6,W are all empty (consider the case when G is a 7-hyperhole).

22Here, simplicial vertices pose a bit of a problem because deleting a simplicial vertex may possibly eliminate
an induced 4K1; see the proof of Theorem 4.4 for a way to deal with this.
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Proof. We first call the O(n2) time algorithm from Lemma 3.6 with input G. If the algorithm
returns the answer that G is not a ring, or that G is a ring of length other than five, then
we return the answer that G is not a 5-crown, and we stop. Assume now that the algorithm
returned the answer that G is a 5-ring, together with a ring partition (X0, . . . , X4) of G. Then
we check if there exists an index i∗ ∈ Z5 such that Xi∗−1 is complete to Xi∗−2, and Xi∗+1 is
complete to Xi∗+2 in G; clearly, this can be done in O(n2) time by examining adjacency between
consecutive Xi’s. If we found such an index i∗, then we return the answer that G is a 5-crown
with 5-crown partition (X0, . . . , X4), and we stop. Otherwise, we return the answer that G is
not a 5-crown, and we stop. Clearly, the algorithm is correct, and its running time is O(n2).

We now turn to 5-baskets. We first state and prove a technical lemma (see Lemma 4.2
below), which we then use to construct our O(n2) time recognition algorithm for 5-baskets (see
Lemma 4.3).

Lemma 4.2. Let Q be a 5-basket that contains no pair of true twins, and assume that |V (Q)| ≥
12. Then there exists a unique vertex a ∈ V (Q) such that dQ(a) = 3.23 Further, let c1, c2, c3 be
the three nonneighbors of a in Q (listed in any order), and define sets A,B1, B2, B3, C1, C2, C3, F
as follows:

� A is the set of all vertices of V (Q) \ {c1, c2, c3} that are anticomplete to {c1, c2, c3};24
� for all i ∈ {1, 2, 3}, Bi is the set of all vertices in V (Q) \ {a, c1, c2, c3} that are complete
to {a, ci} and anticomplete to {c1, c2, c3} \ {ci};

� for all i ∈ {1, 2, 3}, Ci := {ci};
� F := V (Q) \

(
A ∪B1 ∪B2 ∪B3 ∪ C1 ∪ C2 ∪ C3

)
.

Then (A;B1, B2, B3;C1, C2, C3;F ) is a 5-basket partition of Q.

Proof. Let (A′;B′
1, B

′
2, B

′
3;C

′
1, C

′
2, C

′
3;F

′) be a 5-basket partition of the 5-basket Q. Let indices
i∗ and j∗ be as in the definition of a 5-basket; by symmetry, we may assume that either
i∗ = j∗ = 1, or i∗ = 1 and j∗ = 3 (see Figure 3.3). Note that for all X ∈ {B′

2, B
′
3, C

′
1, C

′
2, C

′
3, F

′},
any two vertices of X are true twins in Q; since Q contains no pair of true twins, and since
B′

2, B
′
3, C

′
1, C

′
2, C

′
3 are all nonempty, we have that B′

2, B
′
3, C

′
1, C

′
2, C

′
3 are all singletons, and that

|F ′| ≤ 1. Since |V (Q)| ≥ 12, it follows that |A′ ∪B′
1| ≥ 6.

Now, let A′ = {a1, . . . , at} be an ordering of A′ such that NQ(at)∩B′
1 ⊆ · · · ⊆ NQ(a1)∩B′

1 =
B′

1, and let B′
1 = {b1, . . . , bp} be an ordering of B′

1 such that a1 ∈ NQ(bp) ∩ A′ ⊆ · · · ⊆
NQ(b1) ∩ A′, as in the definition of a 5-basket. Note that NQ[a1] \B′

1 = · · · = NQ[at] \B′
1 and

NQ[b1] \ A′ = · · · = NQ[bp] \ A′. Since Q contains no pair of true twins, we now deduce that
NQ(at)∩B′

1 ⫋ · · · ⫋ NQ(a1)∩B′
1 = B′

1 and a1 ∈ NQ(bp)∩A′ ⫋ · · · ⫋ NQ(b1)∩A′; consequently,
|B′

1| ≤ |A′| ≤ |B′
1|+ 1. Since |A′ ∪B′

1| ≥ 6, it follows that |A′| ≥ 3 and |B′
1| ≥ 3.

Claim 1. Vertex a1 is the unique vertex of Q that has exactly three nonneighbors
in Q.

Proof of Claim 1. First, it follows from the definition of a 5-basket that V (Q) \ NQ[a1] =
C ′
1 ∪ C ′

2 ∪ C ′
3; since C ′

1, C
′
2, C

′
3 are pairwise disjoint singletons, it follows that dQ(a1) = 3.

On the other hand, for all i ∈ {2, . . . , t}, we have that dQ(ai) < dQ(a1), and consequently,
dQ(ai) > dQ(a1) = 3. Further, for all i ∈ {1, 2, 3}, we have that B′

i is anticomplete to (B′
1∪B′

2∪
B′

3 ∪ C ′
1 ∪ C ′

2 ∪ C ′
3) \ (B′

i ∪ C ′
i); since sets B′

1, B
′
2, B

′
3, C

′
1, C

′
2, C

′
3 are all nonempty and pairwise

disjoint, it follows that each vertex in B′
1 ∪B′

2 ∪B′
3 has at least four nonneighbors in Q. Next,

for all i ∈ {1, 2, 3}, we have that C ′
i is anticomplete to (A′ ∪ B′

1 ∪ B′
2 ∪ B′

3) \ B′
i; since sets

23That is, Q has exactly one vertex (called a) that has exactly three nonneighbors in Q.
24Note that this means that a ∈ A.
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A′, B′
1, B

′
2, B

′
3 are all nonempty and pairwise disjoint, and since |A′| ≥ 3, it follows that each

vertex in C ′
1 ∪ C ′

2 ∪ C ′
3 has at least five nonneighbors in Q. It remains to show that no vertex

in F ′ has exactly three nonneighbors in Q. We may assume that F ′ ̸= ∅, for otherwise, there is
nothing to show. Now |F ′| = 1, and we set F ′ = {f}. If j∗ = 1, then V (Q) \NQ[f ] = B′

1 ∪ C ′
1,

and it follows that dQ(f) ≥ 4.25 On the other hand, if j∗ = 3, then V (Q) \NQ[f ] = B′
3 ∪ C ′

3,

and it follows that dQ(f) = 2.26 This proves Claim 1. ♦

Set a := a1; by Claim 1, a is the only vertex of Q that has exactly three nonneighbors in
Q. Let c1, c2, c3 be the three nonneighbors of a (listed in any order). Since V (Q) \ NG[a] =
C ′
1 ∪ C ′

2 ∪ C ′
3, and since C ′

1, C
′
2, C

′
3 are all singletons, we see that there exists some permu-

tation σ of the index set {1, 2, 3} such that C ′
σ(1) = {c1}, C ′

σ(2) = {c2}, and C ′
σ(3) = {c3}.

But now if sets A,B1, B2, B3, C1, C2, C3, F are defined as in the statement of the lemma, then
all the following hold: A = A′; Ci = C ′

σ(i) and Bi = B′
σ(i) for all i ∈ {1, 2, 3}; F = F ′.

Since (A′;B′
1, B

′
2, B

′
3;C

′
1, C

′
2, C

′
3;F

′) is a 5-basket partition of the 5-basket Q, so is the partition
(A;B1, B2, B3;C1, C2, C3;F ). This completes the argument.

We remind the reader that for a set S of sets, we write
⋃
S :=

⋃
X∈S X.

Lemma 4.3. There exists an algorithm with the following specifications:

� Input: A graph G;
� Output: One of the following:

– The true statement that G is a 5-basket, together with a 5-basket partition of G,
– The true statement that G is not a 5-basket;

� Running time: O(n2).

Proof. We first call the O(n2) time algorithm from Lemma 3.5 with input G, and we obtain
the partition P of V (G) into true twin classes of G, as well as the quotient graph Q := GP .
Obviously, Q contains no pair of true twins.

Claim 1. G is a 5-basket if and only if Q is a 5-basket. Moreover, if Q is a 5-
basket with 5-basket partition (A;B1, B2, B3;C1, C2, C3;F ), then G is a 5-basket
with 5-basket partition (

⋃
A;

⋃
B1,

⋃
B2,

⋃
B3;

⋃
C1,

⋃
C2,

⋃
C3;

⋃
F ).

Proof of Claim 1. It is obvious that if Q is a 5-basket with an associated 5-basket parti-
tion (A;B1, B2, B3;C1, C2, C3;F ), then G is a 5-basket with an associated 5-basket partition
(
⋃

A;
⋃

B1,
⋃
B2,

⋃
B3;

⋃
C1,

⋃
C2,

⋃
C3;

⋃
F ). It remains to show that if G is a 5-basket, then

so is Q. But this readily follows from the fact that every true twin class of a 5-basket is in-
cluded (as a subset) in one of the eight sets of an (any) associated 5-basket partition. This
proves Claim 1. ♦

In view of Claim 1, it remains to check whether Q is a 5-basket, and if so, to find an
associated 5-basket partition of Q. If |V (Q)| ≤ 11, then this can be done by brute force in O(1)
time. So, assume that |V (Q)| ≥ 12. We then form the graph Q, and we compute the degrees
of all vertices in this graph; this can be done in O(n2) time. If Q contains no vertices of degree
three, or if it contains more than one such vertex, then Lemma 4.2 guarantees that Q is not a
5-basket. So, suppose that Q has exactly one vertex (call it a) of degree three. Let c1, c2, c3 be
the three nonneighbors of a in Q (listed in any order), and let sets A,B1, B2, B3, C1, C2, C3, F
be as in the statement of Lemma 4.2, i.e. let these sets be defined as follows:

� A is the set of all vertices of V (Q) \ {c1, c2, c3} that are anticomplete to {c1, c2, c3};27

25We are using the fact that B′
1 ∩ C′

1 = ∅, |B′
1| ≥ 3, and |C′

1| = 1.
26We are using the fact that B′

3 and C′
3 are disjoint singletons.

27Note that this means that a ∈ A.
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� for all i ∈ {1, 2, 3}, Bi is the set of all vertices in V (Q) \ {a, c1, c2, c3} that are complete
to {a, ci} and anticomplete to {c1, c2, c3} \ {ci};

� for all i ∈ {1, 2, 3}, Ci := {ci};
� F := V (Q) \

(
A ∪B1 ∪B2 ∪B3 ∪ C1 ∪ C2 ∪ C3

)
.

Clearly, these eight sets can be computed in O(n) time.
By Lemma 4.2, either P := (A;B1, B2, B3;C1, C2, C3;F ) is a 5-basket partition of Q, or Q

is not a 5-basket. We check if P is a 5-basket partition of Q, as follows. We first check in O(n2)
time if all the following hold:

(1) A,B1, B2, B3, C1, C2, C3 are all nonempty cliques;
(2) F is a (possibly empty) clique;
(3) B1, B2, B3 are anticomplete to each other;
(4) C1, C2, C3 are complete to each other;
(5) A is anticomplete to C1, C2, C3;
(6) for all i ∈ {1, 2, 3}, Bi is complete to Ci and anticomplete to (C1 ∪ C2 ∪ C3) \ Ci;
(7) there exists an index j ∈ {1, 2, 3} such that F is complete to V (Q) \ (Bj ∪ Cj) and

anticomplete to Bj ∪ Cj .

If any one of (1)-(7) fails, then P is not a 5-basket partition of Q. Suppose now that (1)-(7) all
hold. We then compute the degrees (inQ) of all vertices in A, and we order A as A = {a1, . . . , at}
so that dQ(at) ≤ · · · ≤ dQ(a1); this can be done in O(n2) time. We now check in further O(n2)
time if NQ[at] ⊆ · · · ⊆ NQ[a1]; if not, then P is not a 5-basket partition of Q. Assume now that
NQ[at] ⊆ · · · ⊆ NQ[a1]. We then check in O(n) time whether there exists an index i ∈ {1, 2, 3}
such that at is complete to (B1 ∪B2 ∪B3) \Bi; if such an index i does not exist, then P is not
a 5-basket partition of Q. So assume we have found such an index i; it then follows from our
ordering of A that A is complete to (B1 ∪ B2 ∪ B3) \ Bi. We now check in O(n) time if a1 is
complete to Bi. If a1 is not complete to Bi, then P is not a 5-basket partition of Q. On the
other hand, if a1 is complete to Bi, then P is indeed a 5-basket partition of Q.

We have now determined whether Q is a 5-basket, and if so, we have found an associated
5-basket partition of Q. If Q is not a 5-basket, then we return the answer that G is not a 5-
basket, and we stop. On the other hand, if we have determined thatQ is a 5-basket with 5-basket
partition (A;B1, B2, B3;C1, C2, C3;F ), then we return the answer that G is a 5-basket with 5-
basket partition (

⋃
A;

⋃
B1,

⋃
B2,

⋃
B3;

⋃
C1,

⋃
C2,

⋃
C3;

⋃
F ), and we stop. By Claim 1, this

is correct.
Clearly, the algorithm is correct, and its running time is O(n2).

We are now ready to describe our O(n3) time recognition algorithm for (4K1, C4, C6, C7)-free
graphs.

Theorem 4.4. There exists an algorithm with the following specifications:

� Input: A graph G;
� Output: Either the true statement that G is (4K1, C4, C6, C7)-free, or the true statement
that G is not (4K1, C4, C6, C7)-free;

� Running time: O(n3).

Proof. We first call the O(n3) time algorithm from Lemma 3.3 with input G, and we obtain
a maximal sequence v1, . . . , vs (s ≥ 0) of pairwise distinct vertices of G such that for all i ∈
{1, . . . , s}, vi is simplicial in the graph G\{v1, . . . , vi−1}. Suppose first that V (G) = {v1, . . . , vs}.
Then v1, . . . , vs is a simplicial elimination ordering of G, and so Theorem 3.2 guarantees that
G is chordal, and in particular, that G is (C4, C6, C7)-free. Further, we can compute α(G) in
O(n2) time by calling the algorithm from Lemma 3.4 with input G and v1, . . . , vs. If α(G) ≥ 4,
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then G is not 4K1-free; in this case, we return the answer that G is not (4K1, C4, C6, C7)-free,
and we stop. On the other hand, if α(G) ≤ 3, then G is 4K1-free; in this case, we return the
answer that G is (4K1, C4, C6, C7)-free, and we stop.

From now on, we assume that {v1, . . . , vs} ⫋ V (G). We then form the graph H := G \
{v1, . . . , vs} and the set U of all universal vertices ofH; this takesO(n2) time. By the maximality
of v1, . . . , vs, the graph H has no simplicial vertices, and in particular, H is not complete; thus,
U ⫋ V (H). We now form the graph Q := H \ U in further O(n2) time.

Claim 1. All holes of G are in fact holes of Q. Consequently, for all X ⫋ V (Q), if
Q \X is chordal, then G \X is also chordal. Furthermore, if Q is (C4, C6, C7)-free,
then so is G.

Proof of Claim 1. The first statement follows from the fact that holes contain no simplicial
and no universal vertices. The second and third statement follow from the first. This proves
Claim 1. ♦

Using the O(n2) time algorithms from Lemmas 4.1 and 4.3, we check if Q is a 5-crown or a
5-basket (or neither). If Q is neither a 5-crown nor a 5-basket, then we return the answer that
G is not (4K1, C4, C6, C7)-free, and we stop; Theorem 3.12 guarantees that this is correct. From
now on, we assume that Q is either a 5-basket or a 5-crown, and that we have also obtained a
relevant partition of Q, as specified in the algorithms from Lemmas 4.1 and 4.3.

By Lemma 3.9, Q is (4K1, C4, C6, C7)-free, and so by Claim 1, G is (C4, C6, C7)-free. It
remains to check if G is 4K1-free. Clearly, this could be done in O(n4) time by brute force;
however, this is too slow for our purposes, and so instead, we will determine whether G is 4K1-
free by computing the stability number of several (at most four) chordal induced subgraphs of
G, using the algorithm from Lemma 3.4. We consider two cases: when Q is a 5-crown, and
when Q is a 5-basket.

Case 1: Q is a 5-crown. Let (X0, X1, X2, X3, X4) be a 5-crown partition of Q, returned by
the algorithm from Lemma 4.1. By the definition of a 5-crown, there exists an index i ∈ Z5

such that Xi is complete to Xi+1, and clearly, such an index i can be found in O(n2) time. By
symmetry, we may assume that i = 1, so that X1 is complete to X2. Then no stable set of G
intersects both X1 and X2; consequently, every stable set of G is in fact a stable set of G \X1

or G \X2. Thus, α(G) = max{α(G \X1), α(G \X2)}. Further, by Lemma 3.7(c), both Q \X1

and Q \ X2 are chordal; Claim 1 now implies that G \ X1 and G \ X2 are both chordal, and
therefore (by Theorem 3.2) admit a simplicial elimination ordering. We can find a simplicial
elimination ordering of G \ X1 in O(n3) time using the algorithm from Lemma 3.3, and then
we can find α(G \X1) in further O(n2) time using the algorithm from Lemma 3.4. Similarly,
we can find α(G \X2) in O(n3) time using the algorithms from Lemmas 3.3 and 3.4. Finally,
we compute α(G) = max{α(G \X1), α(G \X2)}. If α(G) ≥ 4, then G is not 4K1-free; in this
case, we return the answer that G is not (4K1, C4, C6, C7)-free, and we stop. Otherwise, G is
4K1-free; in this case, we return the answer that G is (4K1, C4, C6, C7)-free,

28 and we stop.

Case 2: Q is a 5-basket. Let (A;B1, B2, B3;C1, C2, C3;F ) be a 5-basket partition of Q,
returned by the algorithm from Lemma 4.3.

Claim 2. For every hole in G, there exists some index i ∈ {1, 2, 3} such that the
hole intersects both Bi and Ci.

