On the clique-width of $\left(4 K_{1}, C_{4}, C_{5}, C_{7}\right)$-free graphs

Irena Penev*

July 2, 2020

Abstract

We prove that $\left(4 K_{1}, C_{4}, C_{5}, C_{7}\right)$-free graphs that are not chordal have unbounded clique-width. This disproves a conjecture from [D.J. Fraser, A.M. Hamel, C.T. Hoàng, K. Holmes, T.P. LaMantia, Characterizations of $\left(4 K_{1}, C_{4}, C_{5}\right)$-free graphs, Discrete Applied Mathematics, 231:166-174, 2017].

Brandstädt et al. [1] constructed a family of $4 K_{1}$-free chordal graphs of unbounded cliquewidth. In the present note, we slightly modify their construction to show that ($4 K_{1}, C_{4}, C_{5}, C_{7}$)free graphs that are not chordal have unbounded clique-width (see Theorem 4). This disproves a conjecture due to Fraser et al. [3].

We begin with a few definitions. In what follows, all graphs are finite, simple, and nonnull. For a graph H, a graph G is said to be H-free if no induced subgraph of G is isomorphic to H. For a family of graphs \mathcal{H}, G is said to be \mathcal{H}-free if G is H-free for all $H \in \mathcal{H}$. As usual, $n K_{1}(n \geq 1)$ is the edgeless graph on n vertices, and $C_{n}(n \geq 3)$ is the cycle on n vertices. A hole is an induced cycle of length at least four; a graph is chordal if it contains no holes. The vertex set of a graph G is denoted by $V(G)$, and the complement of G is denoted by \bar{G}. For a nonempty set $X \subseteq V(G)$, we denote by $G[X]$ the subgraph of G induced by X. For a set $X \varsubsetneqq V(G), G \backslash X$ is the subgraph of G obtained by deleting all vertices in X, i.e. $G \backslash X=G[V(G) \backslash X]$. A clique in G is a (possibly empty) set of pairwise adjacent vertices of G, and a stable set in G is a (possibly empty) set of pairwise nonadjacent vertices of G. For a vertex x of $G, N_{G}(x)$ the set of all neighbors of x in G, and $N_{G}[x]=\{x\} \cup N_{G}(x) ; x$ is simplicial in G if $N_{G}(x)$ is a clique in G. It is well known (see [4]) that every chordal graph contains a simplicial vertex.

Here, we are interested in the class of $\left(4 K_{1}, C_{4}, C_{5}, C_{7}\right)$-free graphs. Since holes of length at least eight contain an induced $4 K_{1}$, we see that $\left(4 K_{1}, C_{4}, C_{5}, C_{7}\right)$-free graphs are precisely the $4 K_{1}$-free graphs in which all holes are of length six.

The clique-width of a graph G, denoted by $\operatorname{cwd}(G)$, is the minimum number of labels needed to construct G using the following four operations:

1. creation of a new vertex v with label i;
2. disjoint union of two labeled graphs;
3. joining by an edge every vertex labeled i to every vertex labeled j;
4. renaming label i to label j.
[^0]It is clear that if H is an induced subgraph of G, then $\operatorname{cwd}(H) \leq \operatorname{cwd}(G)$. Further, the following is Theorem 4.1 from [2].

Theorem 1. [2] For every graph G, we have $\operatorname{cwd}(\bar{G}) \leq 2 \operatorname{cwd}(G)$.
Brandstädt et al. [1] showed that $4 K_{1}$-free chordal graphs have unbounded clique-width. On the other hand, Fraser et al. [3] showed that every $\left(4 K_{1}, C_{4}, C_{5}, C_{7}\right)$-free graph either contains a simplicial vertex or has bounded clique-width, and furthermore, they conjectured the following.

Conjecture 2. [3] Let G be a $\left(4 K_{1}, C_{4}, C_{5}, C_{7}\right)$-free graph. Then G is chordal or has bounded clique-width.

In this note, we adapt the construction from [1] to disprove Conjecture 2 (see Theorem 4).
We first need a few more definitions. Given a graph G and disjoint sets $X, Y \subseteq V(G)$, we say that X is complete (resp. anticomplete) to Y if every vertex in X is adjacent (resp. nonadjacent) to every vertex in Y. Given distinct vertices $x, y \in V(G)$, we say that x dominates y in G if $N_{G}[y] \subseteq N_{G}[x]$. In particular, if one vertex dominates another, then the two vertices are adjacent. A dominating vertex in G is a vertex that dominates all other vertices in G, or equivalently, a vertex that is adjacent to all other vertices of G.

Brandstädt et al. [1] constructed a family $\left\{G_{n}\right\}_{n=1}^{\infty}$ of graphs as follows. For an integer $n \geq 1, G_{n}$ is a graph on $n^{2}+2 n$ vertices such that $V\left(G_{n}\right)$ can be partitioned into three sets, call them $A_{n}=\left\{a_{1}, \ldots, a_{n}\right\}, B_{n}=\left\{b_{1}, \ldots, b_{n}\right\}$, and $C_{n}=\left\{c_{i, j} \mid 1 \leq i, j \leq n\right\}$, with adjacency as follows:

- A_{n}, B_{n}, C_{n} are stable sets;
- A_{n} is complete to B_{n};
- for all $i, i^{\prime}, j \in\{1, \ldots, n\} a_{i}$ is adjacent to $c_{i^{\prime}, j}$ if and only if $i^{\prime} \leq i$;
- for all $i, j, j^{\prime} \in\{1, \ldots, n\}, b_{j}$ is adjacent to $c_{i, j^{\prime}}$ if and only if $j^{\prime} \leq j$.

