On the clique-width of $(4K_1, C_4, C_5, C_7)$ -free graphs

Irena Penev^{*}

July 2, 2020

Abstract

We prove that $(4K_1, C_4, C_5, C_7)$ -free graphs that are not chordal have unbounded clique-width. This disproves a conjecture from [D.J. Fraser, A.M. Hamel, C.T. Hoàng, K. Holmes, T.P. LaMantia, *Characterizations of* $(4K_1, C_4, C_5)$ -free graphs, Discrete Applied Mathematics, 231:166–174, 2017].

Brandstädt *et al.* [1] constructed a family of $4K_1$ -free chordal graphs of unbounded cliquewidth. In the present note, we slightly modify their construction to show that $(4K_1, C_4, C_5, C_7)$ free graphs that are not chordal have unbounded clique-width (see Theorem 4). This disproves a conjecture due to Fraser *et al.* [3].

We begin with a few definitions. In what follows, all graphs are finite, simple, and nonnull. For a graph H, a graph G is said to be H-free if no induced subgraph of G is isomorphic to H. For a family of graphs \mathcal{H} , G is said to be \mathcal{H} -free if G is H-free for all $H \in \mathcal{H}$. As usual, nK_1 $(n \geq 1)$ is the edgeless graph on n vertices, and C_n $(n \geq 3)$ is the cycle on n vertices. A hole is an induced cycle of length at least four; a graph is chordal if it contains no holes. The vertex set of a graph G is denoted by V(G), and the complement of G is denoted by \overline{G} . For a nonempty set $X \subseteq V(G)$, we denote by G[X] the subgraph of G induced by X. For a set $X \subsetneq V(G)$, $G \setminus X$ is the subgraph of G obtained by deleting all vertices in X, *i.e.* $G \setminus X = G[V(G) \setminus X]$. A clique in G is a (possibly empty) set of pairwise adjacent vertices of G. For a vertex x of G, $N_G(x)$ the set of all neighbors of x in G, and $N_G[x] = \{x\} \cup N_G(x)$; x is simplicial in G if $N_G(x)$ is a clique in G. It is well known (see [4]) that every chordal graph contains a simplicial vertex.

Here, we are interested in the class of $(4K_1, C_4, C_5, C_7)$ -free graphs. Since holes of length at least eight contain an induced $4K_1$, we see that $(4K_1, C_4, C_5, C_7)$ -free graphs are precisely the $4K_1$ -free graphs in which all holes are of length six.

The *clique-width* of a graph G, denoted by cwd(G), is the minimum number of labels needed to construct G using the following four operations:

- 1. creation of a new vertex v with label i;
- 2. disjoint union of two labeled graphs;
- 3. joining by an edge every vertex labeled i to every vertex labeled j;
- 4. renaming label i to label j.

^{*}Computer Science Institute of Charles University (IÚUK), Prague, Czech Republic. Email: ipenev@iuuk.mff.cuni.cz. Partially supported by project 17-04611S (Ramsey-like aspects of graph coloring) of the Czech Science Foundation, and by Charles University project UNCE/SCI/004.

It is clear that if H is an induced subgraph of G, then $cwd(H) \leq cwd(G)$. Further, the following is Theorem 4.1 from [2].

Theorem 1. [2] For every graph G, we have $cwd(\overline{G}) \leq 2cwd(G)$.

Brandstädt *et al.* [1] showed that $4K_1$ -free chordal graphs have unbounded clique-width. On the other hand, Fraser *et al.* [3] showed that every $(4K_1, C_4, C_5, C_7)$ -free graph either contains a simplicial vertex or has bounded clique-width, and furthermore, they conjectured the following.

Conjecture 2. [3] Let G be a $(4K_1, C_4, C_5, C_7)$ -free graph. Then G is chordal or has bounded clique-width.

In this note, we adapt the construction from [1] to disprove Conjecture 2 (see Theorem 4).

We first need a few more definitions. Given a graph G and disjoint sets $X, Y \subseteq V(G)$, we say that X is *complete* (resp. *anticomplete*) to Y if every vertex in X is adjacent (resp. non-adjacent) to every vertex in Y. Given distinct vertices $x, y \in V(G)$, we say that x dominates y in G if $N_G[y] \subseteq N_G[x]$. In particular, if one vertex dominates another, then the two vertices are adjacent. A *dominating vertex* in G is a vertex that dominates all other vertices in G, or equivalently, a vertex that is adjacent to all other vertices of G.

Brandstädt *et al.* [1] constructed a family $\{G_n\}_{n=1}^{\infty}$ of graphs as follows. For an integer $n \ge 1$, G_n is a graph on $n^2 + 2n$ vertices such that $V(G_n)$ can be partitioned into three sets, call them $A_n = \{a_1, \ldots, a_n\}$, $B_n = \{b_1, \ldots, b_n\}$, and $C_n = \{c_{i,j} \mid 1 \le i, j \le n\}$, with adjacency as follows:

- A_n, B_n, C_n are stable sets;
- A_n is complete to B_n ;
- for all $i, i', j \in \{1, \ldots, n\}$ a_i is adjacent to $c_{i', j}$ if and only if $i' \leq i$;
- for all $i, j, j' \in \{1, \ldots, n\}$, b_j is adjacent to $c_{i,j'}$ if and only if $j' \leq j$.