Proof of Claim 2. By Claim 1, every hole of G is a hole of Q. Further, by Lemma 3.9, Q is
(4K1, C4, C6, C7)-free; consequently, every hole in Q is of length five. Thus, it suffices to show
that for every 5-hole in Q, there exists some index i ∈ {1, 2, 3} such that the 5-hole intersects
both Bi and Ci. Let y0, . . . , y4, y0 (with indices in Z5) be a 5-hole inQ, and set Y := {y0, . . . , y4}.

28We have already checked that G is (C4, C6, C7)-free, and so this is correct.
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First, we observe that for all X ∈ {A,B1, B2, B3, C1, C2, C3, F}, and all distinct vertices
x, x′ ∈ X, one of x, x′ dominates the other in Q. Since no vertex of a hole dominates any other
vertex of that hole, we deduce that none of A,B1, B2, B3, C1, C2, C3, F contains more than one
vertex of Y .

Next, we can obtain a simplicial elimination ordering of Q \ A as follows: we first list all
vertices of B1 ∪B2 ∪B3 (in any order), then we list all vertices of F (in any order), and finally,
we list all vertices of C1 ∪ C2 ∪ C3 (in any order). It now follows from Theorem 3.2 that Q \A
is chordal, and consequently, Y ∩ A ̸= ∅. We have already shown that |Y ∩ A| ≤ 1, and we
now deduce that |Y ∩ A| = 1. By symmetry, we may assume that Y ∩ A = {y0}. Since
y0 is complete to {y1, y4}, and since A is anticomplete to C1 ∪ C2 ∪ C3, we now have that
y1, y4 ∈ B1 ∪ B2 ∪ B3 ∪ F . Since |Y ∩ F | ≤ 1, we deduce that at least one of y1, y4 belongs to
B1 ∪B2 ∪B3; by symmetry, we may assume that y1 ∈ B1. Since |Y ∩B1| ≤ 1, we deduce that
Y ∩ B1 = {y1}. Since y1 is adjacent to y2, and since B1 is anticomplete to B2 ∪ B3 ∪ C2 ∪ C3,
we now have that y2 ∈ A∪B1 ∪C1 ∪F . But since Y ∩A = {y0} and Y ∩B1 = {y1}, we in fact
have that y2 ∈ C1 ∪ F . If y2 ∈ F , then {y0, y1, y2} is a triangle (i.e. a clique of size three),29

contrary to the fact that holes contain no triangles. So, y2 ∈ C1. But now Y intersects both B1

and C1. This proves Claim 2. ♦

Let C := C1 ∪ C2 ∪ C3, and for all i ∈ {1, 2, 3}, let Di := Bi ∪ (C \ Ci). Further, set
GC := G \ C, and for all i ∈ {1, 2, 3}, set Gi := G \ Di. Forming sets C,D1, D2, D3 and
graphs GC , G1, G2, G3 takes O(n2) time. By Claim 2, graphs GC , G1, G2, G3 are all chordal,
and consequently (by Theorem 3.2), they all admit a simplicial elimination ordering. We find
a simplicial elimination ordering for each of these four chordal graphs using the O(n3) time
algorithm from Lemma 3.3, and then we compute their stability number in further O(n2) time
using the algorithm from Lemma 3.4.

Claim 3. α(G) = max{α(GC), α(G1), α(G2), α(G3)}.
Proof of Claim 3. Clearly, it is enough to show that every stable set of G is in fact a stable set
of one of GC , G1, G2, G3. For this, we need only show that every stable set of G has an empty
intersection with at least one of C,D1, D2, D3. Let S be a stable set of G. We may assume
that S ∩ C ̸= ∅, for otherwise, we are done. Fix i ∈ {1, 2, 3} such that S ∩ Ci ̸= ∅. Since Ci is
complete to Di, and since S is a stable set, we have that S ∩Di = ∅. This proves Claim 3. ♦

We have already computed α(GC), α(G1), α(G2), α(G3); in view of Claim 3, we can now
compute α(G) simply by taking the maximum of these four numbers. If α(G) ≥ 4, then G is
not 4K1-free; in this case, we return the answer that G is not (4K1, C4, C6, C7)-free, and we stop.
Otherwise, G is 4K1-free; in this case, we return the answer that G is (4K1, C4, C6, C7)-free,

30

and we stop.

Clearly, the algorithm is correct, and its running time is O(n3).

5 Cliques and clique covers of (4K1, C4, C6, C7)-free graphs

Theorem 5.1. There exists an algorithm with the following specifications:

� Input: A graph G;
� Output: Either a list of all maximal cliques of G, or the true statement that G is not
(4K1, C4, C6, C7)-free;

� Running time: O(n3).

29Indeed, y0y1 and y1y2 are edges because y0, . . . , y4, y0 is a hole, and y2y0 is an edge because y2 ∈ F , y0 ∈ A,
and F is complete to A.

30We have already checked that G is (C4, C6, C7)-free, and so this is correct.
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Furthermore, if the algorithm returns all maximal cliques of the input graph G, then the number
of cliques returned is at most n, where n is the number of vertices of G.

Proof. First, it is clear that, for a clique C of G, we can check in O(n2) time whether C is a
maximal clique of G (we simply check whether some vertex of V (G) \C is complete to C). The
algorithm proceeds as follows. First, we compute a list of at most n cliques of G such that all
maximal cliques of G are on this list (but not all cliques on the list need be maximal). Then, we
check in O(n3) time which of those cliques are maximal, and we return those maximal cliques.

We now turn to the technical details. We begin by finding a maximal sequence v1, . . . , vs (s ≥
0) of vertices of G such that for all i ∈ {1, . . . , s}, vi is simplicial in the graph G\{v1, . . . , vi−1};
this can be done in O(n3) time by calling the algorithm from Lemma 3.3 with input G. For
each i ∈ {1, . . . , vi}, we form the set Di = NG[vi] \ {v1, . . . , vi−1}. Clearly, sets D1, . . . , Ds can
be computed in O(n2) time, and they are all cliques.

Claim 1. For every maximal clique C of G, if C∩{v1, . . . , vs} ≠ ∅, then there exists
an index i ∈ {1, . . . , s} such that C = Di.

Proof of Claim 1. Fix a maximal clique C of G, and assume that C ∩ {v1, . . . , vs} ≠ ∅. Let
i ∈ {1, . . . , s} be minimal with the property that vi ∈ C. Then C ⊆ NG[vi]\{v1, . . . , vi−1} = Di.
Since both C and Di are cliques, the maximality of C guarantees that C = Di. This proves
Claim 1. ♦

Suppose first that V (G) = {v1, . . . , vs}. Then s = n, and by Claim 1, all maximal cliques
of G are on the list D1, . . . , Ds. We check in O(n3) time which of the cliques D1, . . . , Ds are
maximal in G, we return those maximal cliques, and we stop.

From now on, we assume that {v1, . . . , vs} ⫋ V (G). We now form the graph H := G \
{v1, . . . , vs}, as well as the set U of all universal vertices of H; this takes O(n2) time. By the
maximality of v1, . . . , vs, we know that H contains no simplicial vertices, and consequently, H
is not complete; thus, U ⫋ V (H). We now form the graph Q := H \ U in further O(n2) time.

Claim 2. For every maximal clique C of G, either
� there exists an index i ∈ {1, . . . , s} such that C = Di, or
� there exists some maximal clique C ′ of the graph Q such that C = C ′ ∪ U .

Proof of Claim 2. Fix a maximal clique C of G. We may assume that C ∩ {v1, . . . , vs} = ∅, for
otherwise, we are done by Claim 1. But then C is a maximal clique of H. Since U is the set of
all universal vertices of H, it is clear that U ⊆ C, and that C ′ := C \ U is a maximal clique of
H \ U = Q. This proves Claim 2. ♦

By Theorem 3.12, if G is (4K1, C4, C6, C7)-free, then Q is a 5-crown or a 5-basket. We
can check if Q is a 5-crown or a 5-basket (or neither) using the O(n2) time algorithms from
Lemmas 4.1 and 4.3. If Q is neither a 5-crown nor a 5-basket, then we return the answer
that G is not (4K1, C4, C6, C7)-free, and we stop. From now on, we may assume that we have
determined that Q is either a 5-crown or a 5-basket, and that we have also obtained a relevant
partition of Q, as specified in the algorithms from Lemmas 4.1 and 4.3.

In view of Claim 2, our goal is now to compute all maximal cliques of Q. We consider two
cases: when Q is a 5-crown, and when Q is a 5-basket.

Case 1: Q is a 5-crown. Let (X0, . . . , X4) be a 5-crown partition of the 5-crown Q, returned
by the algorithm from Lemma 4.1. We now compute the degrees (in Q) of all vertices of Q, and

then for each i ∈ Z5, we order Xi as Xi = {u1i , . . . , u
|Xi|
i } so that dQ(u

|Xi|
i ) ≤ · · · ≤ dQ(u

1
i ); this

can be done in O(n2) time. Since we already know that (X0, . . . , X4) is a 5-crown partition of Q,

we see that for all i ∈ Z5, we have that Xi ⊆ NQ[u
|Xi|
i ] ⊆ · · · ⊆ NQ[u

1
i ] = Xi−1∪Xi∪Xi+1. Now,

for all i ∈ Z5, and all j ∈ {1, . . . , |Xi|}, we compute the set Cj
i := {u1i , . . . , u

j
i}∪(NQ(u

j
i )∩Xi+1);
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the family {Cj
i } can be computed in O(n2) time. It readily follows from our orderings of the

sets Xi that each set Cj
i is a clique, and furthermore, that every maximal clique of Q is of

the form Cj
i .

31 It then follows from Claim 2 that all maximal cliques of G are on the list

D1, . . . , Ds, C
1
0 ∪ U, . . . , C

|X0|
0 ∪ U, . . . , C1

4 ∪ U, . . . , C
|X4|
4 ∪ U ; the number of cliques on this list

is s+ |V (Q)| ≤ n. We now check in O(n3) time which cliques on our list are maximal in G, we
return those maximal cliques, and we stop.

Case 2: Q is a 5-basket. Let (A;B1, B2, B3;C1, C2, C3;F ) be a 5-basket partition of the
5-basket Q, returned by the algorithm from Lemma 4.3. We now find indices i∗, j∗ ∈ {1, 2, 3}
such that A is complete to (B1 ∪B2 ∪B3) \Bi∗ , and F is complete to V (Q) \ (Bj∗ ∪ Cj∗) and
anticomplete to Bj∗ ∪ Cj∗ ; such indices exist by the definition of a 5-basket, and they can be
found in O(n2) time. Further, after possibly permuting indices, we may assume that either
i∗ = j∗ = 1, or i∗ = 1 and j∗ = 3 (see Figure 3.3).

Next, we compute the degrees (in Q) of all vertices in A, and we order A as A = {a1, . . . , at}
so that dQ(at) ≤ · · · ≤ dQ(a1); this can be done in O(n2) time. Since we already know that
(A;B1, B2, B3;C1, C2, C3;F ) is a 5-basket partition of the 5-basket Q, we see that NQ(at)∩B1 ⊆
· · · ⊆ NQ(a1)∩B1 = B1. Now, for all i ∈ {1, . . . , t}, we form the set Ai = {a1, . . . , ai}∪(NQ(ai)∩
B1); clearly, the list A1, . . . , At can be computed in O(n2) time. By the definition of a 5-basket
partition, and by our ordering of A, we have that A1, . . . , At are all cliques.

Our goal is to find all maximal cliques of Q. For this, we consider two cases: when F = ∅,
and when F ̸= ∅.

Case 2.1: F = ∅. In this case, it is easy to see that all maximal cliques of Q are on the
following list of t+6 cliques:32 A1, . . . , At, A∪B2, A∪B3, B1∪C1, B2∪C2, B3∪C3, C1∪C2∪C3.
Since sets A,B1, B2, B3, C1, C2, C3 are nonempty and pairwise disjoint, and since |A| = t, we
see that t+ 6 ≤ |V (Q)|; thus, the number of cliques on our list is at most |V (Q)|. We can now
determine in O(n3) time which of those cliques are maximal in Q.

Case 2.2: F ̸= ∅. Recall that either j∗ = 1 or j∗ = 3. If j∗ = 1 (see Figure 3.3, top),
then it is easy to see that all maximal cliques of Q are on the following list of t + 7 cliques:33

A1, . . . , At, A∪B2 ∪F,A∪B3 ∪F,B1 ∪C1, B2 ∪C2 ∪F,B3 ∪C3 ∪F,C1 ∪C2 ∪C3, C2 ∪C3 ∪F .
On the other hand, if j∗ = 3 (see Figure 3.3, bottom), then all maximal cliques of Q are on the
following list of t+ 7 cliques:34 A1 ∪ F, . . . , At ∪ F,A ∪ B2 ∪ F,A ∪ B3, B1 ∪ C1 ∪ F,B2 ∪ C2 ∪
F,B3 ∪ C3, C1 ∪ C2 ∪ C3, C1 ∪ C2 ∪ F . In either case (i.e. both when j∗ = 1 and when j∗ = 3),
our list contains t+7 cliques. Since sets A,B1, B2, B3, C1, C2, C3, F are nonempty and pairwise
disjoint, and since |A| = t, we see that t+7 ≤ |V (Q)|; thus, the number of cliques on our list is
at most |V (Q)|. We can now determine in O(n3) time which of those cliques are maximal in Q.

In either case (i.e. both in Case 2.1 and in Case 2.2), we have found a complete list (say,
E1, . . . , Er) of maximal cliques of Q, and this list contains at most |V (Q)| cliques. By Claim 2,
all maximal cliques of G are on the following list of cliques: D1, . . . , Ds, E1 ∪ U, . . . , Er ∪ U .
Clearly, the number of cliques on this list is at most s + |V (Q)| ≤ n. We now check in O(n3)
time which of the cliques D1, . . . , Ds, E1 ∪ U, . . . , Er ∪ U are maximal in G, we return those
maximal cliques, and we stop.

Clearly, the algorithm is correct, and its running time isO(n3). Furthermore, if the algorithm
returns all maximal cliques of G, then the number of cliques returned is at most n.

Corollary 5.2. Every (4K1, C4, C6, C7)-free graph G has at most |V (G)| maximal cliques.

31However, not all Cj
i ’s need be maximal cliques of Q.

32However, not all cliques on this list need be maximal in Q.
33However, not all cliques on this list need be maximal in Q.
34Once again, not all cliques on this list need be maximal in Q.
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Proof. This follows immediately from Theorem 5.1.

Lemma 5.3. Let v be a simplicial vertex of a graph G. Then NG[v] is one of the cliques of
some minimum clique cover of G.

Proof. Set k := χ(G), and let {C1, . . . , Ck} be a minimum clique cover of G. By symmetry, we
may assume that v ∈ C1. Since C1 is a clique, we see that C1 ⊆ NG[v]. Since v is simplicial,
NG[v] is a clique. But now {NG[v], C2, . . . , Ck} is a minimum clique cover of G.

Theorem 5.4. There exists an algorithm with the following specifications:

� Input: A graph G;
� Output: Either a minimum clique cover of G, or the true statement that G is not
(4K1, C4, C6, C7)-free;

� Running time: O(n3).

Proof. We begin by finding a maximal sequence v1, . . . , vs (s ≥ 0) of vertices of G such that for
all i ∈ {1, . . . , s}, vi is simplicial in the graph G \ {v1, . . . , vi−1}; this can be done in O(n3) time
by calling the algorithm from Lemma 3.3 with input G. For each i ∈ {1, . . . , s}, we form the
set Di = NG[vi] \ {v1, . . . , vi−1}. Clearly, sets D1, . . . , Ds can be computed in O(n2) time, and
they are all cliques.

We now form a sequence i0, . . . , iℓ of indices, and a sequence S0, . . . , Sℓ of sets, as follows. We
set i0 := 0 and S0 := ∅. Then, having formed sequences i0, . . . , ij and S0, . . . , Sj , we proceed as
follows. If vij+1, . . . , vs ∈ Sj ,

35 then we set ℓ := j, and we terminate our sequences. Otherwise,
we extend our sequences by letting ij+1 be the smallest index i ≥ ij + 1 such that vi /∈ Sj , and
setting Sj+1 := Sj ∪Dij+1 . Clearly, the sequences {ij} and {Sj} can be formed in O(n2) time.
To simplify notation, we set S := Sℓ. By construction, we have that v1, . . . , vs ∈ S.

Claim 1. If S = V (G), then {Di1 , . . . , Diℓ} is a minimum clique cover of G. If
S ⫋ V (G), then for any set {E1, . . . , Er} of cliques of G such that r ≤ χ(G \S) and
V (G) \ S ⊆ E1 ∪ · · · ∪Er, we have that {Di1 , . . . , Diℓ} ∪ {E1, . . . , Er} is a minimum
clique cover of G.

Proof of Claim 1. This follows from Lemma 5.3, by an easy induction. ♦

If S = V (G), then we return {Di1 , . . . , Diℓ}, and we stop; by Claim 1, this is correct. From
now on, we assume that S ⫋ V (G). We then check if V (G) \ S is a clique in O(n2) time. If
V (G)\S is a clique, then we return {Di1 , . . . , Diℓ}∪{V (G)\S}, and we stop; by Claim 1, this is
correct. From now on, we assume that S is not a clique. Then we check if G\S is cobipartite,36

and if so, we find a partition {E1, E2} of V (G) \ S into two cliques; this can be done in O(n2)
time via (for example) breadth-first-search in the graph G \ S. If we found such a partition
{E1, E2} of V (G)\S, then we return {Di1 , . . . , Diℓ}∪{E1, E2}, and we stop; by Claim 1, this is
correct. From now on, we assume that G \S is not cobipartite, and consequently, χ(G \S) ≥ 3.

