NMAI057 – Linear algebra 1

Tutorial 7 & 8

Subspaces and linear independence

Date: November 23 and 30, 2021

TA: Pavel Hubáček

Problem 1. Decide and **justify** for what parameters $a \in \mathbb{Z}_7$ is the set

$$S_a = \{ (x, y, z)^T \colon x + 2y - 3z = a \}$$

a subspace of the vector space \mathbb{Z}_7^3 .

What is the cardinality of this vector space?

Problem 2. Over \mathbb{Z}_{11} , find the intersection of the subspaces of \mathbb{Z}_{11}^4 defined as 1) the solution set of the system Ax = 0 and 2) the span of the set of vectors $\{v_1, v_2, v_3\}$, where

$$A = \begin{pmatrix} 1 & 2 & 3 & 2 \\ 3 & 5 & 2 & 1 \end{pmatrix}, \ v_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \\ 1 \end{pmatrix}, \ v_2 = \begin{pmatrix} 0 \\ 2 \\ 3 \\ 1 \end{pmatrix}, \ v_3 = \begin{pmatrix} 1 \\ 0 \\ 9 \\ 0 \end{pmatrix}.$$

Problem 3. Decide and **justify** whether the set of all univariate polynomials with coefficients in \mathbb{Z}_3 and degree lesser or equal to 10 is a vector space (w.r.t. the natural operations of addition of vectors and multiplication by scalar).

What is the cardinality of the set?

- **Problem 4.** Decide and **justify** whether the following vectors are linearly independent in \mathbb{R}^3 :
 - (a) $(2,3,-5)^T, (1,-1,1)^T, (3,2,-2)^T.$ (b) $(2,0,3)^T, (1,-1,1)^T, (0,2,1)^T.$
- **Problem 5.** Let u, v, w be linearly independent vectors in a vector space V over \mathbb{R} . Decide and **justify** whether the following sets of vectors are linearly independent
 - (a) $\{u, u + v, u + w\},\$
 - (b) $\{u v, u w, v w\}.$
- **Problem 6.** Let V be a vector space over a field \mathbb{F} and $X \subseteq Y \subseteq V$. Decide and **justify** whether the following statements are true:
 - (a) If X is linearly independent then Y is linearly dependent.
 - (b) If X is linearly independent then Y is linearly independent.
 - (c) If X is linearly dependent then Y is linearly dependent.
 - (d) If Y is linearly independent then X is linearly independent.

(e) If Y is linearly dependent then X is linearly dependent.

- **Problem 7.** Decide and **justify** whether $\{(0, 1, 1, 1)^T, (1, 0, 1, 1)^T, (1, 1, 0, 1)^T, (1, 1, 1, 0)^T\}$ is linearly independent in \mathbb{R}^4 , respectively in \mathbb{Z}_3^4 .
- **Problem 8.** Let U, V be subspaces of a vector space W over \mathbb{F} . Prove that $U \cap V = \{o\}$ if and only if for all $x \in U + V$ there exists a unique choice of $u \in U, v \in V$ such that x = u + v.
- **Problem 9.** Decide and **justify** whether the following sets of vectors are linearly independent in the vector space of univariate real functions $\mathbb{R} \to \mathbb{R}$ (over \mathbb{R})
 - (a) $\{2x-1, x-2, 3x\},\$
 - (b) $\{x^2 + 2x + 3, x + 1, x 1\},\$
 - (c) $\{\sin x, \cos x\},\$
 - (d) $\{\sin(x+1), \sin(x+2), \sin(x+3)\},\$
 - (e) $\{\ln(x), \log_{10}(x), \log_2(x^2)\}.$