
NMAI057 – Linear algebra 1

Tutorial 5 & 6

Groups and Fields

Date: November 9 and 16, 2021 TA: Pavel Hubáček

Problem 1. Decide and justify, whether the following are groups:

(a) (Q, ·),
(b) (Q,−),
(c) (Q \ {0}, ◦), where for all a, b ∈ Q, a ◦ b = |ab|,
(d) (Q, ◦), where for all a, b ∈ Q, a ◦ b = a+b

2
,

(e) (Q, ◦), where for all a, b ∈ Q, a ◦ b = a+ b+ 3,

(f) (F ,+), i.e., the set of all real functions with one variable F together with
the operation of addition of functions,

(g) the set of all rotations around the origin in R2 together with the operation
of function composition,

(h) the set of all translations (shifts) in R2 together with the operation of
function composition.

Solution:

(a) (Q, ·) is not a group. There is no inverse element for 0 ∈ Q.

(b) (Q,−) is not a group. Subtraction is not associative overQ; e.g., (8−6)−1 =
1 6= 3 = 8− (6− 1).

(c) Not a group. There are many elements without inverse. For all a < 0 and
e ∈ Q, it holds that a ◦ e = |ae| > 0 > a. Thus, no e ∈ Q can satisfy the
definition of inverse element for any a < 0.

(d) Not a group since arithmetic mean is not associative; e.g., for a = 1, b =
5, c = 7, we get a◦(b◦c) = 1

2

(
1 + 5+7

2

)
= 3.5 6= 5 = 1

2

(
1+5
2

+ 7
)
= (a◦b)◦c.

(e) It is a group. Associativity follows from commutativity and associativity of
addition over Q. The neutral element is e = −3 because for all a ∈ Q it
holds that

a ◦ e = a+ (−3) + 3 = a = (−3) + a+ 3 = e ◦ a .

Finally, the inverse element for all a ∈ Q is b = −a − 6 because for all
a, b ∈ Q

a ◦ b = a+ (−a− 6) + 3 = −3 = e = −3 = (−a− 6) + a+ 3 = b ◦ a .
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(f) (F ,+) is a group. Associativity follows from the definition of addition of
functions and associativity of addition over R; for all f, g, h ∈ F and x ∈ R
it holds that f(x) + (g(x) + h(x)) = (f(x) + g(x)) + h(x). The neutral
element is the identically zero function e(x) = 0 for all x ∈ R. The inverse
element for all f ∈ F is the function −f .

(g) It is a group. Associativity follows from associativity of function composi-
tion. The neutral element can be represented as rotation by 360 degrees.
The inverse element for any rotation by α degrees is the rotation by α
degrees in the reverse direction.

(h) It is a group. Associativity follows from associativity of function composi-
tion. The neutral element is the identity map e((x1, x2)

T ) = (x1, x2)
T

(i.e., the shift by the vector (0, 0)T ). For all translations t((x1, x2)T ) =
(x1, x2)

T + (a, b)T the inverse is the inverse translation t−1((x1, x2)
T ) =

(x1, x2)
T − (a, b)T .

Problem 2. Fill the table for binary operation ◦ on set G so that (G, ◦) is a group with
neutral element 0. Justify.

(a)
◦ 0 1
0
1

(b)

◦ 0 1 2
0
1
2

(c) ◦ 0
0

(d)

◦ 0 1 2 3
0
1 0
2
3

Solution:
The first three tables are determined uniquely. The requirement that 0 is the
neutral element for ◦ determines the first row and column of the table. The
requirement of existence of the left and right inverse restricts the positions of
0 in the table either on the main diagonal or symmetrically w.r.t. the main
diagonal. Associativity will force the remaining elements. We get:

(a)
◦ 0 1
0 0 1
1 1 0

- the additive group modulo 2,
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(b)

◦ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

– the additive group modulo 3,

(c) ◦ 0
0 0 – the trivial group,

(d) for example

◦ 0 1 2 3
0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

– the Klein four-group, i.e., the group of

symmetries of a rectangle.

Problem 3. Let (G, ◦) be a group and x ∈ G. Decide and justify whether (G, ∗) is a group
with the binary operation ∗ defined for all a, b ∈ G as a ∗ b = a ◦ x ◦ b.

Solution:
We verify the properties from the definition of group. The new operation is
associative since ◦ is associative; for all a, b, c, x ∈ G it holds that:

a ∗ (b ∗ c) = a ◦ x ◦ (b ◦ x ◦ c) = (a ◦ x ◦ b) ◦ x ◦ c = (a ∗ b) ∗ c ,

where the equality in the middle follows by applying associativity of ◦ on G to
the elements α = a ◦ x, β = b, and γ = x ◦ c of G.