We now form the graph H := G \ {v1, . . . , vs},37 as well as the set U of all universal vertices
of H; this takes O(n2) time. By the maximality of v1, . . . , vs, we know that H is not complete,
and consequently, U ⫋ V (H). We now form the graph Q := H \U in further O(n2) time. Next,
we determine whether Q is a 5-crown or a 5-basket (or neither) by calling the algorithms from
Lemmas 4.1 and 4.3 with input Q. If Q is neither a 5-crown nor a 5-basket, then we return the
answer that G is not (4K1, C4, C6, C7)-free, and we stop; by Theorem 3.12, this is correct. From

35Note that if ij = s, then this vacuously holds.
36A graph is cobiparite if its vertex set can be partitioned into two cliques. So, a graph is cobipartite if its

complement is bipartite.
37Clearly, G \ S is an induced subgraph of H.
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now on, we assume that Q is either a 5-crown or a 5-basket, and that we have also obtained a
relevant partition, as specified in Lemmas 4.1 and 4.3.

Suppose first that we have determined that Q is a 5-crown. Let (X0, . . . , X4) be a 5-crown
partition of Q, returned by the algorithm from Lemma 4.1. By the definition of a 5-crown, there
exists an index i∗ ∈ Z5 such that Xi∗−1 is complete to Xi∗−2, and Xi∗+1 is complete to Xi∗+2;
clearly, such an index i∗ can be found in O(n2) time. Then Xi∗∪U,Xi∗−1∪Xi∗−2, Xi∗+1∪Xi∗+2

are cliques of G, and clearly, V (G)\S ⊆ (Xi∗ ∪U)∪ (Xi∗−1∪Xi∗−2)∪ (Xi∗+1∪Xi∗+2). We now
return {Di1 , . . . , Diℓ}∪{Xi∗∪U,Xi∗−1∪Xi∗−2, Xi∗+1∪Xi∗+2}, and we stop. Since χ(G\S) ≥ 3,
Claim 1 guarantees that this is correct.

From now on, we assume that Q is a 5-basket. Let (A;B1, B2, B3;C1, C2, C3;F ) be a 5-
basket partition of Q, returned by the algorithm from Lemma 4.3. We now compute indices
i∗, j∗, as in the definition of a 5-basket; clearly, this can be done in O(n2) time. After possibly
permuting indices, we may assume that either i∗ = j∗ = 1, or i∗ = 1 and j∗ = 3. Note that this
implies that F is complete to A ∪B2 ∪ C2.

We form sets U ′ := U \ S, A′ := A \ S, and F ′ := F \ S, and for each i ∈ {1, 2, 3}, we form
sets B′

i := Bi \ S and C ′
i := Ci \ S; further, we check if A′ is complete to B′

1. All this can be
done in O(n2) time.

Suppose first that at least one of the sets A′, B′
2, C

′
2, C

′
3, B

′
3 is empty. Since G[A∪B2 ∪C2 ∪

C3 ∪B3] is a 5-hyperhole, it is now easy to see that A′ ∪B′
2 ∪ C ′

2 ∪ C ′
3 ∪B′

3 can be partitioned
into two cliques, call them E1 and E2, which can be found in O(n) time by routine checking.38

If j∗ = 1, then we return {Di1 , . . . , Diℓ} ∪ {E1 ∪ F ′ ∪ U ′, E2, B
′
1 ∪ C ′

1}, and we stop. On the
other hand, if j∗ = 3, then we return {Di1 , . . . , Diℓ} ∪ {E1, E2, B

′
1 ∪C ′

1 ∪F ′ ∪U ′}, and we stop.
Since χ(G \ S) ≥ 3, Claim 1 guarantees that this is correct.

From now on, we assume that sets A′, B′
2, C

′
2, C

′
3, B

′
3 are all nonempty. If B′

1 = ∅, then we
return {Di1 , . . . , Diℓ} ∪ {A′ ∪B′

2 ∪ F ′ ∪ U ′, B′
3, C

′
1 ∪C ′

2 ∪C ′
3}, and we stop; since χ(G \ S) ≥ 3,

Claim 1 guarantees that this is correct. From now on, we further assume that B′
1 ̸= ∅.39

Suppose that A′ is not complete to B′
1. Then G \ S contains an induced C5 + K1 (the

disjoint union of C5 and K1),
40 and clearly, χ(C5 + K1) = 4. Thus, χ(G \ S) ≥ 4. We now

return {Di1 , . . . , Diℓ}∪ {A′ ∪B′
2 ∪F ′ ∪U ′, B′

1, B
′
3, C

′
1 ∪C ′

2 ∪C ′
3}, and we stop. By Claim 1, this

is correct.
From now on, we assume thatA′ is complete toB′

1. If C
′
1 = ∅, then we return {Di1 , . . . , Diℓ}∪

{A′ ∪ B′
1 ∪ U ′, B′

2 ∪ C ′
2 ∪ F ′, B′

3 ∪ C ′
3}, and we stop; since χ(G \ S) ≥ 3, Claim 1 guarantees

that this is correct. Suppose now that C ′
1 ̸= ∅. Then G \ S contains an induced 5-pyramid (see

Figure 3.2);41 it is easy to see that χ(5-pyramid) = 4, and we deduce that χ(G \ S) ≥ 4. We
now return {Di1 , . . . , Diℓ}∪{A′ ∪B′

2 ∪F ′ ∪U ′, B′
1, B

′
3, C

′
1 ∪C ′

2 ∪C ′
3}, and we stop. By Claim 1,

this is correct.
Clearly, the algorithm is correct, and its running time is O(n3).

6 Coloring (4K1, C4, C6, C7)-free graphs

In this section, we give an O(n3) time coloring algorithm for (4K1, C4, C6, C7)-free graphs
(see Theorem 6.8). Our algorithm relies on the decomposition theorem for (4K1, C4, C6, C7)-

38Indeed, if A′ = ∅, then we can take E1 := B′
2 ∪ C′

2 and E2 := B′
3 ∪ C′

3. If one of B′
2, B

′
3 is empty, then we

can set E1 := A′ ∪B′
2 ∪B′

3 and E2 := C′
2 ∪ C′

3. If C
′
2 = ∅, then we can set E1 := A′ ∪B′

2 and E2 := B′
3 ∪ C′

3. If
C′

3 = ∅, then we can set E1 := A′ ∪B′
3 and E2 := B′

2 ∪ C′
2.

39We now have that, of the sets A′, B′
1, B

′
2, B

′
3, C

′
1, C

′
2, C

′
3, F

′, the only ones that may possibly be empty are
C′

1 and F ′.
40To see this, we select nonadjacent vertices a ∈ A′ and b1 ∈ B′

1, we select any vertices b2 ∈ B′
2, c2 ∈ C′

2,
c3 ∈ C′

3, and b3 ∈ B′
3, and we observe that these six vertices induce a C5 +K1 in G.

41To see this, select one vertex out of each of A′, B′
1, B

′
2, B

′
3, C

′
1, C

′
2, C

′
3; then those seven vertices induce a

5-pyramid.
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free graphs from [23] (see Theorem 3.12 of the present paper), as well as on the formula for the
chromatic number of a ring from [21] (see Theorem 3.8 of the present paper).

Recall that the “basic” classes from Theorem 3.12 are the 5-baskets and 5-crowns. Note
that an induced subgraph of a 5-crown need not be a 5-crown, that is, 5-crowns do not form a
hereditary class.42 For the purposes of recursion, we will introduce a hereditary class (that of
“5-pseudocrowns”) that contains all 5-crowns (see subsection 6.1).

This section is organized as follows. First, in subsection 6.1, we define 5-pseudocrowns, and
we give an O(n3) time coloring algorithm for them (see Lemma 6.5). Then, in subsection 6.2,
we give an O(n3) time coloring algorithm for 5-baskets (see Lemma 6.7); we remark that our
coloring algorithm for 5-baskets uses the coloring algorithm for 5-pseudocrowns as a subroutine.
Finally, in subsection 6.3, we give an O(n3) time coloring algorithm for (4K1, C4, C6, C7)-free
graphs (see Theorem 6.8).

6.1 Coloring 5-pseudocrowns

A 5-pseudocrown is a graph Q whose vertex set can be partitioned into five (possibly empty)
sets, say X0, X1, X2, X3, X4 (with indices understood to be in Z5),

43 such that the following
two conditions are satisfied:

� for all i ∈ Z5, Xi can be ordered as Xi = {u1i , . . . , u
|Xi|
i } so that Xi ⊆ NQ[u

|Xi|
i ] ⊆ · · · ⊆

NQ[u
1
i ] ⊆ Xi−1 ∪Xi ∪Xi+1;
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� for some index i∗ ∈ Z5, we have that Xi∗−1 is complete to Xi∗−2, and Xi∗+1 is complete
to Xi∗+2.

Under these circumstances, we also say that (X0, X1, X2, X3, X4) is a 5-pseudocrown partition of
the 5-pseudocrown Q. We remark that the first bullet point above implies that sets X0, . . . , X4

are (possibly empty) cliques.
It is clear that the class of 5-pseudocrowns is hereditary. Indeed, if Q is a 5-pseudocrown

with 5-pseudocrown partition (X0, . . . , X4), then for every nonempty set Y ⊆ V (Q), we have
that Q[Y ] is a 5-pseudocrown with 5-pseudocrown partition (X0 ∩ Y, . . . ,X4 ∩ Y ). It is also
clear that every 5-crown is a 5-pseudocrown. Furthermore, we have the following lemma.

Lemma 6.1. Let Q be a 5-pseudocrown with an associated 5-pseudocrown partition (X0, . . . , X4).
Then both the following hold:

(a) either Q has a simplicial vertex, or Q is a 5-crown with 5-crown partition (X0, . . . , X4);
(b) every hole in Q intersects each of X0, . . . , X4 in exactly one vertex, and in particular,

every hole in Q is of length five.

Proof. For all i ∈ Z5, let Xi = {u1i , . . . , u
|Xi|
i } be an ordering of Xi such that Xi ⊆ NQ[u

|Xi|
i ] ⊆

· · · ⊆ NQ[u
1
i ] ⊆ Xi−1 ∪Xi ∪Xi+1, as in the definition of a 5-pseudocrown.45

We first prove (a). Suppose first that at least one of X0, . . . , X4 is empty. Since our
graphs are nonnull, sets X0, . . . , X4 cannot all be empty; so, we may assume by symmetry

that X0 = ∅ and X1 ̸= ∅. It then follows from our orderings of the sets Xi that u
|X1|
1 is

simplicial in Q. Suppose now that X0, . . . , X4 are all nonempty. If for all i ∈ Z5, we have
that NQ[u

1
i ] = Xi−1 ∪Xi ∪Xi+1, then Q is a 5-crown with 5-crown partition (X0, . . . , X4), and

we are done. We may now assume by symmetry that u10 is not complete to X1; then u
|X1|
1 is

anticomplete to X0, and we see that u
|X1|
1 is simplicial in Q. This proves (a).

42A class G of graphs is hereditary if for every graph G ∈ G, the class G contains all graphs isomorphic to an
induced subgraph of G. The reader may have noticed that 5-baskets do not form a hereditary class, either, but
this is of no consequence for our coloring algorithm.

43Since our graphs are nonnull, at least one of the sets X0, . . . , X4 must be nonempty.
44It is possible that Xi is empty; in this case, our ordering of Xi is simply the null ordering.
45If Xi = ∅, then our ordering of Xi is simply the null ordering.
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It remains to prove (b). Let v1, . . . , vs (s ≥ 0) be a maximal sequence of pairwise distinct
vertices of Q such that for all i ∈ {1, . . . , s}, vi is simplicial in the graph Q \ {v1, . . . , vi−1}.
If V (Q) = {v1, . . . , vs}, then v1, . . . , vs is a simplicial elimination ordering of Q; in this case,
Theorem 3.2 guarantees that Q is chordal, so that (b) is vacuously true. So, assume that
{v1, . . . , vs} ⫋ V (Q), and set R := Q \ {v1, . . . , vs}. Since no hole contains a simplicial vertex,
we see that no hole in Q contains any one of v1, . . . , vs. Thus, every hole in Q is in fact a hole
in R. Now, for all i ∈ Z5, set Yi = Xi ∩ V (R); then R is a 5-pseudocrown with 5-pseudocrown
partition (Y0, . . . , Y4). Furthermore, by the maximality of v1, . . . , vs, the 5-pseudocrown R has
no simplicial vertices, and so by (a) applied to R, we have that R is in fact a 5-crown with
5-crown partition (Y0, . . . , Y4). But now (b) follows from Lemma 3.7(a)-(b).

We now give an outline of the remainder of this subsection. First, Lemma 6.2 gives a
formula for the chromatic number of a 5-pseudocrown; this formula easily follows from the
one for the chromatic number of a ring (see Theorem 3.8). Then, using the formula from
Lemma 6.2, we construct an O(n2) time algorithm that computes the chromatic number of a 5-
pseudocrown, when an associated 5-pseudocrown partition is part of the input (see Lemma 6.3).
Next, we construct an O(n3) time coloring algorithm that computes an optimal coloring of a
5-pseudocrown, when an associated 5-crown partition is part of the input (see Lemma 6.4).
The algorithm from Lemma 6.4 makes O(n) calls to the O(n2) time algorithm from Lemma 6.3,
in order to repeatedly identify a suitable color class of an optimal coloring of our input 5-
pseudocrown. Finally, we use the O(n3) time algorithms from Lemmas 3.3 and 6.4 to construct
a “robust” coloring algorithm for 5-pseudocrowns (see Lemma 6.5). More precisely, for any
input graph G, the algorithm from Lemma 6.5 either computes an optimal coloring of G, or
correctly determines that G is not a 5-pseudocrown.46

We now turn to the technical details. As usual, the order of a graph is the number of vertices
that is contains.

Lemma 6.2. Let Q be a 5-pseudocrown, and let h be a nonnegative integer that satisfies the
following two properties:

� no 5-hyperhole of Q is of order greater than h;47

� either Q contains a 5-hyperhole of order h, or h ≤ 2ω(Q).

Then χ(Q) = max{ω(Q), ⌈h/2⌉}.

Proof. We first show that χ(Q) ≥ max{ω(Q), ⌈h/2⌉}. Clearly, χ(Q) ≥ ω(Q). Let us show that
χ(Q) ≥ ⌈h/2⌉. If Q contains a 5-hyperhole H of order h, then we have that α(H) = 2 and

χ(Q) ≥ χ(H) ≥
⌈
|V (H)|
α(H)

⌉
= ⌈h/2⌉. On the other hand, if h ≤ 2ω(Q), then χ(Q) ≥ ω(Q) =⌈

2ω(Q)
2

⌉
≥ ⌈h/2⌉. We have now shown that χ(Q) ≥ max{ω(Q), ⌈h/2⌉}.

It remains to show that χ(Q) ≤ max{ω(Q), ⌈h/2⌉}. Let v1, . . . , vs (s ≥ 0) be a maximal
sequence of pairwise distinct vertices of Q such that for all i ∈ {1, . . . , s}, vi is simplicial in
Q \ {v1, . . . , vi−1}. Suppose first that V (Q) = {v1, . . . , vs}. Then v1, . . . , vs is a simplicial
elimination ordering of Q, and it follows (by Theorem 3.2) that Q is chordal and therefore (by
Theorem 3.1) perfect. So, χ(Q) = ω(Q) ≤ max{ω(Q), ⌈h/2⌉}.

From now on, we assume that {v1, . . . , vs} ⫋ V (Q). Set R := Q \ {v1, . . . , vs}. Clearly,
χ(Q) = max{χ(R), ω(Q)}.48 So, it suffices to show that χ(R) ≤ max{ω(R), ⌈h/2⌉}, for it will

46It is possible that the algorithm computes an optimal coloring of G, even though G is not a 5-pseudocrown.
47Note that if Q contains no 5-hyperholes, then this condition is vacuously satisfied.
48Obviously, χ(Q) ≥ max{χ(R), ω(Q)}. For the reverse inequality, we observe that, if we take any optimal

coloring of R, and then extend it to a proper coloring of Q by greedily assigning colors to vertices vs, . . . , v1 (in
that order), we obtain a proper coloring of Q that uses at most max{χ(R), ω(Q)} colors.
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then immediately follow that χ(Q) = max{χ(R), ω(Q)} ≤ max{ω(Q), ⌈h/2⌉}, which is what
we need. Since Q is a 5-pseudocrown, so is its induced subgraph R. Furthermore, by the
maximality of v1, . . . , vs, we see that R has no simplicial vertices, and so by Lemma 6.1(a),
R is in fact a 5-crown. In particular, R is a 5-ring, and so by Theorem 3.8, we have that

χ(R) = max
(
{ω(R)}∪

{⌈
|V (H)|

2

⌉
| H is a 5-hyperhole in R

})
. By hypothesis, any 5-hyperhole

in Q (and therefore, any 5-hyperhole in R) is of order at most h, and we now deduce that
χ(R) ≤ max{ω(R), ⌈h/2⌉}. This completes the argument.

Lemma 6.3. There exists an algorithm with the following specifications:

� Input: A 5-pseudocrown Q and a 5-pseudocrown partition (X0, . . . , X4) of Q;
� Output: χ(Q);
� Running time: O(n2).

Proof. We first compute the degrees of all vertices in Q, and then for each i ∈ Z5, we order

Xi as Xi = {u1i , . . . , u
|Xi|
i } so that dQ(u

|Xi|
i ) ≤ · · · ≤ dQ(u

1
i ); this can be done in O(n2) time.

