NMAI057 – Linear algebra 1

Tutorial 12

Linear maps – isomorphisms

Date: January 4, 2022 TA: Pavel Hubáček

Problem 1. Decide and justify whether the map $f: \mathbb{R}^3 \to \mathbb{R}^3$ defined as

$$f(x, y, z) = (x + y - 2z, y - z, x - y)^{T}$$

is in isomorphism of \mathbb{R}^3 onto itself (so-called automorphism).

Problem 2. Let $f: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear map defined by the images of basis B:

$$f(2,1,1) = (1,2,3)^{T},$$

$$f(1,3,5) = (3,2,1)^{T},$$

$$f(7,1,4) = (1,1,1)^{T}.$$

Decide and justify whether:

- (a) f is injective if not then find distinct vectors $u, v \in \mathbb{R}^3$ such that f(u) = f(v),
- (b) f is surjective (onto) if not then find a vector without a preimage, i.e., $u \in \mathbb{R}^3$ such that for all $v \in \mathbb{R}^3$ it holds that $f(v) \neq u$.

Compute the dimension and find a basis for both the image and kernel of f.

- **Problem 3.** Let $f: U \to V$ and $g: V \to W$ be isomorphisms. Prove that their composition $g \circ f: U \to W$ is also an isomorphism. In particular, show that:
 - (a) $g \circ f$ is injective,
 - (b) $q \circ f$ is surjective.
- **Problem 4.** Decide and justify whether the following vector spaces are isomorphic:
 - (a) $\mathbb{R}^{2\times 2}$ and \mathbb{R}^4 ,
 - (b) \mathbb{R}^4 and \mathcal{P}^3 (the space of all real polynomials of degree at most three),
 - (c) $\mathbb{R}^{m \times n}$ and $\mathbb{R}^{n \times m}$,
 - (d) \mathbb{R}^n over \mathbb{R} and \mathbb{C}^n over \mathbb{R} ,
 - (e) \mathbb{R}^2 and $\{v \in \mathbb{R}^4 \mid x_1 + x_2 = x_3 + x_4 = 0\},\$
 - (f) the space of all real polynomials and the space of all real sequences,
 - (g) \mathbb{R}^4 and the space of all linear maps (forms) $f: \mathbb{R}^4 \to \mathbb{R}$.
- **Problem 5.** For the linear map $f: \mathbb{R}^{2\times 2} \to \mathbb{R}^{2\times 2}$ defined as $A \mapsto A A^T$, decide and justify which of the given vectors are elements of the image of f and which are elements of the kernel of f:

 I_2 ,

 $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$

 $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$,

 $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.

Problem 6. Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be a linear map. Denote $f^1 = f$, $f^2 = f \circ f, \dots, f^n = f \circ f^{n-1}$. Prove that $\operatorname{Ker}(f^n) \subseteq \operatorname{Ker}(f^{n+1})$.

Problem 7. Decide and justify whether the given linear map is injective and surjective:

(a)
$$f: \mathbb{R}^{2 \times 2} \to \mathbb{R}^3$$
 defined as $f \begin{pmatrix} a & b \\ c & d \end{pmatrix} = (a+b+c, a+b, a)^T$,

(b)
$$f: \mathbb{R}^{2\times 2} \to \mathbb{R}^4$$
 defined as $f\begin{pmatrix} a & b \\ c & d \end{pmatrix} = (a+b+c+d, a+b+c, a+b, a)^T$,

(c)
$$f: \mathcal{P}^2 \to \mathbb{R}^4$$
 defined as $f(ax^2 + bx + c) = (a + b, 2b - c, a - b + c, a + b)^T$,

(d)
$$f: \mathcal{P}^2 \to \mathbb{R}^3$$
 defined as $f(ax^2 + bx + c) = (a+b, 2b-c, a-b+c)^T$,

(e)
$$f: \mathcal{P}^2 \to \mathbb{R}^3$$
 defined as $f(ax^2 + bx + c) = (a+b, 2b-c, a-b+2c)^T$.

Problem 8. Prove that for all $A \in \mathbb{R}^{n \times p}$, $B \in \mathbb{R}^{p \times n}$

$$\dim(\operatorname{Ker}(A) \cap \mathcal{C}(B)) = \operatorname{rank}(B) - \operatorname{rank}(AB),$$

where C(B) denotes the column space of B.