
NMAI057 – Linear algebra 1

Tutorial 3

Date: October 19, 2021 TA: Pavel Hubáček

Example 1: Compute the following expressions:

(a) 2A

(b) A+B

(c) A−B
(d) CT

(e) Cv

(f) AB

(g) BC

for

A =

(
1 2
2 −1

)
, B =

(
−1 −1
0 3

)
, C =

(
3 0 1
2 −2 0

)
, v =

1
2
3

 .

Solution:

(a) When the matrix A is of order n ×m, the resulting matrix will also be of order
n×m. By definition, we get the resulting matrix by multiplying each element of
A by the constant 2. Thus,

2A = 2

(
1 2
2 −1

)
=

(
2 · 1 2 · 2
2 · 2 2 · −1

)
=

(
2 4
4 −2

)
.

(b) Sum of two matrices A, B is defined only for matrices of the same dimensions (note
that both are of the same order 2×2). The resulting matrix is of the same order as
A (respectively B), i.e., 2×2; and, by definition, it is obtained via component-wise
addition. Thus,

A+B =

(
1 2
2 −1

)
+

(
−1 −1
0 3

)
=

(
1 + (−1) 2 + (−1)
2 + 0 −1 + 3

)
=

(
0 1
2 2

)
.

(c) Similarly to the previous case, the matrices A,B must be of the same order and
the resulting matrix is also of the same order. The resulting matrix is obtained
via component-wise subtraction of the matrices A and B. Thus,

A−B =

(
1 2
2 −1

)
−
(
−1 −1
0 3

)
=

(
1− (−1) 2− (−1)
2− 0 −1− 3

)
=

(
2 3
2 −4

)
.

Note that we can interpret subtracting matrices as adding the matrices A and
(−1)B.
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(d) If the original matrix is of the order n×m then the transpose is of order m× n.
The element at position i, j in the transpose is equal to the element at position
j, i in the original matrix. Thus,

CT =

(
3 0 1
2 −2 0

)T

=

3 2
0 −2
1 0

 .

(e) If the matrix C is of order m × n then the vector v must be of dimension n and
their product is a vector of dimension m. We are given a matrix C of order 2× 3
and a vector v of dimension 3, and, therefore, the dimensions of C and v allow to
compute the product which is vector of dimension 2. Thus,

Cv =

(
3 0 1
2 −2 0

)1
2
3

 =

(
3 · 1 + 0 · 2 + 1 · 3

2 · 1 + (−2) · 2 + 0 · 3

)
=

(
6
−2

)
.

Note that product of a matrix and a vector is a special case of a product of
matrices. In the above case, of the matrix C of order 2× 3 and a matrix of order
3× 1 corresponding to the vector v.

(f) If the matrix A is of order m× n then the matrix B must be of order n× o and
their product is a matrix of order m× o. We are given matrices A and B of order
2× 2 (their product is defined) and their product is of order 2× 2.

AB =

(
1 2
2 −1

)(
−1 −1
0 3

)
=

(
1 · (−1) + 2 · 0 1 · (−1) + 2 · 3

2 · (−1) + (−1) · 0 2 · (−1) + (−1) · 3

)
=

(
−1 5
−2 −5

)
.

(g) If the matrix B is of order m× n then the matrix C must be of order n× o and
their product is a matrix of order m× o. The matrix B is of order 2× 2 and the
matrix C of order 2 × 3 (their product is defined) and their product is of order
2× 3.

BC =

(
−1 −1
0 3

)(
3 0 1
2 −2 0

)
=

(
(−1) · 3 + (−1) · 2 (−1) · 0 + (−1) · (−2) (−1) · 1 + (−1) · 0

0 · 3 + 3 · 2 0 · 0 + 3 · (−2) 0 · 1 + 3 · 0

)
=

(
−5 2 −1
6 −6 0

)
.

Example 2: Prove or disprove the following:

(a) For all matrices A ∈ Rm×n, A+A = 2A.
(b) For all square matrices A ∈ Rm×m, A = AT .