Since we already know that (X0, . . . , X4) is a 5-pseudocrown partition of Q, we see that for all

i ∈ Z5, we have that Xi ⊆ NQ[u
|Xi|
i ] ⊆ · · · ⊆ NQ[u

1
i ] ⊆ Xi−1 ∪Xi ∪Xi+1. By the definition of a

5-pseudocrown, there exists an index i∗ ∈ Z5 such that Xi∗−1 is complete to Xi∗−2, and Xi∗+1

is complete to Xi∗+2; clearly, such an index i∗ can be found in O(n2) time. By symmetry, we
may assume that i∗ = 0. We now compute integers ω0, . . . , ω4 and r0, as follows:

� for all i ∈ Z5, ωi := max
(
{0} ∪

{
j + |NQ(u

j
i ) ∩Xi+1| | j ∈ {1, . . . , |Xi|}

})
;49

� r0 := max
(
{0} ∪

{
j + |NQ(u

j
0) ∩ (X4 ∪X1)| | j ∈ {1, . . . , |X0|}

})
;50

We now return the number max{ω0, . . . , ω4, ⌈ r0+ω2
2 ⌉}, and we stop.

Clearly, integers ω0, . . . , ω4 and r0 can be computed in O(n2) time, and so the overall running
time of the algorithm is O(n2). It remains to prove correctness, that is, we must show that
χ(Q) = max{ω0, . . . , ω4, ⌈ r0+ω2

2 ⌉}. In view of Lemma 6.2, it suffices to prove the following:

(1) ω(Q) = max{ω0, . . . , ω4};
(2) no 5-hyperhole of Q is of order greater than r0 + ω2;
(3) either Q contains a 5-hyperhole of order r0 + ω2, or r0 + ω2 ≤ 2ω(Q).

It is clear that ω(Q) = max{ω(Q[Xi ∪ Xi+1]) | i ∈ Z5, Xi ̸= ∅}. Furthermore, in view of our
orderings of the sets Xi, it is easy to see that for all i ∈ Z5, if Xi ̸= ∅, then ω(Q[Xi∪Xi+1]) = ωi,
and if Xi = ∅, then ωi = 0. Thus, (1) holds. Similarly, (2) readily follows from the definition of
r0 and ω2.

51

It remains to prove (3). It is obvious that r0 ≤ 2ω(Q);52 furthermore, by (1), we have
that ω2 ≤ ω(Q). So, if r0 = 0 or ω2 = 0, then r0 + ω2 ≤ 2ω(Q), and we are done. From
now on, we assume that both r0 and ω2 are strictly positive. Then there exists an index
j0 ∈ {1, . . . , |X0|} such that r0 = j0 + |NQ(u

j0
0 ) ∩ (X4 ∪X1)|, and an index j2 ∈ {1, . . . , |X2|}

49If Xi = ∅, then
{
j + |NQ(u

j
i ) ∩Xi+1| | j ∈ {1, . . . , |Xi|}

}
= ∅ and ωi = 0.

50If X0 = ∅, then
{
j + |NQ(u

j
0) ∩ (X4 ∪X1)| | j ∈ {1, . . . , |X0|}

}
= ∅ and r0 = 0.

51Let us check this. Fix a 5-hyperhole H in Q. By Lemma 6.1(b), V (H) intersects each of the sets X0, . . . , X4.
For all i ∈ Z5, let ji be the largest index in {1, . . . , |Xi|} satisfying uji

i ∈ V (H). Then |V (H)| ≤ j0 + · · · + j4.
Furthermore, uj0

0 , uj1
1 , uj2

2 , uj3
3 , uj4

4 , uj0
0 is a 5-hole in Q, and (in view of our orderings of the sets Xi) it follows that

j4 ≤ |NQ(u
j0
0 )∩X4|, j1 ≤ |NQ(u

j0
0 )∩X1|, and j3 ≤ |NQ(u

j2
2 )∩X3|. But now j0 + j1 + j4 ≤ r0 and j2 + j3 ≤ ω2,

and so |V (H)| ≤ r0 + ω2.
52Indeed, in view of our orderings of the sets Xi, we see that for all j ∈ {1, . . . , |X0|}, sets {u1

0, . . . , u
j
0} ∪

(NQ(u
j
0) ∩X4) and {u1

0, . . . , u
j
0} ∪ (NQ(u

j
0) ∩X1) are both cliques of Q, and their union is of size j + |NQ(u

j
0) ∩

(X4 ∪X1)|. So, r0 ≤ 2ω(Q).
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such that ω2 = j2+ |NQ(u
j2
2 )∩X3|. Let Y =

(
NQ(u

j0
0 )∩X4

)
∪{u10, . . . , u

j0
0 }∪

(
NQ(u

j0
0 )∩X1

)
∪

{u12, . . . , u
j2
2 } ∪

(
NQ(u

j2
2 ) ∩X3

)
. Clearly, |Y | = r0 + ω2. Now, recall that i∗ = 0, so that X1 is

complete to X2, and X3 is complete to X4. We now see that, if sets NQ(u
j0
0 )∩X4, NQ(u

j0
0 )∩X1,

and NQ(u
j2
2 )∩X3 are all nonempty, then Q[Y ] is a 5-hyperhole in Q of order |Y | = r0+ω2. On

the other hand, if at least one of these three sets is empty, then Y is the union of two cliques,
and it follows that r0 + ω2 = |Y | ≤ 2ω(Q). This proves (3), and we are done.

Lemma 6.4. There exists an algorithm with the following specifications:

� Input: A 5-pseudocrown Q and a 5-pseudocrown partition (X0, . . . , X4) of Q;
� Output: An optimal coloring of Q;
� Running time: O(n3).

Proof. We first compute the degrees of all vertices in Q, and then for each i ∈ Z5, we order Xi

as Xi = {u1i , . . . , u
|Xi|
i } so that dQ(u

|Xi|
i ) ≤ · · · ≤ dQ(u

1
i ); this can be done in O(n2) time. Since

we already know that (X0, . . . , X4) is a 5-pseudocrown partition of Q, we see that for all i ∈ Z5,

we have that Xi ⊆ NQ[u
|Xi|
i ] ⊆ · · · ⊆ NQ[u

1
i ] ⊆ Xi−1 ∪Xi ∪Xi+1.

Suppose first that for some i ∈ Z5, we have that Xi = ∅. Then the following is a simplicial

elimination ordering of Q: u
|Xi+1|
i+1 , . . . , u1i+1, u

|Xi+2|
i+2 , . . . , u1i+2, u

|Xi+3|
i+3 , . . . , u1i+3, u

|Xi+4|
i+4 , . . . , u1i+4.

We can obtain an optimal coloring of Q by coloring Q greedily using the reverse of this simplicial
elimination ordering; this takes O(n2) time. We return this coloring of Q, and we stop.

We may now assume that X0, . . . , X4 are all nonempty. We check in O(1) time whether

there exists an index i ∈ Z5 such that u
|Xi|
i is nonadjacent to at least one of u1i−1, u

1
i+1. Suppose

first that we have found such an index i. Then u
|Xi|
i is a simplicial vertex.53 We now recursively

obtain an optimal coloring of Q \ u|Xi|
i . Then, we extend this coloring to an optimal coloring of

Q by assigning to u
|Xi|
i a color used on Q \ u|Xi|

i , but not on NQ(u
|Xi|
i ), if such a color exists,

and otherwise assigning to u
|Xi|
i a color not used on Q \ u|Xi|

i ; this takes O(n) time. We return
this coloring of Q, and we stop.

From now on, we assume that for all i ∈ Z5, the vertex u
|Xi|
i is adjacent to both u1i−1

and u1i+1. In view of our orderings of the sets Xi, this implies that for all i ∈ Z5, u1i is
complete to Xi−1 ∪ Xi+1. By the definition of a 5-pseudocrown, there exists some i ∈ Z5

such that Xi is complete to Xi+1, and clearly, such an i can be found in O(n2) time; by
symmetry, we may assume that X2 is complete to X3 (and so X2 ∪ X3 is a clique). We note
that NQ[u

1
0] = X4∪X0∪X1, and so the nonneighborhood of u10 in Q is V (Q)\NQ[u

1
0] = X2∪X3.

Now, we compute χ2 := χ(Q \ {u10, u12}) and χ3 := χ(Q \ {u10, u13}) by calling the O(n2) time
algorithm from Lemma 6.3.54

Claim 1. χ(Q) = min{χ2, χ3}+ 1.

Proof of Claim 1. By symmetry, we may assume that χ2 ≤ χ3. It is obvious that χ(Q) ≤ χ2+1:
indeed, any optimal coloring of Q\{u10, u12} can be extended to a proper coloring of Q that uses
only χ2+1 colors simply by assigning the same new color (i.e. a color not used on Q \ {u10, u12})
to the nonadjacent vertices u10 and u12. It remains to show that χ(Q) ≥ χ2 + 1. Consider any
optimal coloring of Q, and let S be the color class of this coloring that contains the vertex
u10. Clearly, χ(Q \ S) = χ(Q) − 1, and so we need only show that χ(Q \ S) ≥ χ2. Since

53Indeed, if u
|Xi|
i is nonadjacent to u1

i−1, then it follows from our orderings of the sets X0, . . . , X4 that u
|Xi|
i

is anticomplete to Xi−1, and that u
|Xi|
i is simplicial in Q. The argument is analogous in the case when u

|Xi|
i is

nonadjacent to u1
i+1.

54For χ2, the input is Q \ {u1
0, u

1
2} and (X0 \ {u1

0}, X1, X2 \ {u1
2}, X3, X4). For χ3, the input is Q \ {u1

0, u
1
3} and

(X0 \ {u1
0}, X1, X2, X3 \ {u1

3}, X4).
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V (Q) \ NQ[u
1
0] = X2 ∪ X3, we see that S ⊆ {u10} ∪ X2 ∪ X3. If S ∩ (X2 ∪ X3) = ∅, then

S = {u10}, and so χ(Q \S) ≥ χ(Q \ {u10, u12}) = χ2, which is what we needed. Suppose now that
S∩(X2∪X3) ̸= ∅. Since S is a stable set andX2∪X3 is a clique, we have that |S∩(X2∪X3)| = 1.
Fix i ∈ {2, 3} and j ∈ {1, . . . , |Xi|} such that S ∩ (X2 ∪X3) = {uji}; then S = {u10, u

j
i}. It then

follows from our ordering of Xi that Q \ {u10, u1i } is isomorphic to a (not necessarily induced)
subgraph of Q \S; consequently, χ(Q \S) ≥ χ(Q \ {u10, u1i }) = χi ≥ χ2. This proves Claim 1. ♦

We now complete the description of the algorithm. We compare the numbers χ2 and χ3;
by symmetry, we may assume that χ2 ≤ χ3, so that by Claim 1, we have that χ(Q) = χ2 + 1.
We now recursively obtain an optimal coloring of Q \ {u10, u12} (this coloring uses precisely χ2

colors), and we extend it to an optimal coloring of Q by assigning the same new color (i.e. a
color not used on Q \ {u10, u12}) to the nonadjacent vertices u10 and u12. We return this coloring
of Q, and we stop.

Clearly, the algorithm is correct. We make O(n) recursive calls to the algorithm, and
otherwise, the slowest step takes O(n2) time. So, the total running time of the algorithm is
O(n3).

Lemma 6.5. There exists an algorithm with the following specifications:

� Input: A graph G;
� Output: Either an optimal coloring of G, or the true statement that G is not a 5-
pseudocrown;

� Running time: O(n3).

Proof. We first form a maximal sequence v1, . . . , vs (s ≥ 0) of vertices of G such that for all
i ∈ {1, . . . , s}, vi is simplicial in the graph G \ {v1, . . . , vi−1}; this can be done in O(n3) time by
calling the algorithm from Lemma 3.3 with input G. If V (G) = {v1, . . . , vs}, then v1, . . . , vs is
a simplicial elimination ordering of G; in this case, we obtain an optimal coloring of G in O(n2)
time by coloring its vertices greedily using the ordering vs, . . . , v1, we return this coloring, and
we stop.

We may now assume that {v1, . . . , vs} ⫋ V (G). We then form the graph Q := G\{v1, . . . , vs}
in O(n2) time. By the maximality of v1, . . . , vs, the graph Q has no simplicial vertices. We
call the O(n2) time algorithm from Lemma 4.1 with input Q. If the algorithm returned the
answer that Q is not a 5-crown, then Lemma 6.1(a) guarantees that Q is not a 5-pseudocrown;
in this case, G is not a 5-pseudocrown either, and we return this answer and stop. Suppose
now that the algorithm returned the answer that Q is a 5-crown, together with an associated
5-crown partition (X0, . . . , X4). We then obtain an optimal coloring of Q by calling the O(n3)
time algorithm from Lemma 6.4 with input Q and (X0, . . . , X4), and we extend this coloring
to an optimal coloring of G by greedily assigning colors to vertices vs, . . . , v1 (in that order) in
further O(n2) time. We return this coloring of G, and we stop.

Clearly, the algorithm is correct, and its running time is O(n3).

6.2 Coloring 5-baskets

In this section, we give an O(n3) time coloring algorithm for 5-baskets (see Lemma 6.7). We
begin with a technical lemma (Lemma 6.6) on which this coloring algorithm relies. Before
going into technical details, let us give the idea behind Lemma 6.6. Obviously, for any graph
Q, and any nonempty set X ⫋ V (Q),55 we have that χ(Q) ≤ χ(Q[X]) + χ(Q \ X). Roughly
speaking, for a 5-basket Q, Lemma 6.6 identifies O(n2) sets X, for at least one of which the
trivial inequality χ(Q) ≤ χ(Q[X]) + χ(Q \ X) becomes an equality. Let us be a bit more

55Recall that all our graphs are assumed to be nonnull. So, for Q[X] and Q \X to both be defined, we need
that ∅ ̸= X ⫋ V (Q).
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precise. Suppose that Q is a 5-basket with 5-basket partition (A;B1, B2, B3;C1, C2, C3;F ).
Suppose furthermore that either i∗ = j∗ = 1, or i∗ = 1 and j∗ = 3, where i∗, j∗ are as in
the definition of a 5-basket (see Figure 3.3). Lemma 6.6 specifies a family {Xj,k} of O(n2)
proper, nonempty subsets of V (Q), each of which induces a chordal subgraph of Q of chromatic
number |B2|.56 Furthermore, for at least one (“optimal”) choice of indices j, k, we have that
χ(Q) = χ(Q[Xj,k])+χ(Q\Xj,k) = |B2|+χ(Q\Xj,k). Our coloring algorithm for 5-baskets (see
Lemma 6.7) uses Lemma 6.6 as follows. First, the algorithm identifies the optimal pair j, k.
Then, for that optimal pair, it computes optimal colorings of the graphs Q[Xj,k] and Q \Xj,k

(these two colorings use disjoint color sets). Finally, an optimal coloring of Q is obtained by
taking the union of these two colorings.

Lemma 6.6. Let Q be a 5-basket with an associated 5-basket partition (A;B1, B2, B3;C1, C2, C3;F ).
Assume that either i∗ = j∗ = 1, or i∗ = 1 and j∗ = 3, where i∗, j∗ are as in the defini-
tion of a 5-basket. Let B1 = {b1, . . . , bp} be an ordering of B1 such that NQ[bp] ⊆ · · · ⊆
NQ[b1].

57 Further, for all indices j ∈ {0, . . . ,min{|B1|, |B2|}} and k ∈ {0, . . . ,min{|C3|, |B2|}},
set γj,k := min{|C1|, |B2| − j, |B2| − k} and βk := min{|B3|, |B2| − k}. For indices j ∈
{0, . . . ,min{|B1|, |B2|}} and k ∈ {0, . . . ,min{|C3|, |B2|}}, a set Xj,k ⊆ V (Q) is said to be
(j, k)-good if it satisfies the following two properties (see Figure 6.1):

� B2 ∪ {b1, . . . , bj} ⊆ Xj,k ⊆ B2 ∪ {b1, . . . , bj} ∪ C1 ∪ C3 ∪B3;
� |C1 ∩Xj,k| = γj,k, |C3 ∩Xj,k| = k, and |B3 ∩Xj,k| = βk.

Then both the following hold:

(a) for all indices j ∈ {0, . . . ,min{|B1|, |B2|}} and k ∈ {0, . . . ,min{|C3|, |B2|}}, and all (j, k)-
good sets Xj,k, the graph Q[Xj,k] is chordal and satisfies χ(Q[Xj,k]) = ω(Q[Xj,k]) = |B2|;

(b) there exist indices j ∈ {0, . . . ,min{|B1|, |B2|}} and k ∈ {0, . . . ,min{|C3|, |B2|}} such that
all (j, k)-good sets Xj,k satisfy χ(Q) = |B2|+ χ(Q \Xj,k).

Proof. We first prove (a). Fix indices j ∈ {0, . . . ,min{|B1|, |B2|}} and k ∈ {0, . . . ,min{|C3|, |B2|}},
and let Xj,k ⊆ V (Q) be any (j, k)-good set. We can obtain a simplicial elimination ordering of
Q[Xj,k] by first listing all vertices of (B1 ∪ B2 ∪ B3) ∩Xj,k (in any order), and then listing all
vertices of (C1∪C3)∩Xj,k (in any order). So, by Theorem 3.2, Q[Xj,k] is chordal. Theorem 3.1
now implies that Q[Xj,k] is perfect, and consequently, χ(Q[Xj,k]) = ω(Q[Xj,k]). The fact that
ω(Q[Xj,k]) = |B2| is immediate from the construction. This proves (a).

It remains to prove (b). To simplify notation, we set χ := χ(Q). Let {S1, . . . , Sχ} be a
partition of V (Q) into stable sets.58 Since B2 is a clique, we see that exactly |B2| of the sets
S1, . . . , Sχ intersect B2; by symmetry, we may assume that S1, . . . , S|B2| all intersect B2,

59 and
that S|B2|+1, . . . , Sχ do not intersect B2. Set X := S1 ∪ · · · ∪ S|B2|. Since B2 is complete to
A∪C2∪F and anticomplete to B1∪C1∪C3∪B3, we have that B2 ⊆ X ⊆ B2∪B1∪C1∪C3∪B3.
For each i ∈ {1, 3}, we define setsB′

i := Bi∩X and C ′
i := Ci∩X. ThenX = B2∪B′

1∪C ′
1∪C ′

3∪B′
3.