We denote by E the neutral element of the group (G, ◦). The neutral element
of (G, ∗) is the inverse of x in the group (G, ◦), i.e., e = x−1 w.r.t. ◦. For all
a, x ∈ G, we verify that:

e ∗ a = x−1 ◦ x ◦ a = E ◦ a = a = a ◦ E = a ◦ x ◦ x−1 = a ∗ e .

Similarly, the inverse for all a ∈ G in the group G is b = x−1 ◦ a−1 ◦ x−1, where
a−1 is the inverse element for a in the group (G, ◦). For all a, x ∈ G, we verify
that:

a ∗ b = a ◦ x ◦ x−1 ◦ a−1 ◦ x−1 = a ◦ E ◦ a−1 ◦ x−1 = a ◦ a−1 ◦ x−1 = E ◦ x−1

= x−1 = e

= x−1 ◦ E = x−1 ◦ a−1 ◦ a = x−1 ◦ a−1 ◦ E ◦ a = x−1 ◦ a−1 ◦ x−1 ◦ x ◦ a
= b ∗ a .

Problem 4. Decide and justify whether the following are Abelian (commutative) groups:

(a) The set {( 1 z
0 1 ) | z ∈ Z} together with matrix product.

(b) The set {( a a
a a ) | a ∈ R \ {0}} together with matrix product.

Solution:
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(a) It is a group. First, we show that matrix product is closed on the given
set. For all a, b ∈ Z(

1 a
0 1

)(
1 b
0 1

)
=

(
1 a+ b
0 1

)
, (1)

which is a matrix from the given set of matrices (z = a+ b ∈ Z for all
a, b ∈ Z).
Associativity of matrix product on the given set follows from associa-
tivity of matrix product for general square matrices of equal orders.
The neutral element is the identity matrix of order two, which is con-
tained in the given set (z = 0 ∈ Z).
Finally, the inverse element for an arbitrary matrix ( 1 z

0 1 ) is the integer
matrix ( 1 −z

0 1 ), which follows from Equation (1).
Thus, we have verified that it is a group. It remains to decide whether
the operation is commutative. Commutativity of matrix product on the
given set follows from Equation (1) and commutativity of addition over
Z. Therefore, we have justified that it is an Abelian group.

(b) It is a group. First, we show that matrix product is closed on the given
set. For all a, b ∈ R \ {0}(

a a
a a

)(
b b
b b

)
=

(
2ab 2ab
2ab 2ab

)
, (2)

which is a matrix from the given set (2ab 6= 0 for all a, b ∈ R \ {0}).
Associativity of matrix product on the given set follows from associa-
tivity of matrix product for general square matrices of equal orders.
The neutral element is the matrix 1

2
( 1 1
1 1 ), which is a matrix from the

given set of matrices.
Finally, for all a ∈ R \ {0}, the inverse element for an arbitrary matrix
( a a
a a ) is the matrix 1

4a
( 1 1
1 1 ), which follows from Equation (2) (note that

the inverse element is defined since a 6= 0).
Thus, we have verified that it is a group. It remains to decide whether
the operation is commutative. Commutativity of matrix product on the
given set follows from Equation (2) and commutativity of multiplication
over R. Therefore, we have justified that it is an Abelian group.

Problem 5. Simplify the following expressions:

(a) ((2−1 + 1)4)−1, 4/3 over Z5,
(b) 6 + 7,−7, 6 · 7, 7−1, 6/7 over Z11.

Solution:

(a) The finite field Z5 is defined as the set of all residues in Z after division by 5
together with the operations of addition and multiplication modulo 5. Per-
forming addition modulo 5 is straightforward. For the remaining operations
in Z5, we use the multiplication table modulo 5:
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Z5, · 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

Note that we can see that the set Z5 \ {0} = {1, 2, 3, 4} together with
multiplication modulo 5 is a group – the so-called multiplicative group
modulo 5. This is not surprising as the definition of a field requires that T
with the addition operation + and multiplication operation · on T satisfy i)
distributivity of addition and multiplication, ii) that (T,+) is a group with
neutral element 0, and iii) that (T\{0}, ·) is also a group. It is the property
iii) that we see in the above multiplication table.
In order to simplify the expressions over Z5, we find the multiplicative
inverses using the multiplication table as follows. For any a ∈ Z5 \ {0}, we
find in the corresponding row the element 1 and the column index b must
be the multiplicative inverse a−1 of a since a · b = 1 in Z5. We get:

((2−1 + 1)4)−1 = ((3 + 1)4)−1 = (4 · 4)−1 = (1)−1 = 1 in Z5

and
4/3 = 4 · 3−1 = 4 · 2 = 3 in Z5.

(b) We proceed similarly as for Z5 but we will not construct the whole mul-
tiplication table for Z11. We get

6 + 7 = 6 + 7 (mod 11) = 2 in Z11,

−7 = 11− 7 (mod 11) = 4 in Z11.

