NMAI057 – Linear algebra 1

Tutorial 9

Row space, column space, and kernel

Date: December 7, 2021

TA: Pavel Hubáček

Problem 1. Compute the dimension and find the basis for the row space $\mathcal{R}(A)$, the column space $\mathcal{C}(A)$, and the kernel Ker(A) of the matrix

$$A = \begin{pmatrix} 1 & 2 & 2 & 3 \\ 2 & 4 & 1 & 3 \\ 3 & 6 & 1 & 4 \end{pmatrix}.$$

Solution:

First, we transform the matrix to the RREF:

$$\begin{pmatrix} 1 & 2 & 2 & 3 \\ 2 & 4 & 1 & 3 \\ 3 & 6 & 1 & 4 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

The non-zero rows in RREF(A) form a basis of the row space $\mathcal{R}(A)$, i.e., the vectors $(1, 2, 0, 1)^T$, $(0, 0, 1, 1)^T$.

We choose the basis of the column space $\mathcal{C}(A)$ from the columns of the matrix A by selecting the columns with the same index as the ones that have a pivot in $\operatorname{RREF}(A)$, i.e., the first and third columns of A form a basis of $\mathcal{C}(A)$.

We find the basis of the kernel of A by solving the system Ax = o. Any solution of this system can be expressed parametrically in terms of $x_2, x_4 \in \mathbb{R}$ as

$$(-2x_2 - x_4, x_2, -x_4, x_4)^T = (-2, 1, 0, 0)^T x_2 + (-1, 0, -1, 1)^T x_4.$$

Thus, a basis of Ker(A) is formed by the vectors $(-2, 1, 0, 0)^T, (-1, 0, -1, 1)^T$.

Problem 2. Over \mathbb{R} , \mathbb{Z}_5 , and \mathbb{Z}_7 , decide and justify whether for $A = \begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix}$ it holds that

(a) $(1,2)^T \in \text{Ker}(A),$ (b) $(1,2)^T \in \mathcal{C}(A).$

Solution:

Recall the definition of kernel and the column space

$$\operatorname{Ker}(A) = \{ x \in \mathbb{F}^n : Ax = o \},\$$
$$\mathcal{C}(A) = \operatorname{span}\{A_{*1}, \dots, A_{*n}\} = \{Ax : x \in \mathbb{F}^n\}.$$

Thus, it is sufficient to justify whether the vector $(1,2)^T$ is a solution for the system Ax = o over the given field, respectively whether $Ax = (1,2)^T$ for some $x \in \mathbb{F}^2$.

Over \mathbb{R} :

(a) $(1,2)^T$ is not an element of Ker(A) since

$$\begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 5 \\ 5 \end{pmatrix} \neq \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

(b) $(1,2)^T$ is an element of $\mathcal{C}(A)$ since for

$$\begin{pmatrix} 1 & 2 & | & 1 \\ 3 & 1 & | & 2 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & | & 1 \\ 0 & -5 & | & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & | & \frac{3}{5} \\ 0 & 1 & | & \frac{1}{5} \end{pmatrix},$$

there exists a solution. Specifically, $(1, 2)^T = \frac{3}{5}(1, 3)^T + \frac{1}{5}(2, 1)^T$.

Over \mathbb{Z}_5 :

(a) $(1,2)^T$ is an element of Ker(A) since

$$\begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

(b) $(1,2)^T$ is not an element of $\mathcal{C}(A)$ since for

$$\begin{pmatrix} 1 & 2 & | & 1 \\ 3 & 1 & | & 2 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & | & 1 \\ 0 & 0 & | & 4 \end{pmatrix}$$

there is no solution over \mathbb{Z}_5 .

Over \mathbb{Z}_7 :

(a) $(1,2)^T$ is not an element of Ker(A) since

$$\begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 5 \\ 5 \end{pmatrix} \neq \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

(b) $(1,2)^T$ is an element of $\mathcal{C}(A)$ since for

$$\begin{pmatrix} 1 & 2 & | & 1 \\ 3 & 1 & | & 2 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & | & 1 \\ 0 & 2 & | & 6 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & | & 2 \\ 0 & 1 & | & 3 \end{pmatrix}$$

there exists a solution over \mathbb{Z}_7 . Specifically, $(1,2)^T = 2(1,3)^T + 3(2,1)^T$ over \mathbb{Z}_7 .

Problem 3. Construct a matrix A such that:

- (a) $\mathcal{R}(A)$ contains vectors $(1,1)^T$, $(1,2)^T$ and $\mathcal{C}(A)$ contains $(1,0,0)^T$, $(0,0,1)^T$.
- (b) The basis of both $\mathcal{R}(A)$ and $\mathcal{C}(A)$ is $(1,1,1)^T$ and the basis of Ker(A) is $(1,-2,1)^T$.

Solution:

(a) The dimensions of the vectors in the row space and the column space imply that the matrix is of order 3×2 . The required properties are satisfied, for example, by the matrices

$$\begin{pmatrix} 1 & 1 \\ 0 & 0 \\ 1 & 2 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

(b) In this case, we should construct a 3×3 matrix for which

 $\dim \mathcal{R}(A) = \dim \mathcal{C}(A) = \operatorname{rank}(A) = \dim \operatorname{Ker}(A) = 1.$

However, by the theorem about the relationship between rank and the dimension of the kernel of a matrix, for all matrices $A \in \mathbb{F}^{m \times n}$ it must hold that

$$\dim \operatorname{Ker}(A) + \operatorname{rank}(A) = n.$$

We conclude that a matrix satisfying the required properties does not exist.