Furthermore, {S1, . . . , S|B2|} is a partition of X into stable sets of Q, and {S|B2|+1, . . . , Sχ} is a
partition of V (Q) \X into stable sets of Q. Since S1, . . . , Sχ are the color classes of an optimal
coloring of Q, we see that χ(Q[X]) = |B2| and χ(Q \X) = χ− |B2|. Moreover, it is clear that
ω(G[X]) = |B2|.60 Now, let j := |B′

1| and k := |C ′
3|. Since B′

1 ∪ C ′
1, C

′
1 ∪ C ′

3, C
′
3 ∪ B′

3 are all

56We also note that Q\Xj,k is in fact a 5-pseudocrown, though Lemma 6.6 does not address this. See, instead,
Claim 1 from the proof of Lemma 6.7. The important point is that Q \Xj,k can be colored using the algorithm
from Lemma 6.5.

57Note that such an ordering exists by the definition of a 5-basket.
58So, S1, . . . , Sχ are the color classes of some optimal coloring of Q.
59Note that |Si ∩B2| = 1 for all i ∈ {1, . . . , |B2|}.
60Indeed, B2 is a clique of G[X], and so ω(G[X]) ≥ |B2|. On the other hand, ω(G[X]) ≤ χ(G[X]) = |B2|.
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A

B1

B2

B3

C1 C3

C2

F

“bottom” (i.e. highest
degree) j vertices

any k vertices

any βk vertices

any γj,k vertices

A

B1

B2

B3

C1 C3

C2

“bottom” (i.e. highest
degree) j vertices

any k vertices

F

any βk vertices

any γj,k vertices

Figure 6.1: A 5-basket with 5-basket partition (A;B1, B2, B3;C1, C2, C3;F ), and with i∗ = j∗ =
1 (top), or i∗ = 1 and j∗ = 3 (bottom). In both cases, a (j, k)-good set Xj,k is the union of sets
represented by the two dashed bags.
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cliques of G[X], and are therefore of size at most ω(G[X]) = |B2|, we see that all the following
hold: 0 ≤ j ≤ min{|B1|, |B2|}, 0 ≤ k ≤ min{|C3|, |B2|}, |C ′

1| ≤ γj,k, and |B′
3| ≤ βk.

Now, fix any (j, k)-good set Xj,k. By (a), Q[Xj,k] is a chordal graph with χ(Q[Xj,k]) = |B2|,
and it follows that χ ≤ χ(Q[Xj,k]) + χ(Q \ Xj,k) = |B2| + χ(Q \ Xj,k). On the other hand,
we note that Q \ Xj,k is isomorphic to a (not necessarily induced) subgraph of Q \ X, and
consequently, χ(Q \Xj,k) ≤ χ(Q \X) = χ− |B2|; thus, χ ≥ |B2|+ χ(Q \Xj,k). It now follows
that χ = |B2|+ χ(Q \Xj,k), and we are done.

Lemma 6.7 (below) gives an O(n3) time coloring algorithm for 5-baskets. Before going
into technical details, let us give a brief outline of the algorithm. We use the notation from
Lemma 6.6. For all indices j ∈ {0, . . . ,min{|B1|, |B2|}} and k ∈ {0, . . . ,min{|C3|, |B2|}}, the
graph Q[Xj,k] is chordal with chromatic number |B2|, and Q \ Xj,k is a 5-pseudocrown (see
Claim 1 in the proof of Lemma 6.7). We compute numbers rj,k and hj,k such that ω(Q \
Xj,k) = rj,k and χ(Q \Xj,k) = max{rj,k, ⌈hj,k/2⌉}, as in Lemma 6.2. Crucially, it is possible to
compute the families {rj,k} and {hj,k} in O(n3) time, without actually computing the family
of sets {Xj,k} and the related induced subgraphs of Q. We then find the indices j, k for which
max{rj,k, ⌈hj,k/2⌉} is minimum, and only for that “optimal” pair of indices j, k do we compute
the set Xj,k and the induced subgraphs Q[Xj,k] and Q \Xj,k of Q. We color the 5-pseudocrown
Q\Xj,k using the O(n3) time algorithm from Lemma 6.5, and we extend that to a proper coloring
of Q by coloring the chordal graph Q[Xj,k] with |B2| new colors. Lemma 6.6 guarantees that
this coloring of Q is optimal.

Lemma 6.7. There exists an algorithm with the following specifications:

� Input: A graph Q;
� Output: Either an optimal coloring of Q, or the true statement that Q is not a 5-basket;
� Running time: O(n3).

Proof. We first call the O(n2) time algorithm from Lemma 4.3 with input Q. If the algorithm
returns the answer that Q is not a 5-basket, then we return this answer as well, and we stop.
From now on, we assume that the algorithm returned the answer that Q is a 5-basket, together
with an associated 5-basket partition (A;B1, B2, B3;C1, C2, C3;F ). We then find indices i∗, j∗ ∈
{1, 2, 3} such that A is complete to (B1∪B2∪B3)\Bi∗ , and F is complete to V (Q)\(Bj∗∪Cj∗∪F )
and anticomplete to Bj∗ ∪ Cj∗ , as in the definition of a 5-basket; this can be done in O(n2)
time. After possibly permuting indices, we may assume that either i∗ = j∗ = 1, or i∗ = 1 and
j∗ = 3 (see Figure 3.3).

Now, we compute the degrees of all vertices in A ∪ B1, we order A as A = {a1, . . . , at} so
that dQ(at) ≤ · · · ≤ dQ(a1), and we order B1 as B1 = {b1, . . . , bp} so that dQ(bp) ≤ · · · ≤ dQ(b1);
this takes O(n2) time. Since we already know that (A;B1, B2, B3;C1, C2, C3;F ) is a 5-basket
partition of Q, we see that NG(at)∩B1 ⊆ · · · ⊆ NG(a1)∩B1 = B1 and a1 ∈ NQ(bp)∩A ⊆ · · · ⊆
NQ(b1) ∩A.

For all j ∈ {0, . . . ,min{|B1|, |B2|}} and ℓ ∈ {1, . . . , t}, let qj(aℓ) = |NQ(aℓ)∩{bj+1, . . . , bp}|.
Further, for all j ∈ {0, . . . ,min{|B1|, |B2|}}, let ℓj ∈ {1, . . . , t} be such that for all ℓ ∈ {1, . . . , t},
we have that ℓj + qj(aℓj ) ≥ ℓ + qj(aℓ); to simply notation, for each j ∈ {1, . . . , t}, we set
pj := qj(aℓj ). It follows immediately from the orderings of A and B1 that, for all indices
j ∈ {0, . . . ,min{|B1|, |B2|}}, the set {a1, . . . , aℓj} ∪ {bj+1, . . . , bj+pj} is a clique of maximum
size in Q[A ∪ {bj+1, . . . , bp}],61 and consequently,

ω(Q[A ∪ {bj+1, . . . , bp}]) = ℓj + pj .

61Here, we are also using the fact that a1 is a universal vertex of Q[A ∪ B1], and consequently, any maximal
clique of Q[A ∪ {bj+1, . . . , bp}] contains a1.
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Next, for all j ∈ {0, . . . ,min{|B1|, |B2|}} and k ∈ {0, . . . ,min{|C3|, |B2|}}, we set γj,k :=
min{|C1|, |B2| − j, |B2| − k} and βk := min{|B3|, |B2| − k}, as in the statement of Lemma 6.6.
Clearly, families {qj}, {ℓj}, {pj}, {γj,k}, and {βk} can all be computed in O(n3) time.

Recall that t = |A|. Now, if j∗ = 1 (see Figure 6.1, top), then for all j ∈ {0, . . . ,min{|B1|, |B2|}}
and k ∈ {0, . . . ,min{|B2|, |C3|}}, we set:

� rj,k0 :=
(
|B1| − j

)
+
(
|C1| − γj,k

)
;

� rj,k1 :=
(
|C1| − γj,k

)
+ |C2|+

(
|C3| − k

)
;

� rj,k2 :=
(
|C3| − k

)
+ |F |+max

{
|C2|, |B3| − βk

}
;

� rj,k3 := t+
(
|B3| − βk

)
+ |F |;

� rj,k4 := ℓj + pj ;

� rj,k := max{rj,k0 , rj,k1 , rj,k2 , rj,k3 , rj,k4 };
� hj,k :=

(
ℓj + pj

)
+
(
|C1| − γj,k

)
+
(
|C3| − k

)
+ |F |+max

{
|C2|, |B3| − βk

}
.

On the other hand, if j∗ = 3 (see Figure 6.1, bottom), then for all j ∈ {0, . . . ,min{|B1|, |B2|}}
and k ∈ {0, . . . ,min{|B2|, |C3|}}, we set:

� rj,k0 := max{|B1| − j, |C2|}+
(
|C1| − γj,k

)
+ |F |;

� rj,k1 :=
(
|C1| − γj,k

)
+ |C2|+

(
|C3| − k

)
;

� rj,k2 :=
(
|C3| − k

)
+
(
|B3| − βk

)
;

� rj,k3 := t+
(
|B3| − βk

)
;

� rj,k4 := ℓj + pj + |F |;
� rj,k := max{rj,k0 , rj,k1 , rj,k2 , rj,k3 , rj,k4 };
� hj,k := max

{
ℓj + pj , t+ |C2|

}
+ |F |+

(
|C1| − γj,k

)
+
(
|C3| − k

)
+
(
|B3| − βk

)
.

Clearly, families {rj,ki }, {rj,k}, and {hj,k} can be computed in O(n3) time.
Before completing the description of the algorithm, we state and prove a claim that we will

use in the proof of correctness of our algorithm. A “(j, k)-good set” is defined as in Lemma 6.6
(see Figure 6.1).

Claim 1. For all indices j ∈ {0, . . . ,min{|B1|, |B2|}} and k ∈ {0, . . . ,min{|C3|, |B2|}},
and all (j, k)-good sets Xj,k, the graph Qj,k := Q \Xj,k is a 5-pseudocrown, and it
satisfies ω(Q \Xj,k) = rj,k and χ(Q \Xj,k) = max{rj,k, ⌈hj,k/2⌉}.

Proof of Claim 1. We fix indices j ∈ {0, . . . ,min{|B1|, |B2|}} and k ∈ {0, . . . ,min{|C3|, |B2|}},
and we let Xj,k be any (j, k)-good set. We set Qj,k := Q\Xj,k, as in the statement of the claim.

Now, we define sets Y0, . . . , Y4, with indices in Z5, as follows (see Figure 6.2). If j
∗ = 1, then

we set Y0 := B1, Y1 := C1, Y2 := C2 ∪C3, Y3 := B3 ∪ F , Y4 := A. On the other hand, if j∗ = 3,
then we set Y0 := B1 ∪ F , Y1 := C1 ∪ C2, Y2 := C3, Y3 := B3, Y4 := A.

Note that Q\B2 is a 5-pseudocrown with 5-pseudocrown partition (Y0, . . . , Y4), and further-
more, Y1 is complete to Y2, and Y3 is complete to Y4. Now, for all i ∈ Z5, we set Zi := Yi \Xj,k.
Then Qj,k is a 5-pseudocrown with 5-pseudocrown partition (Z0, . . . , Z4), and furthermore, Z1

is complete to Z2, and Z3 is complete to Z4.
Clearly, ω(Qj,k) = max{ω(Qj,k[Zi ∪ Zi+1]) | i ∈ Z5, Zi ∪ Zi+1 ̸= ∅}. Further, it is clear from

the construction that for all i ∈ Z5 such that Zi ∪ Zi+1 ̸= ∅, we have that ω(Qj,k[Zi ∪ Zi+1]) =

rj,ki .62 Thus, ω(Qj,k) = rj,k.

62If Zi ∪ Zi+1 = ∅, then rj,ki = 0.
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Figure 6.2: A 5-basket with 5-basket partition (A;B1, B2, B3;C1, C2, C3;F ), and with i∗ = j∗ =
1 (top), or i∗ = 1 and j∗ = 3 (bottom). Q\B2 is a 5-pseudocrown with 5-pseudocrown partition
(Y0, . . . , Y4), with Y1 complete to Y2, and Y3 complete to Y4; sets Y0, . . . , Y4 are represented by
dashed bags.
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It remains to show that χ(Qj,k) = max{rj,k, ⌈hj,k/2⌉}. In view of Lemma 6.2, it suffices to
show that hj,k satisfies the following:

(a) no 5-hyperhole of Qj,k is of order greater than hj,k;
(b) either Qj,k contains a 5-hyperhole of order hj,k, or hj,k ≤ 2ω(Qj,k).

We first prove (a). Suppose that H is a 5-hyperhole in Q. Since Q is a 5-pseudocrown with
5-pseudocrown partition (Z0, . . . , Z4), Lemma 6.1(b) guarantees that V (H) intersects each of
Z0, . . . , Z4, and furthermore, that for all i ∈ Z5, V (H) ∩ Zi is complete to V (H) ∩ Zi+1. We
consider two cases: when j∗ = 1, and when j∗ = 3.

Suppose first that j∗ = 1. Since V (H) ∩ Z4 is complete to V (H) ∩ Z0, we see that |V (H) ∩
(Z0 ∪ Z4)| ≤ ℓj + pj . Further, since V (H) ∩ Z2 is complete to V (H) ∩ Z3, we see that either
V (H) ∩C2 = ∅ or V (H) ∩B3 = ∅, and we deduce that |V (H) ∩ (Z1 ∪ Z2 ∪ Z3)| ≤ |C1 \Xj,k|+
|C3 \Xj,k|+ |F |+max{|C2|, |B3 \Xj,k|}. It now readily follows that |V (H)| ≤ hj,k.

Suppose now that j∗ = 3. Suppose first that V (H) ∩ {bj+1, . . . , bp} ̸= ∅. Since V (H) ∩ Z0

is complete to V (H) ∩ Z4, we deduce that |V (H) ∩ (Z0 ∪ Z4)| ≤ ℓj + pj + |F |. Further, since
V (H) ∩ Z0 is complete to V (H) ∩ Z1, the fact that V (H) ∩ {bj+1, . . . , bp} ≠ ∅ implies that
V (H) ∩ C2 = ∅; consequently, V (H) ∩ (Z1 ∪ Z2 ∪ Z3) ⊆ (C1 \Xj,k) ∪ (C3 \Xj,k) ∪ (B3 \Xj,k),
and it readily follows that |V (H)| ≤ hj,k. Suppose now that V (H) ∩ {bj+1, . . . , bp} = ∅. Then
V (H) ⊆ F ∪ (C1 \Xj,k) ∪ C2 ∪ (C3 \Xj,k) ∪ (B3 \Xj,k) ∪A, and it follows that |V (H)| ≤ hj,k.

We have now proven (a). It remains to prove (b). Our goal is to define two subsets, D1 and
D2, of V (Qj,k), satisfying the following two properties:

(b.1) max{|D1|, |D2|} = hj,k;
(b.2) for all i ∈ {1, 2}, either Q[Di] is a 5-hyperhole, or Di is the union of two (possibly empty)

cliques.

Obviously, if both (b.1) and (b.2) hold, then (b) follows immediately.
If j∗ = 1, then we set

� D1 := {a1, . . . , aℓj} ∪ {bj+1, . . . , bj+pj} ∪ (C1 \Xj,k) ∪ (C3 \Xj,k) ∪ F ∪ C2;
� D2 := {a1, . . . , aℓj} ∪ {bj+1, . . . , bj+pj} ∪ (C1 \Xj,k) ∪ (C3 \Xj,k) ∪ F ∪ (B3 \Xj,k).

On the other hand, if j∗ = 3, then we set

� D1 := {a1, . . . , aℓj} ∪ {bj+1, . . . , bj+pj} ∪ F ∪ (C1 \Xj,k) ∪ (C3 \Xj,k) ∪ (B3 \Xj,k);
� D2 := A ∪ C2 ∪ F ∪ (C1 \Xj,k) ∪ (C3 \Xj,k) ∪ (B3 \Xj,k).

The fact that (b.1) holds is immediate from the construction. The fact that (b.2) holds follows
by routine checking.63 So, (b) holds. This proves Claim 1. ♦

We now complete our description of the algorithm. First, we find indices j ∈ {0, . . . ,min{|B1|, |B2|}}
and k ∈ {0, . . . ,min{|C3|, |B2|}} for which max{rj,k, ⌈hj,k/2⌉} is minimum; clearly, indices j, k
can be found in O(n3) time. We now compute any (j, k)-good set Xj,k, and we form the graphs
Q[Xj,k] and Qj,k := Q \Xj,k; this can be done in further O(n2) time. By Claim 1, Lemma 6.6,
and the choice of j, k, we have that Qj,k is a 5-pseudocrown, χ(Qj,k) = max{rj,k, ⌈hj,k/2⌉}, and
χ(Q) = |B2|+ χ(Qj,k).