6 · 7 = 6 · 7 (mod 11) = 42 (mod 11) = 9 in Z11.

When computing the multiplicative inverse of 7, we can proceed as when
constructing the row of the multiplication table modulo 11 corresponding
to 7. However, we stop the computation in the moment when we see the
element 1:

7 · 1 = 7,

7 · 2 = 3,

7 · 3 = 10,

7 · 4 = 6,

7 · 5 = 2,

7 · 6 = 9,

7 · 7 = 5,

7 · 8 = 1.

Thus,
7−1 = 8 in Z11.

We use this value also when simplifying the last expression:

6/7 = 6 · 7−1 = 6 · 8 = 48 (mod 11) = 4 in Z11.
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Problem 6. Over Z5, find the set of all solutions of the system

3x+ 2y + z = 1

4x+ y + 3z = 3

and compute its cardinality.

Solution:
We proceed as for systems over R but we use the appropriate arithmetic. Moreo-
ver, we can use the ability to eliminate elements in the column below the current
pivot via adding an appropriate multiple of the row with pivot to the rows below
it. By adding the first row multiplied by 2 to the second row, we get(

3 2 1 1
4 1 3 3

)
∼

(
3 2 1 1
0 0 0 0

)
.

We set the free variables to parameters y, z ∈ Z5 and express

x = 3−1(1− 2y − z) = 2(1 + 3y + 4z) = 2 + y + 3z .

Thus, the solution set of the system is

{(2, 0, 0)T + y(1, 1, 0)T + z(3, 0, 1)T | y, z ∈ Z5} .

There are 25 = 5 · 5 possible choices for the values of the parameters y a z, and
the cardinality of the solution set is 25.

Problem 7. Find the multiplicative inverses 9−1 and 12−1 in Z31.

Solution:
We could proceed as for Z11 but the computation might take 31 steps in case we
would have to compute the whole row for 9 in the multiplication table modulo 31.
There is a more efficient method exploiting the extended Euclidean algorithm.
The output of the extended Euclidean algorithm is the GCD(9, 31) together with
a pair of integer values a, b ∈ Z such that

1 = GCD(9, 31) = a · 9 + b · 31 .

Thus, we can use a (mod 31) as the multiplicative inverse of 9 in Z31. On input
(9, 31), the extended Euclidean algorithm will perform the following steps:

a0 = 31,

a1 = 9,

a2 = 4 = 31− 3 · 9,
a3 = 1 = 9− 2 · 4 = 7 · 9− 2 · 31.

The final value a3 is the GCD(9, 31) (which we knew to be equal to 1 since 31 is
a prime). Moreover, we have expressed 1 as a sum of integer multiples of 9 and
31. We can derive that

1 = 7 · 9− 2 · 31 = 7 · 9− 2 · 31 (mod 31) = 7 · 9 (mod 31) .
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Thus, 9−1 = 7 in Z31.

For 12, we get:

a0 = 31,

a1 = 12,

a2 = 7 = 31− 2 · 12,
a3 = 5 = 12− 7 = 3 · 12− 31,

a4 = 2 = 7− 5 = 31− 2 · 12− 3 · 12 + 31 = 2 · 31− 5 · 12,
a5 = 3 = 5− 2 = 3 · 12− 31− 2 · 31 + 5 · 12 = 8 · 12− 3 · 31,
a6 = 1 = 3− 2 = 8 · 12− 3 · 31− 2 · 31 + 5 · 12 = 13 · 12− 5 · 31.

Again, we have expressed 1 as a sum of integer multiples of 12 and 31. We can
derive that

1 = 13 · 12− 5 · 31 = 13 · 12− 5 · 31 (mod 31) = 13 · 12 (mod 31) .

Thus, 12−1 = 13 in Z31.

Problem 8. Over Z7, compute the matrix power A100 for A = ( 3 2
1 4 ).

Solution:
Note that the sequence of matrices Ai for i = 1, . . . ,∞ must be cyclic when com-
puted over a finite field. We compute some of the initial terms of this sequence:

A = A1 =

(
3 2
1 4

)
,

A2 =

(
3 2
1 4

)(
3 2
1 4

)
=

(
4 0
0 4

)
,

A3 =

(
4 0
0 4

)(
3 2
1 4

)
=

(
5 1
4 2

)
,

A4 =

(
5 1
4 2

)(
3 2
1 4

)
=

(
2 0
0 2

)
,

A5 =

(
2 0
0 2

)(
3 2
1 4

)
=

(
6 4
2 1

)
,

A6 =

(
6 4
2 1

)(
3 2
1 4

)
=

(
1 0
0 1

)
,

A7 =

(
1 0
0 1

)(
3 2
1 4

)
=

(
3 2
1 4

)
= A .

We see that the period of the sequence is 6 over Z7. Thus,

A100 = A100 (mod 6) = A4 =

(
2 0
0 2

)
.
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