NMAI057 – Linear algebra 1

Tutorial 3

Date: October 19, 2021

TA: Pavel Hubáček

1-1

Example 1: Compute the following expressions:

(a) 2A(b) A + B(c) A - B(d) C^T (e) Cv(f) AB(g) BCfor

$$A = \begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix}, \ B = \begin{pmatrix} -1 & -1 \\ 0 & 3 \end{pmatrix}, \ C = \begin{pmatrix} 3 & 0 & 1 \\ 2 & -2 & 0 \end{pmatrix}, \ v = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}.$$

Example 2: Prove or disprove the following:

- (a) For all matrices $A \in \mathbb{R}^{m \times n}$, A + A = 2A.
- (b) For all square matrices $A \in \mathbb{R}^{m \times m}$, $A = A^T$.

Problem 1. Compute (-1)A + 2BC for matrices

$$A = \begin{pmatrix} 3 & 1 \\ 4 & 1 \end{pmatrix}, B = \begin{pmatrix} 5 & 9 \\ 2 & 7 \end{pmatrix}, C = \begin{pmatrix} 1 & -1 \\ 2 & 2 \end{pmatrix} .$$

Problem 2. Solve the systems of linear equations $(A \mid b)$ and $(B \mid c)$ given by

$$A = \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix} a b = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \text{ and} B = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 1 & 1 \\ 2 & 2 & 0 \end{pmatrix} a c = \begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix}.$$

Verify the correctness of your result x (resp. y) by computing the matrix product Ax = b (resp. By = c).

Problem 3. Prove or disprove whether for all matrices A, B, C and the zero matrix **0** of the same order and real numbers $\alpha, \beta \in \mathbb{R}$, it holds that:

(a)
$$A + (B + C) = (A + B) + C$$

(b) $A + B = B + A$
(c) $A + \mathbf{0} = A$
(d) $\alpha(\beta A) = (\alpha\beta)A$
(e) $\alpha(\beta A) = \beta(\alpha A)$
(f) $A + (-1)A = \mathbf{0}$
(g) $1A = A$
(h) $A(B + C) = AB + AC$
(i) $\alpha(A + B) = \alpha A + \beta A$
(j) $(\alpha + \beta)A = \alpha A + \beta A$
(k) $\alpha A + \beta B = (\alpha + \beta)(A + B)$
(l) $(A^T)^T = A$
(m) $A^T A$ is symmetric
(n) $(A + B)^T = A^T + B^T$
(o) $(\alpha A)^T = \alpha(A^T)$
(p) $AI_n = A$

- **Problem 4.** Express the elementary row operations as matrix products, i.e., for each elementary row operation, find a matrix $E \in \mathbb{R}^{m \times m}$ such that EA is the result of applying the operation to matrix A for all matrices $A \in \mathbb{R}^{m \times n}$.
- **Problem 5.** Give a non-symmetric matrix A and a symmetric matrix B such that their product does not commute, i.e., such that $AB \neq BA$.

Is the product of symmetric matrices commutative?

- **Problem 6.** Prove or disprove the following statements:
 - (a) For all $A, B \in \mathbb{R}^{n \times n}$, if A is symmetric and commutes with B then A commutes also with B^T .
 - (b) For all $A, B \in \mathbb{R}^{n \times n}$, if A commutes with B then A commutes with B^T .