The following is Lemma 12 from [1].
Theorem 3. [1] For all integers $n \geq 1, \operatorname{cwd}\left(G_{n}\right) \geq n$.
We remark that $\left\{\overline{G_{n}}\right\}_{n=1}^{\infty}$ is the family of $4 K_{1}$-free chordal graphs of unbounded cliquewidth from [1]. Indeed, by by Observation 1 from [1], graphs in this family are $4 K_{1}$-free and chordal, and by Theorems 1 and 3 , the family has unbounded clique-width.

We now construct a family $\left\{H_{n}\right\}_{n=1}^{\infty}$ of graphs by "attaching" a C_{6} to the graphs $\overline{G_{n}}$ $(n \geq 1)$ in a convenient way, i.e. in a way that does not introduce any of our four forbidden induced subgraphs. Formally, for an integer $n \geq 1, H_{n}$ is the graph whose vertex set can be partitioned into four sets, call them $A_{n}=\left\{a_{1}, \ldots, a_{n}\right\}, B_{n}=\left\{b_{1}, \ldots, b_{n}\right\}, C_{n}=\left\{c_{i, j} \mid 1 \leq\right.$ $i, j \leq n\}$, and $X=\left\{x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$, with adjacency as follows:

- A_{n}, B_{n}, C_{n} are cliques;
- A_{n} is anticomplete to B_{n};
- for all $i, i^{\prime}, j \in\{1, \ldots, n\} a_{i}$ is adjacent to $c_{i^{\prime}, j}$ if and only if $i^{\prime} \geq i+1$;
- for all $i, j, j^{\prime} \in\{1, \ldots, n\}, b_{j}$ is adjacent to $c_{i, j^{\prime}}$ if and only if $j^{\prime} \geq j+1$;
- $x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{0}$ is a hole of length six;
- A_{n} is complete to $\left\{x_{0}, x_{1}\right\}$ and anticomplete to $\left\{x_{2}, x_{2}, x_{3}, x_{4}\right\}$;
- B_{n} is complete to $\left\{x_{2}, x_{3}\right\}$ and anticomplete to $\left\{x_{4}, x_{5}, x_{0}, x_{1}\right\}$;
- C_{n} is complete to X.

Note that $H_{n} \backslash X=\overline{G_{n}}$. The following theorem shows that Conjecture 2 is false.
Theorem 4. For all integers $n \geq 1, H_{n}$ is $\left(4 K_{1}, C_{4}, C_{5}, C_{7}\right)$-free and not chordal, and it satisfies $\operatorname{cwd}\left(H_{n}\right) \geq \frac{n}{2}$.

Proof. Fix an integer $n \geq 1$, and let A_{n}, B_{n}, C_{n}, and X be as in the definition of H_{n}. Then $H_{n} \backslash X=\overline{G_{n}}$, and so Theorems 1 and 3 imply that $\operatorname{cwd}\left(H_{n}\right) \geq \frac{n}{2}$. Further, by construction, $x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{0}$ is a hole of length six in H_{n}, and so H_{n} is not chordal.

Since $\left(A_{n} \cup\left\{x_{0}, x_{1}\right\}, B_{n} \cup\left\{x_{2}, x_{3}\right\}, C_{n} \cup\left\{x_{4}, x_{5}\right\}\right)$ is a partition of $V\left(H_{n}\right)$ into three cliques, H_{n} is $4 K_{1}$-free. It remains to show that H_{n} is $\left(C_{4}, C_{5}, C_{7}\right)$-free. First, note that for any two distinct vertices in A_{n}, one of the two vertices dominates the other in H_{n}. Since no vertex in a hole dominates any other vertex in that hole, we see that a hole in H_{n} can contain at most one vertex of A_{n}. But for all $i \in\{1, \ldots, n\}, N_{H_{n}}\left(a_{i}\right) \backslash A_{n} \subseteq C_{n} \cup\left\{x_{0}, x_{1}\right\}$, and $C_{n} \cup\left\{x_{0}, x_{1}\right\}$ is a clique in H_{n}. Since holes contain no simplicial vertices, we see that no hole in H_{n} intersects A_{n}. Similarly, no hole in H_{n} intersects B_{n}. Finally, every vertex in C_{n} is dominating in $H_{n} \backslash\left(A_{n} \cup B_{n}\right)$; since holes contain no dominating vertices, it follows that no hole in H_{n} intersects C_{n}. Thus, every hole in H_{n} is in fact a hole in $H_{n}[X]$, and we deduce that $x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{0}$ is the only hole in H_{n}. Since this hole is of length six, we see that H_{n} is $\left(C_{4}, C_{5}, C_{7}\right)$-free.

References

[1] A. Brandstädt, J. Engelfriet, H.O.Le, V.V. Lozin, Clique-width for 4-vertex forbidden subgraphs, Theory of Computing Systems 39:561-590, 2006.
[2] B. Courcelle, S. Olariu, Upper bounds to the clique width of graphs, Discrete Applied Mathematics, 101:77-114, 2000.
[3] D.J. Fraser, A.M. Hamel, C.T. Hoàng, K. Holmes, T.P. LaMantia, Characterizations of $\left(4 K_{1}, C_{4}, C_{5}\right)$-free graphs, Discrete Applied Mathematics, 231:166-174, 2017.
[4] D.R. Fulkerson, O.A. Gross, Incidence matrices and interval graphs, Pacific Journal of Mathematics, 15:835-855, 1965.

[^0]: ${ }^{*}$ Computer Science Institute of Charles University (IÚUK), Prague, Czech Republic. Email: ipenev@iuuk.mff.cuni.cz. Partially supported by project 17-04611S (Ramsey-like aspects of graph coloring) of the Czech Science Foundation, and by Charles University project UNCE/SCI/004.