Solution:
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(a) First, we verify that both sides of the identity are well defined.
For the left side, we need to verify that the addition is well defined, i.e., the
matrices must be of the same order. As we are adding the matrix A to itself, and
the dimensions are trivially identical. Thus, the left side of the identity is well
defined for all A.
On the right side we are multiplying A with a constant 2. This operation can be
performed with an arbitrary matrix A, and, thus, the right side of the identity is
well defined for all matrices A.
It is important to not forget this step! It might be the case that the identity holds
if and only if both sides are well defined. Consider for example the statement: for
all A ∈ Rm×n and B ∈ Ro×p: A+B −B = A

Second, we verify the identity by verifying that 1) the two sides of the identity
are of the same dimension and 2) they are component-wise equal. As for the left
side, the result of adding two matrices of order m × n is, by definition, a matrix
of order m× n . As for the right side, the result of multiplying a matrix of order
m × n by a constant is, by definition, a matrix of order m × n. Therefore, both
sides are of the same order.
Fianlly, we verify that the left and right side are component-wise equal. For all
row indices i and column indices j, show that:

[A+A]i,j = Ai,j +Ai,j (by definition of matrix addition)
= 2Ai,j (adding two real values)
= [2A]i,j . (by definition of multiplication of matrix by constant)

(b) To dispove the statement, we give a counterexample. We present a matrix A that
satisfies the assumptions but violates the statement.

For example, we can choose A =

(
1 1
0 1

)
. The only assumption is that the ma-

trix is square, which is satisfied by our choice of A. Moreover, AT =

(
1 0
1 1

)
6=(

1 1
0 1

)
= A.

If it is not clear that our counter-example satisfies some of the assumptions of the
statement then we need to prove it satisfies the assumptions.
It is interesting to find also the minimal additional assumptions which make the
statement true. In this case, we would need A to be symmetric.

Problem 1. Compute (−1)A+ 2BC for matrices

A =

(
3 1
4 1

)
, B =

(
5 9
2 7

)
, C =

(
1 −1
2 2

)
.

Solution:
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(−1)
(
3 1
4 1

)
+ 2

(
5 9
2 7

)(
1 −1
2 2

)
=

(
(−1) · 3 (−1) · 1
(−1) · 4 (−1) · 1

)
+ 2

(
5 · 1 + 9 · 2 5 · (−1) + 9 · 2
2 · 1 + 7 · 2 2 · (−1) + 7 · 2

)
=

(
−3 −1
−4 −1

)
+ 2

(
23 13
16 12

)
=

(
−3 −1
−4 −1

)
+

(
2 · 23 2 · 13
2 · 16 2 · 12

)
=

(
−3 −1
−4 −1

)
+

(
46 26
32 24

)
=

(
−3 + 46 −1 + 26
−4 + 32 −1 + 24

)
=

(
43 25
28 23

)

Problem 2. Solve the systems of linear equations (A | b) and (B | c) given by

A =

(
2 3
1 2

)
a b =

(
2
1

)
, and

B =

1 1 2
1 1 1
2 2 0

 a c =

 3
1
−2

.

Verify the correctness of your result x (resp. y) by computing the matrix product
Ax = b (resp. By = c).

Solution:
The solution for the system Ax = b is the vector x = (1, 0)T . We verify the correctness
as follows: (

2 3
1 2

)(
1
0

)
=

(
2 · 1 + 3 · 0
1 · 1 + 2 · 0

)
=

(
2
1

)
.

Solution for the system By = c is the vector y = (−1− t, t, 2)T , where t ∈ R. We verify
the correctness as follows:1 1 2

1 1 1
2 2 0

−1− tt
2

 =

1 · (−1− t) + 1 · t+ 2 · 2
1 · (−1− t) + 1 · t+ 1 · 2
2 · (−1− t) + 2 · t+ 0 · 2

 =

 3
1
−2

 .