Problem 4. Decide and justify whether for all $A, B \in \mathbb{R}^{n \times n}$ it holds that

- (a) $\mathcal{C}(A) = \mathcal{C}(B)$ implies $\operatorname{RREF}(A) = \operatorname{RREF}(B)$,
- (b) $\operatorname{RREF}(A) = \operatorname{RREF}(B)$ implies $\mathcal{C}(A) = \mathcal{C}(B)$.

Solution:

(a) The statement does not hold. For example, the matrices

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix},$$

have equal column spaces

span{
$$(1,0)^T$$
, $(0,0)^T$ } = $\mathcal{C}(A) = \mathcal{C}(B) = \text{span}\{(0,0)^T, (1,0)^T\},\$

but their RREFs are distinct (they are both already in RREF).

(b) Neither the reverse implication holds. For example, the matrices

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

have $\operatorname{RREF}(A) = \operatorname{RREF}(B) = A$ but

span
$$\{(1,0)^T, (0,0)^T\} = \mathcal{C}(A) \neq \mathcal{C}(B) = \text{span} \{(0,1)^T, (0,0)^T\}$$

Problem 5. Choose a basis B of $V = \text{span}\{v_1, v_2, v_3, v_4\}$ from vectors

$$v_1 = (3, 1, 5, 4)^T, v_2 = (2, 2, 3, 3)^T, v_3 = (1, -1, 2, 1)^T, v_4 = (1, 3, 1, 1)^T.$$

For the vectors not in your basis B, compute their coordinates w.r.t. B.

Solution:

We form a matrix using the given vectors as columns and reduced it to the RREF

(3	2	1	1		(1)	0	1	0)	
1	2	-1	3	~	0	1	-1	0	
5	3	2	1		0	0	0	1	·
$\setminus 4$	3	1	1/		0	0	0	0/	

The columns containing pivots are the first, third, and fourth one. Thus, the basis of C(A) = V is formed by the vectors $v_1 = (3, 1, 5, 4)^T$, $v_2 = (2, 2, 3, 3)^T$ a $v_4 = (1, 3, 1, 1)^T$.

From the third column of RREF(A) we get the coordinates of v_3 w.r.t. the basis $B = \{v_1, v_2, v_4\},$ it holds that

$$v_3 = (1, -1, 2, 1)^T = 1 \cdot (3, 1, 5, 4)^T + (-1) \cdot (2, 2, 3, 3)^T,$$

and $[v_3]_B = (1, -1, 0)$.

Problem 6. Decide and justify whether for all $A, B \in \mathbb{R}^{m \times n}$ it holds that rank $(A + B) \leq$ $\operatorname{rank}(A) + \operatorname{rank}(B).$

(*Hint: What is the relationship between* $\mathcal{C}(A) + \mathcal{C}(B)$ and $\mathcal{C}(A+B)$?)

Solution:

Consider the space generated by the union of the columns of matrices A and B, i.e., the space $\mathcal{C}(A) + \mathcal{C}(B)$. The dimension of this space is at most

 $\dim \mathcal{C}(A) + \dim \mathcal{C}(B) = \operatorname{rank}(A) + \operatorname{rank}(B).$

Moreover, the space $\mathcal{C}(A) + \mathcal{C}(B)$ contains all the vectors generated by the columns of matrix A + B. Thus, $\mathcal{C}(A + B)$ is a subspace of $\mathcal{C}(A) + \mathcal{C}(B)$. Therefore, we can conclude that

 $\operatorname{rank}(A+B) = \dim \mathcal{C}(A+B) \le \dim \mathcal{C}(A) + \mathcal{C}(B) \le \operatorname{rank}(A) + \operatorname{rank}(B).$

- **Problem 7.** In terms of inclusion, what is the relationship between Ker(AB) and Ker(B) for matrices
 - (a) $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$,
 - (b) $A \in \mathbb{R}^{n \times n}$ regular and $B \in \mathbb{R}^{n \times p}$?

Solution:

(a) For all $x \in \text{Ker}(B)$, by definition of kernel, it holds that Bx = o. Moreover, x is contained in the kernel of AB since

$$(AB)x = A(Bx) = Ao = o,$$

and we get the inclusion $\operatorname{Ker}(B) \subseteq \operatorname{Ker}(AB)$. The reverse inclusion does not hold in general. For example, for $A = 0_{n \times n}$ and $B = I_n$, the vector $y = (1, 0, \dots, 0)^T$ is contained in the kernel of AB but not in the kernel of B.

(b) For regular matrices A, the reverse inclusion $\operatorname{Ker}(AB) \subseteq \operatorname{Ker}(B)$ holds and, thus, $\operatorname{Ker}(AB) = \operatorname{Ker}(B)$. For all $x \in \operatorname{Ker}(AB)$, it holds that (AB)x = o. By regularity of A, there exists and inverse matrix A^{-1} such that

$$Bx = (A^{-1}A)Bx = A^{-1}((AB)x) = A^{-1}o = o,$$

which implies that $x \in \text{Ker}(B)$.