64

We can obtain a simplicial elimination ordering of Q[Xj,k] by first listing all vertices of
(B1 ∪ B2 ∪ B3) ∩ Xj,k (in any order), and then listing all vertices of (C1 ∪ C3) ∩ Xj,k (in

63Here, we simply analyze which (if any) of the sets from the unions used to define D1 and D2 are empty.
64Let us justify this in a bit more detail. By Lemma 6.6(b), there exist indices j′ ∈ {0, . . . ,min{|B1|, |B2|}}

and k′ ∈ {0, . . . ,min{|C3|, |B2|}} such that for any (j′, k′)-good set Xj′,k′ , we have that χ(Q) = |B2|+χ(Qj′,k′),
where Qj′,k′ := Q \ Xj′,k′ . Next, by Lemma 6.6(a), we have that χ(Q[Xj,k]) = |B2| = χ(Q[Xj′,k′ ]). Further-
more, by Claim 1, and by the minimality of max{rj,k, ⌈hj,k/2⌉}, we have that χ(Qj,k) = max{rj,k, ⌈hj,k/2⌉} ≤
max{rj′,k′ , ⌈hj′,k′/2⌉} = χ(Qj′,k′). But now |B2|+ χ(Qj,k) ≤ |B2|+ χ(Qj′,k′) = χ(Q) ≤ χ(Q[Xj,k]) + χ(Qj,k) =
|B2|+ χ(Qj,k), and so χ(Q) = |B2|+ χ(Qj,k).
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any order). We now color Q[Xj,k] greedily in O(n2) time using the reverse of our simplicial
elimination ordering; clearly, this coloring is optimal, and so by Lemma 6.6(a), it uses precisely
|B2| colors. Next, we obtain an optimal coloring of the 5-pseudocrown Qj,k by calling the O(n3)
time algorithm from Lemma 6.5; this coloring uses χ(Qj,k) = max{rj,k, ⌈hj,k/2⌉} colors. After
possibly renaming colors, we may assume that our colorings of Qj,k and Q[Xj,k] use disjoint
color sets; we obtain a proper coloring of Q by taking the union of these two colorings. The
number of colors used by this coloring of Q is |B2| + χ(Qj,k) = χ(Q), and so the coloring is
optimal. We return our coloring of Q, and we stop.

Clearly, the algorithm is correct, and its running time is O(n3).

6.3 Coloring (4K1, C4, C6, C7)-free graphs

Theorem 6.8. There exists an algorithm with the following specifications:

� Input: A graph G;
� Output: Either an optimal coloring of G, or the true statement that G is not (4K1, C4, C6, C7)-
free;

� Running time: O(n3).

Proof. We first call the O(n3) time algorithm from Lemma 3.3 with input G, and we obtain
a maximal sequence v1, . . . , vs (s ≥ 0) of pairwise distinct vertices of G such that for all i ∈
{1, . . . , s}, vi is simplicial in the graph G \ {v1, . . . , vi−1}.

Suppose first that V (G) = {v1, . . . , vs}. Then v1, . . . , vs is a simplicial elimination ordering
of G, and we obtain an optimal coloring of G by coloring G greedily using the ordering vs, . . . , v1;
this takes O(n2) time. We return this coloring, and we stop.

From now on, we assume that {v1, . . . , vs} ⫋ V (G). We now form the graph H := G \
{v1, . . . , vs}, and we find the set U of all universal vertices of H; this takes O(n2) time. Since
H has no simplicial vertices (by the maximality of v1, . . . , vs), we see that H is not complete;
consequently, U ⫋ V (H). We form the graph Q := H \U in further O(n2) time, and then using
the O(n3) time algorithms from Lemmas 6.5 and 6.7, we either obtain an optimal coloring
of Q, or we determine that Q is neither a 5-crown nor a 5-basket. If Q is neither a 5-crown
nor a 5-basket, then we return the answer that G is not (4K1, C4, C6, C7)-free, and we stop;
Theorem 3.12 guarantees that this is correct. Assume now that we obtained an optimal coloring
of Q. We then extend this coloring to an optimal coloring of H by assigning a new color to each
vertex of U (each vertex of U gets a different color, and so we use |U | new colors). Finally, we
extend this coloring of H to an optimal coloring of G by greedily assigning colors to vertices
vs, . . . , v1 (in that order); we return the resulting coloring of G, and we stop.

Clearly, the algorithm is correct, and its running time is O(n3).

7 (4K1, C4, C6)-free graphs that contain an induced C7

Theorem 7.1. There exists an algorithm with the following specifications:

� Input: A graph G;
� Output: One of the following:

– The true statement that G is (4K1, C4, C6)-free and contains an induced C7, together
with a special partition of G, the list of all maximal cliques of G, and a minimum
clique cover of G,

– The true statement that either G is not (4K1, C4, C6)-free or G does not contain an
induced C7;

� Running time: O(n2).

Proof. We first call the O(n2) time algorithm from Lemma 3.5 with input G, and we obtain the
partition P of V (G) into true twin classes of G, as well as the quotient graph GP . Since none
of the graphs 4K1, C4, C6, C7 has a pair of true twins, the following are equivalent:
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(1) G is (4K1, C4, C6)-free and contains an induced C7;
(2) GP is (4K1, C4, C6)-free and contains an induced C7.

Obviously, GP does not contain a pair of true twins. So, by Theorem 3.14, if |P| ≥ 14, then
(2) does not hold; on the other hand, if |P| ≤ 13, then we can check whether (2) holds in O(1)
time. If (2) does not hold, then we return the statement that either G is not (4K1, C4, C6)-
free or G does not contain an induced C7, and we stop. From now on, we assume that (2)
holds. By Theorem 3.13, GP admits a special partition. Since |V (GP)| ≤ 13, a special
partition (X0, . . . , X6;Y0, . . . , Y6;Z0, . . . , Z6;W ) of GP can be found in O(1) time. But then
P := (

⋃
X0, . . . ,

⋃
X6;

⋃
Y0, . . . ,

⋃
Y6;

⋃
Z0, . . . ,

⋃
Z6;

⋃
W ) is a special partition of G. Fur-

ther, since |P| ≤ 13, a list C1, . . . , Cp of all maximal cliques of GP and a minimum clique cover
{D1, . . . , Dq} of GP can both be found in O(1) time. It is then clear that

⋃
C1, . . . ,

⋃
Cp is the

list of all maximal cliques of G, and that {
⋃
D1, . . . ,

⋃
Dq} is a minimum clique cover of G.

We now return the answer that G is (4K1, C4, C6)-free and contains an induced C7, together
with the special partition P , the list of maximal cliques

⋃
C1, . . . ,

⋃
Cp, and the clique cover

{
⋃

D1, . . . ,
⋃
Dq}, and we stop.

Clearly, the algorithm is correct, and its running time is O(n2).

The remainder of this section is organized as follows. In subsection 7.1, we prove some
properties of special partitions. In subsection 7.2, we show that each (4K1, C4, C6)-free graph
G that contains an induced C7, has at most min{|V (G)|, 9} maximal cliques (see Theorem 7.4).
In subsection 7.3, we describe an O(n3) time coloring algorithm for (4K1, C4, C6)-free graphs
that contain an induced C7 (see Theorem 7.8).

7.1 Some properties of special partitions

Lemma 7.2. Let (X0, . . . , X6;Y0, . . . , Y6;Z0, . . . , Z6;W ) be a special partition of a graph G,
and set Y :=

⋃
i∈Z7

Yi and Z :=
⋃

i∈Z7
Zi. Then exactly one of the following holds:

(a) there exists an index i ∈ Z7 such that Y = Yi ∪ Yi+3 and Z = Zi ∪ Zi+3 ∪ Zi+4;
(b) there exists an index i ∈ Z7 such that all the following hold:

– Y = Yi and Z = Zi+1 ∪ Zi+2 ∪ Zi+3,
– Yi, Zi+2 are both nonempty,
– at most one of Zi+1, Zi+3 is nonempty.

Moreover, all the following hold:

� Y and Z are both cliques;
� if (a) holds, then Y ∪ Z is a clique;
� if (b) holds, then Y ∪ Z is not a clique.

Proof. The definition of a special partition readily implies that Y and Z are both cliques. It
also guarantees that if (a) holds, then Y ∪ Z is a clique. On the other hand, if (b) holds, then
Y ∪Z is not a clique (this is because Yi is anticomplete to Zi+2 for all i ∈ Z7). It is also obvious
that at most one of (a) and (b) holds. It remains to show that at least one of (a) and (b) holds.

Claim 1. There exists an index i ∈ Z7 such that Y = Yi ∪ Yi+3.

Proof of Claim 1. We may assume that at least one of Y0, . . . , Y6 is nonempty, for otherwise,
the result is immediate. By symmetry, we may assume that Y0 ̸= ∅. It then follows from the
definition of a special partition that Y1, Y2, Y5, Y6 are all empty, and that at most one of Y3, Y4
is nonempty. Consequently, either Y = Y0 ∪ Y3 or Y = Y0 ∪ Y4. In the former case, we set
i = 0, and in the latter case, we set i = 4; then Y = Yi ∪ Yi+3, and we are done. This proves
Claim 1. ♦

Claim 2. There exists an index i ∈ Z7 such that Z = Zi ∪ Zi+3 ∪ Zi+4.
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Proof of Claim 2. Suppose first that, for some index j ∈ Z7, both Zj , Zj+1 are nonempty; by
symmetry, we may assume that Z3, Z4 are both nonempty. Since Z3 ̸= ∅, the definition of a
special partition guarantees that Z1, Z5 are both empty; similarly, since Z4 ̸= ∅, we have that
Z2, Z6 are both empty. It now follows that Z = Z0 ∪ Z3 ∪ Z4, and we are done (with i = 0).

Suppose now that for all indices j ∈ Z7, at least one of Zj , Zj+1 is empty. We may assume
that at least one of Z0, . . . , Z6 is nonempty, for otherwise, the result is immediate. By symmetry,
we may assume that Z0 ̸= ∅. By our supposition, this implies that Z1, Z6 are both empty.
Furthermore, by the definition of a special partition, Z2, Z5 are both empty. But now Z =
Z0 ∪ Z3 ∪ Z4,

65 and again we are done (with i = 0). This proves Claim 2. ♦

Claim 3. If either Y0, . . . , Y6 are all empty, or at least two of Y0, . . . , Y6 are
nonempty, then (a) holds.

Proof of Claim 3. If Y0, . . . , Y6 are all empty, then the result follows immediately from Claim 2.
Suppose now that at least two of Y0, . . . , Y6 are nonempty. By Claim 1, and by symmetry, we
may assume that Y = Y0∪Y3, and that Y0, Y3 are both nonempty. Since Y0 ̸= ∅, it follows from
the definition of a special partition that Z5, Z6 are both empty. Similarly, since Y3 ̸= ∅, we have
that Z1, Z2 are both empty. Thus, Z = Z0 ∪ Z3 ∪ Z4. But now (a) holds for i = 0. This proves
Claim 3. ♦

In view of Claim 3, we may assume from now on that exactly one of Y0, . . . , Y6 is nonempty.
By symmetry, we may assume that Y0 ̸= ∅, and that Y1, . . . , Y6 are all empty; in particular,
Y = Y0. By the definition of a special partition, it follows that Z5, Z6 are both empty.

Suppose first that Z2 ̸= ∅. It then follows from the definition of a special partition that
Z0, Z4 are both empty. We now have that Z = Z1 ∪ Z2 ∪ Z3. But by the definition of a special
partition, we know that at most one of Z1, Z3 is nonempty, and we deduce that (b) holds (for
i = 0).

Suppose now that Z2 = ∅. Then Z = Z0∪Z1∪Z3∪Z4. By the definition of special partition,
at most one of Z1, Z3 is nonempty. So, either Z = Z0 ∪ Z1 ∪ Z4 or Z = Z0 ∪ Z3 ∪ Z4. In the
former case, we set i = 4, and in the latter case, we set i = 0. Now (a) holds.

Lemma 7.3. Let G be a graph that admits a special partition (X0, . . . , X6;Y0, . . . , Y6;Z0, . . . , Z6;W ),
and set Y :=

⋃
i∈Z7

Yi and Z :=
⋃

i∈Z7
Zi. Then all the following hold:

(a) G is (4K1, C4, C6)-free and contains an induced C7;
(b) for all indices i ∈ Z7, the graph G \Xi is C7-free;
(c) there exists an index i ∈ Z7 such that Xi is complete to Y ∪ Z;
(d) for all indices i ∈ Z7 such that Xi is complete to Y ∪Z, the graph G\Xi is 5-pyramid-free.66

Proof. Set X :=
⋃

i∈Z7
Xi.

Claim 1. No induced subgraph of G that is isomoprhic to one of 4K1, C6, C7

contains a vertex of Y ∪ Z ∪W .

Proof of Claim 1. By the definition of a special partition, all vertices of W are universal in G;
since none of 4K1, C6, C7 contains a universal vertex, it follows that no induced subgraph of G
that is isomorphic to one of 4K1, C6, C7 contains a vertex of W .

Next, we show that no induced subgraph of G that is isomorphic to one of 4K1, C6, C7

contains a vertex of Z. By symmetry, it suffices to show that no such induced subgraph of G
contains a vertex of Z2. By the definition of a special partition, for all z2 ∈ Z2, we have that
V (G) \ NG[z2] = X0 ∪ X1 ∪ Y0. But note that X0 ∪ X1 ∪ Y0 is a clique of G. Since none of

65We also have that at least one of Z3, Z4 is empty, but we do not need this fact.
66We remind the reader that the 5-pyramid was defined in subsection 3.4 (see Figure 3.2).
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4K1, C6, C7 contains a vertex whose nonneighborhood is a clique, we deduce that no induced
subgraph of G isomorphic to one of 4K1, C6, C7 contains a vertex of Z2.

It remains to show that no induced subgraph of H := G \ (Z ∪ W ) that is isomorphic
to one of 4K1, C6, C7 contains a vertex of Y . By symmetry, it suffices to show that no such
induced subgraph of H contains a vertex of Y0. By the definition of a special partition, for all
y0 ∈ Y0, we have that NH [y0] = X0 ∪X1 ∪X4 ∪ Y and V (H) \NH [y0] = X2 ∪X3 ∪X5 ∪X6.
But note that X2 ∪ X3 and X5 ∪ X6 are cliques, anticomplete to each other. Since none of
4K1, C6, C7 has a vertex whose nonneighborhood can be partitioned into two (possibly empty)
cliques, anticomplete to each other, we deduce that no induced subgraph of H isomorphic to
one of 4K1, C6, C7 contains a vertex of Y0. This proves Claim 1. ♦

Claim 2. G is (4K1, C4, C6)-free.

Proof of Claim 2. Since G[X] is a 7-hyperhole, it is clear that it is (4K1, C6)-free. It then
follows from Claim 1 that G is (4K1, C6)-free. It remains to show that G is C4-free. Suppose
otherwise, and let c0, c1, c2, c3, c0 be a 4-hole in G. Set C := {c0, c1, c2, c3}.

Suppose that C ∩ (Y ∪ Z ∪ W ) is a clique. Since c0, c1, c2, c3, c0 is a 4-hole, it follows
that C ∩ X is not a stable set; by symmetry, we may assume that c0, c1 ∈ C ∩ X. We may
further assume by symmetry that either c0, c1 ∈ X0, or c0 ∈ X0 and c1 ∈ X1. However, the
former is impossible because any two vertices of X0 are true twins in G, and c0, c1 are not
true twins. So, c0 ∈ X0 and c1 ∈ X1. It then follows from the definition of a special partition
that NG(c0) \ NG[c1] = X6 ∪ Y3 ∪ Y6 ∪ Z3 and NG(c1) \ NG[c0] = X2 ∪ Y1 ∪ Y4 ∪ Z1, and
consequently, that NG(c0) \ NG[c1] is anticomplete to NG(c1) \ NG[c0]. But this is impossible
since c3 ∈ NG(c0) \NG[c1] and c2 ∈ NG(c1) \NG[c0] are adjacent.

We have now shown that C ∩ (Y ∪ Z ∪W ) is not a clique; in particular, Y ∪ Z ∪W is not
a clique. Since all vertices in W are universal in G, it follows that Y ∪ Z is not a clique. So,
by Lemma 7.2, and by symmetry, we may assume that Y = Y0 and Z = Z1 ∪ Z2 ∪ Z3, that
Y0, Z2 are both nonempty, and that at most one of Z1, Z3 is nonempty. But then all nonedges
in G[Y ∪ Z ∪ W ] are between Y0 and Z2. Since C ∩ (Y ∪ Z ∪ W ) is not a clique, and since
c0, c1, c2, c3, c0 is a 4-hole, we may assume by symmetry that c0 ∈ Y0 and c2 ∈ Z2. But then
NG(c0) ∩ NG(c2) = X4 ∪ Z1 ∪ Z3 ∪ W ; so, c1, c3 ∈ X4 ∪ Z1 ∪ Z3 ∪ W . But this is impossible
since c1, c3 are nonadjacent, and X4 ∪ Z1 ∪ Z3 ∪W is a clique. This proves Claim 2. ♦

Claim 3. G contains an induced C7. Furthermore, for all i ∈ Z7, the graph G \Xi

is C7-free.

Proof of Claim 3. Since G contains a 7-hyperhole (namely, G[X]), it is clear that G contains an
induced C7. Furthermore, by Claim 1, all 7-holes of G are in fact 7-holes of G[X], and clearly,
for all i ∈ Z7, the graph G[X \Xi] is chordal,

67 and therefore C7-free. Thus, for all i ∈ Z7, the
graph G \Xi is C7-free. This proves Claim 3. ♦

Claim 4. There exists an index i ∈ Z7 such that Xi is complete to Y ∪ Z.

Proof of Claim 4. By Lemma 7.2, and by symmetry, we may assume that either Y = Y0 ∪ Y3
and Z = Z0∪Z3∪Z4, or Y = Y0 and Z = Z1∪Z2∪Z3. In either case, X4 is complete to Y ∪Z.
This proves Claim 4. ♦

Claim 5. If P is an induced 5-pyramid in G, then there exists some index i ∈ Z7

such that V (P ) intersects each of Xi+4, Yi, Zi+2.

Proof of Claim 5. Assume that P is an induced 5-pyramid in G; we must show that there exists
some index i ∈ Z7 such that V (P ) intersects each of Xi+4, Yi, Zi+2.

67This is obvious, but it also follows from Lemma 3.7(c).
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First, we may assume that Y ∪ Z ∪ W ⊆ V (P ), for otherwise, we consider the graph

G[X ∪V (P )] = G \
(
(Y ∪Z ∪W ) \V (P )

)
instead of G. Since every vertex in W is universal in

G, and since the 5-pyramid contains no universal vertices, it follows that W = ∅. Further, note
that any two vertices that belong to the same set of our special partition are true twins in G.
Since the 5-pyramid contains no pair of true twins, we may now assume that X0, . . . , X6 are all
singletons, and that none of Y0, . . . , Y6, Z0, . . . , Z6 has more than one vertex.68 For all i ∈ Z7,
we set Xi = {xi}; then G[X] is a 7-hole of the form x0, . . . , x6, x0.