The following is Lemma 12 from [1].

Theorem 3. [1] For all integers $n \ge 1$, $cwd(G_n) \ge n$.

We remark that $\{\overline{G_n}\}_{n=1}^{\infty}$ is the family of $4K_1$ -free chordal graphs of unbounded cliquewidth from [1]. Indeed, by by Observation 1 from [1], graphs in this family are $4K_1$ -free and chordal, and by Theorems 1 and 3, the family has unbounded clique-width.

We now construct a family $\{H_n\}_{n=1}^{\infty}$ of graphs by "attaching" a C_6 to the graphs $\overline{G_n}$ $(n \ge 1)$ in a convenient way, *i.e.* in a way that does not introduce any of our four forbidden induced subgraphs. Formally, for an integer $n \ge 1$, H_n is the graph whose vertex set can be partitioned into four sets, call them $A_n = \{a_1, \ldots, a_n\}$, $B_n = \{b_1, \ldots, b_n\}$, $C_n = \{c_{i,j} \mid 1 \le i, j \le n\}$, and $X = \{x_0, x_1, x_2, x_3, x_4, x_5\}$, with adjacency as follows:

- A_n, B_n, C_n are cliques;
- A_n is anticomplete to B_n ;
- for all $i, i', j \in \{1, \ldots, n\}$ a_i is adjacent to $c_{i',j}$ if and only if $i' \ge i+1$;
- for all $i, j, j' \in \{1, \ldots, n\}$, b_j is adjacent to $c_{i,j'}$ if and only if $j' \ge j + 1$;
- $x_0, x_1, x_2, x_3, x_4, x_5, x_0$ is a hole of length six;

- A_n is complete to $\{x_0, x_1\}$ and anticomplete to $\{x_2, x_2, x_3, x_4\}$;
- B_n is complete to $\{x_2, x_3\}$ and anticomplete to $\{x_4, x_5, x_0, x_1\}$;
- C_n is complete to X.

Note that $H_n \setminus X = \overline{G_n}$. The following theorem shows that Conjecture 2 is false.

Theorem 4. For all integers $n \ge 1$, H_n is $(4K_1, C_4, C_5, C_7)$ -free and not chordal, and it satisfies $cwd(H_n) \ge \frac{n}{2}$.

Proof. Fix an integer $n \ge 1$, and let A_n , B_n , C_n , and X be as in the definition of H_n . Then $H_n \setminus X = \overline{G_n}$, and so Theorems 1 and 3 imply that $\operatorname{cwd}(H_n) \ge \frac{n}{2}$. Further, by construction, $x_0, x_1, x_2, x_3, x_4, x_5, x_0$ is a hole of length six in H_n , and so H_n is not chordal.

Since $(A_n \cup \{x_0, x_1\}, B_n \cup \{x_2, x_3\}, C_n \cup \{x_4, x_5\})$ is a partition of $V(H_n)$ into three cliques, H_n is $4K_1$ -free. It remains to show that H_n is (C_4, C_5, C_7) -free. First, note that for any two distinct vertices in A_n , one of the two vertices dominates the other in H_n . Since no vertex in a hole dominates any other vertex in that hole, we see that a hole in H_n can contain at most one vertex of A_n . But for all $i \in \{1, \ldots, n\}, N_{H_n}(a_i) \setminus A_n \subseteq C_n \cup \{x_0, x_1\}$, and $C_n \cup \{x_0, x_1\}$ is a clique in H_n . Since holes contain no simplicial vertices, we see that no hole in H_n intersects A_n . Similarly, no hole in H_n intersects B_n . Finally, every vertex in C_n is dominating in $H_n \setminus (A_n \cup B_n)$; since holes contain no dominating vertices, it follows that no hole in H_n intersects C_n . Thus, every hole in H_n is in fact a hole in $H_n[X]$, and we deduce that $x_0, x_1, x_2, x_3, x_4, x_5, x_0$ is the only hole in H_n . Since this hole is of length six, we see that H_n is (C_4, C_5, C_7) -free.

References

- A. Brandstädt, J. Engelfriet, H.O.Le, V.V. Lozin, Clique-width for 4-vertex forbidden subgraphs, Theory of Computing Systems 39:561–590, 2006.
- [2] B. Courcelle, S. Olariu, Upper bounds to the clique width of graphs, Discrete Applied Mathematics, 101:77–114, 2000.
- [3] D.J. Fraser, A.M. Hamel, C.T. Hoàng, K. Holmes, T.P. LaMantia, *Characterizations of* $(4K_1, C_4, C_5)$ -free graphs, Discrete Applied Mathematics, 231:166–174, 2017.
- [4] D.R. Fulkerson, O.A. Gross, *Incidence matrices and interval graphs*, Pacific Journal of Mathematics, 15:835–855, 1965.