Suppose first that Y ∪ Z is a clique. Now, note that the deletion of a clique from the
5-pyramid always yields a graph that contains at least one of K3,K1,3, C5 as an induced sub-
graph;69 consequently, P \(Y ∪Z) is not (K3,K1,3, C5)-free. But on the other hand, P \(Y ∪Z) is
an induced subgraph of the 7-hole G[X], which is obviously (K3,K1,3, C5)-free, a contradiction.

Thus, Y ∪ Z is not a clique. By Lemma 7.2, and by symmetry, we may now assume that
Y = Y0 and Z = Z1∪Z2∪Z3, that both Y0 and Z2 are nonempty, and that at most one of Z1, Z3

is nonempty. Since Y0, Z2 are both nonempty, we see that they are both singletons, and we set
Y0 = {y0} and Z2 = {z2}. Now y0, z2 are nonadjacent vertices of the 5-pyramid P , and so they
have a (unique) common neighbor in P , call it p. But note that NG(y0)∩NG(z2) = X4∪Z1∪Z3;
so, p ∈ X4 ∪ Z1 ∪ Z3. Suppose first that p ∈ Z1 ∪ Z3. Then z2, p are adjacent vertices of the
5-pyramid P , and consequently, some two vertices of V (P ) \ {z2, p} are anticomplete to {z2, p}
in P (and therefore, in G as well). But if p ∈ Z1, then x0 is the unique common nonneighbor
of z2, p in G; and if p ∈ Z3, then x1 is the unique common nonneighbor of z2, p in G. So,
p /∈ Z1 ∪ Z3, and we deduce that p ∈ X4. But now V (P ) intersects each of X4, Y0, Z2, and we
are done. This proves Claim 5. ♦

Claim 6. For all indices i ∈ Z7 such that Xi is complete to Y ∪Z, the graph G\Xi

is 5-pyramid-free.

Proof of Claim 6. Fix i ∈ Z7 such that Xi is complete to Y ∪ Z. We may assume that G
contains an induced 5-pyramid, for otherwise, we are done. By Claim 5, and by symmetry, we
may assume that Y0, Z2 are both nonempty; it then follows from Lemma 7.2 that Y = Y0 and
Z = Z1 ∪ Z2 ∪ Z3, and that at least one of Z1, Z3 is empty. So, by Claim 5, every induced
5-pyramid of G intersects each of X4, Y0, Z2. In particular, G \ X4 is 5-pyramid-free. On the
other hand, since Xi is complete to Y0 ∪Z2, and since Y0, Z2 are both nonempty, the definition
of a special partition guarantees that i = 4. So, G\Xi is 5-pyramid-free. This proves Claim 6. ♦

By Claims 2 and 3, we see that (a) and (b) hold. By Claim 4, (c) holds. By Claim 6, (d)
holds. This completes the argument.

7.2 Maximal cliques in (4K1, C4, C6)-free graph that contain an induced C7

Theorem 7.4. Let G be a (4K1, C4, C6)-free graph that contains an induced C7. Then the
number of maximal cliques of G is at most min{|V (G)|, 9}.

Proof. We may assume inductively that all (4K1, C4, C6)-free graphs G
′ that contain an induced

C7, and that have fewer than |V (G)| vertices, have at most min{|V (G′)|, 9} maximal cliques.

68Let us justify this in a bit more detail. For all i ∈ Z7, if Xi ∩ V (P ) ̸= ∅, then we let xi be the unique
vertex of Xi ∩ V (P ), and otherwise, we let xi be any vertex of V (P ). Further, for all i ∈ Zi, we set X ′

i := {xi},
Y ′
i := Yi ∩ V (P ), and Z′

i := Zi ∩ V (P ). Finally, we set G′ := G[
⋃

i∈Zi
(X ′

i ∪ Y ′
i ∪ Z′

i)]. If necessary, we may now

consider the graph G′ with the associated special partition (X ′
0, . . . , X

′
6;Y

′
0 , . . . , Y

′
6 ;Z

′
0, . . . , Z

′
6; ∅), instead of the

graph G with the associated special partition (X0, . . . , X6;Y0, . . . , Y6;Z0, . . . , Z6;W ).
69As usual, for positive integers p and q, we denote by Kp,q the graph whose vertex set can be partitioned into

two stable sets, one of size p and the other one of size q, that are complete to each other.
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Let P be the partition of V (G) into true twin classes. Since G is (4K1, C4, C6)-free and
contains an induced C7, the same holds for its quotient graph GP .

70 Next, note that the
maximal cliques of G are precisely the sets of the form

⋃
C, where C is a maximal clique of the

quotient graph GP . So, the number of maximal cliques of G is equal to the number of maximal
cliques of GP . Thus, if G has a pair of true twins, then the result follows from the induction
hypothesis. From now on, we assume that G contains no pair of true twins.

By Theorem 3.13, G admits a special partition (X0, . . . , X6;Y0, . . . , Y6;Z0, . . . , Z6;W ). Note
that the maximal cliques of G are precisely the sets of the form C ∪W , where C is a maximal
clique of G\W ;71 so, the number of maximal cliques of G is the same as the number of maximal
cliques of G \W . Thus, if W ̸= ∅, the result follows from the induction hypothesis. From now
on, we assume that W = ∅.

Note that each of the sets Xi, Yi, Zi (i ∈ Z7) is either empty or a true twin class in G. Since
G contains no pair of true twins, and since the Xi’s are nonempty, we have that sets X0, . . . , X6

are all singletons, and each of the sets Y0, . . . , Y6, Z0, . . . , Z6 is either empty or a singleton. For
all i ∈ Z7, we set Xi = {xi}. Further, we set X :=

⋃
i∈Z7

Xi, Y :=
⋃

i∈Z7
Yi, and Z :=

⋃
i∈Z7

Zi.
Note that X = {x0, . . . , x6}, and furthermore, x0, . . . , x6, x0 is a 7-hole in G.

If Y ∪ Z = ∅, then |V (G)| = 7, and the maximal cliques of G are the cliques of the form
{xi, xi+1}, for i ∈ Z7; there are precisely seven such cliques, and we are done.

Suppose now that |Y ∪ Z| = 1; then |V (G)| = 8, and it suffices to show that G has at
most eight maximal cliques. By symmetry, there are two cases two consider: when |Y | = 1 and
Z = ∅, and when Y = ∅ and |Z| = 1. Suppose first that |Y | = 1 and Z = ∅. By symmetry,
we may assume that Y = Y0; let y0 be the unique vertex of Y0. Then the maximal cliques of G
are precisely the following: {x0, x1, y0}, {x4, y0}, and all the cliques of the form {xi, xi+1} with
i ∈ Z7 \ {0}; there are precisely eight such cliques, and we are done. Suppose now that Y = ∅
and |Z| = 1. By symmetry, we may assume that Z = Z0; let z0 be the unique vertex of Z0.
Then the maximal cliques of G are precisely the following: {xi, xi+1, z0} for i ∈ {0, 1, 2, 3}, and
{xi, xi+1} for i ∈ {4, 5, 6}; there are precisely seven such cliques, and we are done.

From now on, we assume that |Y ∪ Z| ≥ 2. Then |V (G)| ≥ 9, and we need to show that G
has at most nine maximal cliques.

To simplify notation, for all i ∈ Z7, we set Di := NG[xi] \ {xi−1, xi+1}, and we note that

Di = {xi} ∪
(
NG(xi) ∩ (Y ∪ Z)

)
.

Claim 1. For all maximal cliques K of G, there exists an index i ∈ Z7 such that
either K ⊆ Di or K = NG[xi] ∩NG[xi+1].

Proof of Claim 1. Fix a maximal clique K of G. Lemma 7.3(c), then guarantees that K∩X ̸= ∅.
Since G[X] is a 7-hole of the form x0, x1, . . . , x6, x0, we may assume by symmetry that either
K ∩ X = {x0} or K ∩ X = {x0, x1}. In the former case, we have that K ⊆ D0, and we
are done. So, suppose that K ∩ X = {x0, x1}. Then K ⊆ NG[x0] ∩ NG[x1]. But by the
definition of a special partition, and by the fact that W = ∅, we have that NG[x0] ∩NG[x1] =
{x0, x1} ∪ Y0 ∪ Z0 ∪ Z4 ∪ Z5 ∪ Z6 is a clique. So, by the maximality of K, we have that
K = NG[x0] ∩NG[x1]. This proves Claim 1. ♦

Recall that |V (G)| ≥ 9. In view of Claim 1, it suffices to show that at most two maximal
cliques of G are included in one of D0, . . . , D6.

By Lemma 7.2, and by symmetry, we may assume that one of the following holds:

(a) Y = Y0 ∪ Y3 and Z = Z0 ∪ Z3 ∪ Z4;

70Indeed, GP is (isomorphic to) an induced subgraph of G, and so since G is (4K1, C4, C6)-free, so is GP . On
the other hand, since C7 does not contain a pair of true twins, the fact that G contains an induced C7 implies
that GP does as well.

71This is because all vertices of W are universal in G.
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(b) all the following hold:
– Y = Y0 and Z = Z1 ∪ Z2 ∪ Z3,
– Y0, Z2 are both nonempty,
– at most one of Z1, Z3 is nonempty.

Suppose first that (a) holds. Then by Lemma 7.2, Y ∪Z is a clique. Consequently, D0, . . . , D6

are all cliques, and it suffices to show that at most two of them are maximal in G. Now, we
have the following:

� D0 = {x0} ∪ Y0 ∪ Y3 ∪ Z0 ∪ Z3 ∪ Z4;
� D1 = {x1} ∪ Y0 ∪ Z0 ∪ Z4;
� D2 = {x2} ∪ Z0;
� D3 = {x3} ∪ Y3 ∪ Z0 ∪ Z3;

� D4 = {x4} ∪ Y0 ∪ Y3 ∪ Z0 ∪ Z3 ∪ Z4;

� D5 = {x5} ∪ Z3 ∪ Z4;

� D6 = {x6} ∪ Z3 ∪ Z4.

Now, note that D1 is a proper subset of the clique {x0, x1}∪Y0∪Z0∪Z4; that D2 is a proper
subset of the clique {x2, x3}∪Z0; that D3 is a proper subset of the clique {x3, x4}∪Y3∪Z0∪Z3;
and that D5, D6 are both proper subsets of the clique {x5, x6} ∪ Z3 ∪ Z4. Thus, none of
D1, D2, D3, D5, D6 is a maximal clique of G; consequently, at most two of the cliques D0, . . . , D6

are maximal cliques of G, and we are done.
Suppose now that (b) holds. It then follows from the definition of special partition that Y

and Z are cliques, and that Y = Y0 is complete to Z1 ∪ Z3 = Z \ Z2 and anticomplete to Z2.
Furthermore, we have the following:

� D0 = {x0} ∪ Y0 ∪ Z3;
� D1 = {x1} ∪ Y0 ∪ Z1;
� D2 = {x2} ∪ Z1 ∪ Z2;
� D3 = {x3} ∪ Z1 ∪ Z2 ∪ Z3;

� D4 = {x4} ∪ Y0 ∪ Z1 ∪ Z2 ∪ Z3;

� D5 = {x5} ∪ Z1 ∪ Z2 ∪ Z3;

� D6 = {x6} ∪ Z2 ∪ Z3.

Note that D4 is not a clique, and that the remaining Di’s are all cliques. Further, G[D4] has
exactly two maximal cliques, namely DY

4 := {x4}∪Y0∪Z1∪Z3 and DZ
4 := {x4}∪Z1∪Z2∪Z3. It

now suffices to show that at most two of the cliques D0, D1, D2, D3, D
Y
4 , D

Z
4 , D5, D6 are maximal

in G.
Note that D2 is a proper subset of the clique {x2, x3} ∪ Z1 ∪ Z2; that D3 is a proper

subset of the clique {x3, x4} ∪ Z1 ∪ Z2 ∪ Z3; that D
Z
4 , D5 are both proper subsets of the clique

{x4, x5}∪Z1∪Z2∪Z3; and that D6 is a proper subset of the clique {x5, x6}∪Z2∪Z3. Thus, none
ofD2, D3, D

Z
4 , D5, D6 is a maximal clique of G. Further, since at most one of Z1, Z3 is nonempty,

we see that D0 = {x0} ∪ Y0 or D1 = {x1} ∪ Y0. Since both {x0} ∪ Y0 and {x1} ∪ Y0 are proper
subsets of the clique {x0, x1}∪Y0, we deduce that at most one of the cliques D0, D1 is maximal
in G. We have now shown that at most two of the cliques D0, D1, D2, D3, D

Y
4 , D

Z
4 , D5, D6 are

maximal in G, and we are done.

7.3 Coloring (4K1, C4, C6)-free graphs that contain an induced C7

For a graph G, we let F (G) be the set of all ordered pairs (A,B) that have the following three
properties:

� A,B are disjoint subsets of V (G), complete to each other in G;
� A ̸= ∅ and G[A] is a 5-hyperhole;
� B is a (possibly empty) clique of G.

Lemma 7.5. Let G be a (4K1, C4, C6, C7, 5-pyramid)-free graph. Then χ(G) = max
(
{ω(G)}∪

{⌈|A|/2⌉+ |B| | (A,B) ∈ F (G)}
)
.
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Proof. First, it is obvious that χ(G) ≥ ω(G), and that for all (A,B) ∈ F (G), we have that

χ(G) ≥ χ(G[A ∪B])
= χ(G[A]) + |B| because A is complete to B, and B is a clique
≥ ⌈|A|/α(G[A])⌉+ |B|
= ⌈|A|/2⌉+ |B| because G[A] is a 5-hyperhole.

Thus, χ(G) ≥ max
(
{ω(G)} ∪ {⌈|A|/2⌉+ |B| | (A,B) ∈ F (G)}

)
.

It remains to prove the reverse inequality. Let v1, . . . , vs (s ≥ 0) be a maximal sequence
of pairwise distinct vertices of G such that for all i ∈ {1, . . . , s}, vi is simplicial in the graph
G \ {v1, . . . , vi−1}.72

Suppose first that V (G) = {v1, . . . , vs}. Then v1, . . . , vs is a simplicial elimination ordering
of G, and so by Theorem 3.2, G is chordal. Theorem 3.1 then guarantees that G is perfect, and

it follows that χ(G) = ω(G) ≤ max
(
{ω(G)} ∪ {⌈|A|/2⌉+ |B| | (A,B) ∈ F (G)}

)
.

From now on, we assume that {v1, . . . , vs} ⫋ V (G). Set G′ := G \ {v1, . . . , vs}, and let
U be the set of all universal vertices of G′. By the maximality of v1, . . . , vs, we see that
G′ contains no simplicial vertices, and in particular, G′ is not complete; so, U ⫋ V (G′). Set
Q := V (G′)\U . Now, since G is (4K1, C4, C6, C7, 5-pyramid)-free, so is G′. We already saw that
G′ has no simplicial vertices, and so Theorem 3.11 guarantees that Q is a 5-crown. In particular,

Q is a 5-ring, and so Theorem 3.8 guarantees that χ(Q) = max
(
{ω(Q)} ∪ {⌈|V (H)|/2⌉ |

H is a 5-hyperhole in Q}
)
.

Now, note that ω(G′) = ω(Q) + |U | and χ(G′) = χ(Q) + |U |, and that for all hyperholes H
in Q, we have that (V (H), U) ∈ F (G). So, we have the following:

χ(G′) = χ(Q) + |U |
= max

(
{ω(Q) + |U |} ∪ {⌈|V (H)|/2⌉+ |U | | H is a 5-hyperhole in Q}

)
≤ max

(
{ω(G′)} ∪ {⌈|A|/2⌉+ |B| | (A,B) ∈ F (G)}

)
≤ max

(
{ω(G)} ∪ {⌈|A|/2⌉+ |B| | (A,B) ∈ F (G)}

)
.

Finally, we can extend any optimal coloring of G′ to a proper coloring of G by assigning
colors greedily to vertices vs, . . . , v1 (in that order); the number of colors used is at most

max{χ(G′), ω(G)}, and so χ(G) ≤ max
(
{ω(G)} ∪ {⌈|A|/2⌉+ |B| | (A,B) ∈ F (G)}

)
.

Our next goal is to prove an analog of Lemma 7.5 for weighted graphs (see Lemma 7.6
below). First, we need some definitions.

A weighted graph is an ordered pair (G,w), where G is graph, and w : V (G) → N is a
function, called a weight function. The weight of a vertex v ∈ V (G) is the number w(v), and
the weight of a set S ⊆ V (G) is the sum of weights of its vertices, i.e. w(S) =

∑
v∈S w(v).

The clique number of (G,w), denoted by ω(G,w), is the maximum weight of a clique of G,
i.e. ω(G,w) = max{w(C) | C is a clique of G}. A weighted coloring (G,w) is an indexed set
{S1, . . . , Sk} (k ≥ 0) of (not necessarily distinct) stable sets of G such that for all v ∈ V (G),
at least w(v) of the sets S1, . . . , Sk contain v. The chromatic number of (G,w), denoted by
χ(G,w), is the smallest number of stable sets in any weighted coloring of (G,w). It is clear that
ω(G,w) ≤ χ(G,w). Furthermore, if w(v) = 0 for all v ∈ V (G), then both ω(G,w) and χ(G,w)
are zero.

72If s = 0, then the sequence v1, . . . , vs is empty and G has no simplicial vertices.
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Clearly, if (G,w) is a weighted graph, and H is an induced subgraph of G, then w ↾ V (H)
is a weight function for H, and (H,w ↾ V (H)) is a weighted graph.73 To simplify notation, we
write (H,w) instead of (H,w ↾ V (H)).

Given a weighted graph (G,w) such that w assigns positive weight to at least one vertex of
G, we define the graph Gw as follows. The vertex set of Gw can be partitioned into a family
{Cv}v∈V (G) of (possibly empty) cliques such that for all v ∈ V (G), we have that |Cv| = w(v),
and for all distinct v1, v2 ∈ V (G), Cv1 is complete to Cv2 in Gw if v1v2 ∈ E(G), and Cv1 is
anticomplete to Cv2 in Gw if v1v2 /∈ E(G). In other words, Gw is the graph obtained from G
by first deleting all vertices of weight zero, and then “blowing up” each remaining vertex v to
a clique of size w(v).74 It is easy to see that ω(G,w) = ω(Gw) and χ(G,w) = χ(Gw).

Lemma 7.6. Let (G,w) be a weighted graph. Assume that the weight function w assigns positive
weight to at least one vertex of G,75 and that the graph Gw is (4K1, C4, C6, C7, 5-pyramid)-free.76

Then χ(G,w) = max
(
{ω(G,w)} ∪ {⌈w(A)/2⌉+ w(B) | (A,B) ∈ F (G)}

)
.

Proof. In what follows, we let {Cv}v∈V (G) be as in the definition of Gw.
First, it is clear that χ(G,w) ≥ ω(G,w). Further, fix (A0, B0) ∈ F (G). If w(A0) = 0, then,

since B0 is a clique, we have that ω(G,w) ≥ w(B0), and so χ(G,w) ≥ ω(G,w) ≥ w(B0) =
⌈w(A0)/2⌉ + w(B0). Suppose now that w(A0) > 0. Then either

⋃
v∈A0

Cv is the union of two
(possibly empty) cliques of Gw, or Gw[

⋃
v∈A0

Cv] is a 5-hyperhole; in either case, we have that
1 ≤ α(Gw[

⋃
v∈A0

Cv]) ≤ 2, and we compute:

χ(G) ≥ χ(G[A0 ∪B0], w)
= χ(G[A0], w) + w(B0) because A0 is complete to B0, and B0 is a clique
= χ(Gw[

⋃
v∈A0

Cv]) + w(B0)

≥
⌈ |

⋃
v∈A0

Cv |
α(Gw[

⋃
v∈A0

Cv ])

⌉
+ w(B0)

≥
⌈∑

v∈A0
w(v)

2

⌉
+ w(B0) because 1 ≤ α(Gw[

⋃
v∈A0

Cv]) ≤ 2

= ⌈w(A0)/2⌉+ w(B0).

This proves that χ(G,w) ≥ max
(
{ω(G,w)} ∪ {⌈w(A)/2⌉+ w(B) | (A,B) ∈ F (G)}

)
.

It remains to prove the reverse inequality. Clearly, χ(G,w) = χ(Gw) and ω(G,w) = ω(Gw).
If χ(Gw) = ω(Gw), then χ(G,w) = χ(Gw) = ω(Gw) = ω(G,w), and we are done. Suppose
now that χ(Gw) ̸= ω(Gw). Then Lemma 7.5 guarantees that there exists some (A0, B0) ∈
F (Gw) such that χ(Gw) = ⌈|A0|/2⌉ + |B0|. Let A∗

0 = {v ∈ V (G) | A0 ∩ Cv ̸= ∅} and
B∗

0 = {v ∈ V (G) | B0 ∩ Cv ̸= ∅}. It is then clear that |A0| ≤ w(A∗
0) and |B0| ≤ w(B∗

0), as
well as that (A∗

0, B
∗
0) ∈ F (G). We now deduce that χ(G,w) = χ(Gw) = ⌈|A0|/2⌉ + |B0| ≤

⌈w(A∗
0)/2⌉+ w(B∗

0) ≤ max{⌈w(A)/2⌉+ w(B) | (A,B) ∈ F (G)}, and again we are done.

Lemma 7.7. Let (X0, . . . , X6;Y0, . . . , Y6;Z0, . . . , Z6;W ) be a special partition of a graph G,
and set Y :=

⋃
i∈Z7

Yi and Z :=
⋃

i∈Z7
Zi. Assume that X0 is complete to Y ∪ Z.77 For indices

j ∈ {0, . . . ,min{|X0|, |X2|}} and k ∈ {0, . . . ,min{|X0|, |X4|}}, a set Aj,k ⊆ V (G) is said to be
(j, k)-good if it satisfies all the following (see Figure 7.1):

� X0 ⊆ Aj,k ⊆ X0 ∪X2 ∪X3 ∪X4 ∪X5;

73As usual, w ↾ V (H) denotes the restriction of w to V (H).
74Since our graphs are nonnull, if w assigns weight zero to each vertex of G, then the graph Gw is undefined.
75So, Gw is defined.
76It is possible that G itself is not (4K1, C4, C6, C7, 5-pyramid)-free. Note, however, that the graph G \ {v ∈

V (G) | w(v) = 0} is (4K1, C4, C6, C7, 5-pyramid)-free.
77Since every vertex in W is universal in G, it follows that X0 is in fact complete to X ∪ Y ∪W .
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� |X2 ∩Aj,k| = j and |X4 ∩Aj,k| = k;
� |X3 ∩Aj,k| = min{|X3|, |X0| − j, |X0| − k};
� |X5 ∩Aj,k| = min{|X5|, |X0| − k}.

Then both the following hold:

(a) for all indices j ∈ {0, . . . ,min{|X0|, |X2|}} and k ∈ {0, . . . ,min{|X0|, |X4|}}, and all (j, k)-
good sets Aj,k, the graph G[Aj,k] is chordal and satisfies χ(G[Aj,k]) = ω(G[Aj,k]) = |X0|,
and the graph G \Aj,k is (4K1, C4, C6, C7, 5-pyramid)-free;

(b) there exist indices j ∈ {0, . . . ,min{|X0|, |X2|}} and k ∈ {0, . . . ,min{|X0|, |X4|}} such that
all (j, k)-good sets Aj,k satisfy χ(G) = χ(G[Aj,k]) + χ(G \Aj,k).

Proof. We first prove (a). Fix indices j ∈ {0, . . . ,min{|X0|, |X2|}} and k ∈ {0, . . . ,min{|X0|, |X4|}},
and let Aj,k ⊆ V (G) be any (j, k)-good set. We obtain a simplicial elimination ordering of
G[Aj,k] by first listing all vertices of (X0 ∪ X2 ∪ X5) ∩ Aj,k (in any order), and then listing
all vertices of (X3 ∪X4) ∩ Aj,k (in any order). So, by Theorem 3.2, G[Aj,k] is chordal. Theo-
rem 3.1 now guarantees that G[Aj,k] is perfect, and consequently, χ(G[Aj,k]) = ω(G[Aj,k]). The
fact that ω(G[Aj,k]) = |X0| is immediate from the definition of a (j, k)-good set. Finally, by
Lemma 7.3, G \X0 is (4K1, C4, C6, C7, 5-pyramid)-free; since G \ Aj,k is an induced subgraph
of G \X0, it follows that G \Aj,k is also (4K1, C4, C6, C7, 5-pyramid)-free. This proves (a).

It remains to prove (b). To simplify notation, we set χ := χ(G). Let {S1, . . . , Sχ} be a
partition of V (G) into stable sets.78 Since X0 is a clique, we see that exactly |X0| of the sets
S1, . . . , Sχ intersect X0; by symmetry, we may assume that S1, . . . , S|X0| all intersect X0,

79

and S|X0|+1, . . . , Sχ do not intersect X0. Set A := S1 ∪ · · · ∪ S|X0|. Since X0 is complete
to X1 ∪ X6 ∪ Y ∪ Z ∪ W and anticomplete to X2 ∪ X3 ∪ X4 ∪ X5, we have that X0 ⊆ A ⊆
X0∪X2∪X3∪X4∪X5. For each i ∈ {2, 3, 4, 5}, setX ′

i := Xi∩A. Then A = X0∪X ′
2∪X ′

3∪X ′
4∪X ′

5.
Furthermore, {S1, . . . , S|X0|} is a partition of G[A] into stable sets, and {S|X0|+1, . . . , Sχ} is
a partition of G \ A into stable sets. Since S1, . . . , Sχ are the color classes of an optimal
coloring of G, we see that χ(G[A]) = |X0| and χ(G \ A) = χ− |X0|. Moreover, it is clear that
ω(G[A]) = |X0|.80 Now, let j := |X ′

2| and k := |X ′
4|. Since X ′

2 ∪X ′
3, X

′
3 ∪X ′

4, X
′
4 ∪X ′

5 are all
cliques of G[A], and are therefore of size at most ω(G[A]) = |X0|, we see that all the following
hold: 0 ≤ j ≤ min{|X0|, |X2|}, k ≤ min{|X0|, |X4|}, |X ′

3| ≤ min{|X3|, |X0| − j, |X0| − k}, and
|X ′

5| ≤ min{|X5|, |X0| − k}.
Now, fix any (j, k)-good set Aj,k. It suffices to show that χ ≥ χ(G[Aj,k]) + χ(G \ Aj,k),

for the reverse inequality trivially holds. First, we observe that G \ Aj,k is isomorphic to
an induced subgraph of G \ A; consequently, χ(G \ Aj,k) ≤ χ(G \ A) = χ − |X0|, and it
follows that χ ≥ |X0| + χ(G \ Aj,k). But by (a), we have that χ(G[Aj,k]) = |X0|, and so
χ ≥ χ(G[Aj,k]) + χ(G \Aj,k). This proves (b).

Theorem 7.8. There exists an algorithm with the following specifications:

� Input: A graph G;
� Output: One of the following:

– An optimal coloring of G,
– The true statement that either G is not (4K1, C4, C6)-free or G does not contain an

induced C7;
� Running time: O(n3).

78So, S1, . . . , Sχ are the color classes of some optimal coloring of G.
79Note that |Si ∩X0| = 1 for all i ∈ {1, . . . , |X0|}.
80Indeed, X0 is a clique of G[A], and so ω(G[A]) ≥ |X0|. On the other hand, ω(G[A]) ≤ χ(G[A]) = |X0|.
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Y ∪ Z ∪W

X0

X1

X2

X3 X4

X5

X6

any j vertices

any min{|X3|, |X0| − j, |X0| − k} vertices

any min{|X5|, |X0| − k}

any k vertices

vertices

Figure 7.1: A graph G with a special partition (X0, . . . , X6;Y0, . . . , Y6;Z0, . . . , Z6;W ). A (j, k)-
good set is the union of sets represented by the two dashed bags.

Proof. We first call the O(n2) time algorithm from Theorem 7.1 with input G. If the algorithm
returns the answer that either G is not (4K1, C4, C6)-free or G does not contain an induced C7,
the we return this answer as well, and we stop. From now on, we assume that the algorithm
returned the answer that G is (4K1, C4, C6)-free and contains an induced C7, together with a
special partition (X0, . . . , X6;Y0, . . . , Y6;Z0, . . . , Z6;W ) ofG. SetX :=

⋃
i∈Z7

Xi, Y :=
⋃

i∈Z7
Yi,

and Z :=
⋃

i∈Z7
Zi.

By Lemma 7.3(c), there exists an index i ∈ Z7 such that Xi is complete to Y ∪ Z ∪ W ;
clearly, such an index i can be found in O(n2) time, and by symmetry, we may assume that
i = 0. By Lemma 7.3, the graph G \X0 is (4K1, C4, C6, C7, 5-pyramid)-free.

Now, let F be the 22-vertex graph with vertex set V (F ) = {x0, . . . , x6} ∪ {y0, . . . , y6} ∪
{z0, . . . , z6} ∪ {w0} (with indices in Z7), and with adjacency as follows:

� x0, . . . , x6, x0 is a 7-hole in F ;
� {y0, . . . , y6} and {z0, . . . , z6} are cliques of F ;
� for all i ∈ Z7, xi is complete to {yi, yi+3, yi+6, zi, zi+3, zi+4, zi+5, zi+6} and anticomplete to
{yi+1, yi+2, yi+4, yi+5, zi+1, zi+2};

� for all i ∈ Z7, yi is complete to {z0, . . . , z6} \ {zi+2} and nonadjacent to zi+2;
� w0 is complete to V (F ) \ {w0}.

Further, we define the weight function w : V (F ) → N as follows. We set w(w0) := |W |, and for
all i ∈ Z7, we set w(xi) := |Xi|, w(yi) := |Yi|, and w(zi) := |Zi|. Clearly, the weight function w
can be computed in O(n) time. We note that Fw is isomorphic to G.

Next, we compute the set C of all cliques of F , as well as the set F (F ); since |V (F )| =
22, this can be done in O(1) time. For all indices j ∈ {0, . . . ,min{|X0|, |X2|}} and k ∈
{0, . . . ,min{|X0|, |X4|}}, we define the weight function wj,k : V (F ) → N and the number χj,k

as follows:

� for all v ∈ V (F ) \ {x0, x2, x3, x4, x5}, wj,k(v) := w(v);
� wj,k(x0) := 0;
� wj,k(x2) := w(x2)− j;
� wj,k(x3) := w(x3)−min{w(x3), w(x0)− j, w(x0)− k};
� wj,k(x4) := w(x4)− k;
� wj,k(x5) := w(x5)−min{w(x5), w(x0)− k};
� χj,k := max

(
{ω(F,wj,k)} ∪ {⌈wj,k(A)/2⌉+ wj,k(B) | (A,B) ∈ F (F )}

)
.
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Since |V (F )| = 22, we see that families {wj,k} and {χj,k} can be computed in O(n2) time.
We now find indices j, k for which χj,k is minimum, we let Aj,k be any (j, k)-good set (this

is defined as in Lemma 7.7), and for those indices j, k, we form graphs G[Aj,k] and G \ Aj,k;
this can be done in further O(n2) time.

Claim 1. χ(G) = χ(G[Aj,k]) + χ(G \Aj,k).

Proof of Claim 1. By construction, Fwj,k is isomorphic to G \ Aj,k, and by Lemma 7.7(a),
G\Aj,k is (4K1, C4, C6, C7, 5-pyramid)-free. Consequently, Fwj,k is (4K1, C4, C6, C7, 5-pyramid)-
free, and so Lemma 7.6 guarantees that χ(F,wj,k) = χj,k. Thus, χ(G \ Aj,k) = χ(Fwj,k) =
χ(F,wj,k) = χj,k.

By Lemma 7.7(b), there exist j′ ∈ {0, . . . ,min{|X0|, |X2|}} and k′ ∈ {0, . . . ,min{|X0|, |X4|}}
such that χ(G) = χ(G[Aj′,k′ ]) + χ(G \ Aj′,k′). Analogously to the above, we have that χ(G \
Aj′,k′) = χj′,k′ , and so by the choice of j, k, we have that χ(G \ Aj,k) = χj,k ≤ χj′,k′ = χ(G \
Aj′,k′). On the other hand, Lemma 7.7(a) guarantees that χ(G[Aj,k]) = |X0| = χ(G[Aj′,k′ ]).
We now have that χ(G[Aj,k])+χ(G\Aj,k) ≤ χ(G[Aj′,k′ ])+χ(G\Aj′,k′) = χ(G) ≤ χ(G[Aj,k])+
χ(G \Aj,k), and it follows that χ(G) = χ(G[Aj,k]) + χ(G \Aj,k). This proves Claim 1. ♦

We now complete the description of the algorithm. First, we obtain a simplicial elimination
ordering of G[Aj,k] by first listing all vertices of (X0 ∪ X2 ∪ X5) ∩ Aj,k (in any order), and
then listing all vertices of (X3 ∪ X4) ∩ Aj,k (in any order). We then obtain an optimal color-
ing of G[Aj,k] by coloring the vertices of G[Aj,k] greedily, using the reverse of this simplicial
elimination ordering; this takes O(n2) time. Next, by Lemma 7.7(a), the graph G \ Aj,k is
(4K1, C4, C6, C7, 5-pyramid)-free; so, we can obtain an optimal coloring of G \ Aj,k by calling
the O(n3) time algorithm from Lemma 6.8. After possibly renaming colors, we may assume
that our colorings of G[Aj,k] and G\Aj,k use disjoint color sets. We now take the union of these
two colorings, and we obtain a proper coloring of G; by Claim 1, this coloring of G is in fact
optimal. We now return our coloring of G, and we stop.

Clearly, the algorithm is correct, and its running time is O(n3).

8 The main results

Theorem 8.1. Every (4K1, C4, C6)-free graph has at most |V (G)| maximal cliques.

Proof. This follows from Corollary 5.2 and Theorem 7.4.

Theorem 8.2. There exists an algorithm with the following specifications:

� Input: A graph G;
� Output: One of the following:

– The true statement that G is (4K1, C4, C6)-free, together with the list of all maximal
cliques of G, an optimal coloring of G, and a minimum clique cover of G;

– The true statement that either G is not (4K1, C4, C6)-free;
� Running time: O(n3).

Proof. This follows immediately from Theorems 4.4, 5.1, 5.4, 6.8, 7.1, and 7.8.

References

[1] V.E. Alekseev. On the number of maximal independent sets in graphs from hereditary classes. In:
V.N. Shevchenko (Ed.), Combinatorial-Algebraic Methods in Applied Mathematics, Gorkiy Univer-
sity Press, Gorky, 1991, 5–8 (in Russian).
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hole)-free graphs. Discrete Mathematics 341(2):463–473, 2018.

[5] H.-C. Chang, H.-I. Lu. A faster algorithm to recognize even-hole-free graphs. Journal of Combina-
torial Theory, Series B, 113:141–161, 2015.

[6] M. Chudnovsky, G. Cornuéjols, X. Liu, P. Seymour, K. Vušković. Recognizing Berge graphs. Com-
binatorica, 25:143–186, 2005.

[7] M. Chudnovsky, N. Robertson, P. Seymour, R. Thomas. The strong perfect graph theorem. Annals
of Mathematics, 164:51–229, 2006.
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