Problem 3. Prove or disprove whether for all matrices A,B,C and the zero matrix 0 of the same
order and real numbers α, β ∈ R, it holds that:
(a) A+ (B + C) = (A+B) + C

(b) A+B = B +A

(c) A+ 0 = A

(d) α(βA) = (αβ)A

(e) α(βA) = β(αA)

(f) A+ (−1)A = 0

(g) 1A = A

(h) A(B + C) = AB +AC

(i) α(A+B) = αA+ αB

(j) (α+ β)A = αA+ βA

(k) αA+ βB = (α+ β)(A+B)

(l) (AT )T = A

(m) ATA is symmetric

(n) (A+B)T = AT +BT

(o) (αA)T = α(AT )

(p) AIn = A
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Solution:

(a) The statement is correct.
First, we verify that both sides of the identity are well defined and that they have
the same dimension. The matrices A,B,C are of the same order, which we denote
m × n. On the left side, we have an addition B + C of matrices of order m × n
and we get a matrix of order m× n, and we add it to the matrix of order m× n.
Thus, the left side of the identity is well defined and of order m× n.
Similarly, it holds also for the right side that (A+ B) + C is well defined and of
order m× n.
Now, we show the component-wise equality of the two sides. For all i ∈ [n] and
j ∈ [m], it holds that:

[A+ (B + C)]i,j = [A]i,j + [(B + C)]i,j

= [A]i,j + ([B]i,j + [C]i,j)

= ([A]i,j + [B]i,j) + [C]i,j (by asociativity of addition over R)
= [(A+B)]i,j + [C]i,j

= [(A+B) + C]i,j .

(b) The statement is correct.
Similarly as above, we first verify that both sides of the identity are well defined
and that they have the same dimension for all matrices A and B. We argue the
component-wise equality of the two sides; for all ∈ [n] and j ∈ [m],:

[A+B]i,j = [A]i,j + [B]i,j

= [B]i,j + [A]i,j (by commutativity of addition over R)
= [B +A]i,j

(c) The statement is correct.
(d) The statement is correct.
(e) The statement is correct.
(f) The statement is correct.
(g) The statement is correct.
(h) The statement is correct (it corresponds to distributivity of multiplication and

addition). For both sides to be well defined, it must hold for the matrices A,B,C
that:

A ∈ Rm×n, B, C ∈ Rn×p

(otherwise both sides are not defined). By the assumption, the matrices A,B,C
are all of the same order and, thus, they have to all be square.

(i) The statement is correct.
(j) The statement is correct.
(k) The statement is incorrect.

We give a counterexample. We give α, β ∈ R and matrices A,B, which satisfy the
assumptions but violate the statement. For example,

α = 2, β = 3, A =

(
1 0
0 0

)
a B =

(
0 0
0 1

)
.
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We get

αA+ βB =

(
2 0
0 3

)
6=
(
5 0
0 5

)
(α+ β)(A+B) .

(l) The statement is correct.
If A is of order m×n and AT is of order n×m and (AT )T is again of order m×n.
Thus, the right and left side are of the same order.
We argue the component-wise equality of the two sides; for all ∈ [n] and j ∈ [m],:

[(AT )T ]i,j = [AT ]j,i = [A]i,j .

(m) The statement is correct.
By definition, a matrix D is symmetric if D = DT . Note that if A is of order
m× n then AT is of order n×m. Thus, the product ATA is well defined and of
order n× n.
We can use the theorem about properties of matrix transposition which gives that
for all matrices D,E of compatible dimensions (so that their product is defined),
it holds that (DE)T = ETDT . Thus, we get

(ATA)T = AT (AT )T (using (DE)T = ETDT )

= ATA. (by the previous claim)

(n) The statement is correct.

(o) The statement is correct.

(p) The statement is correct only if A is a matrix of order m×n pro arbitrary m and
n defined by In. Otherwise, the left side is not defined.

Problem 4. Express the elementary row operations as matrix products, i.e., for each elementary
row operation, find a matrix E ∈ Rm×m such that EA is the result of applying the
operation to matrix A for all matrices A ∈ Rm×n.

Solution:

(a) Multiplying the i-th row by scalar α 6= 0. We can use the matrix

E =



1 0 0 · · · 0 0 0 · · · 0
0 1 0 · · · 0 0 0 · · · 0
0 0 1 · · · 0 0 0 · · · 0
...

...
...

. . .
...

...
...

. . .
...

0 0 0 · · · 1 0 0 · · · 0
0 0 0 · · · 0 α 0 · · · 0
0 0 0 · · · 0 0 1 · · · 0
...

...
...

. . .
...

...
...

. . .
...

0 0 0 · · · 0 0 0 · · · 1


.

We take the identity matrix and set the i-th diagonal element equal to α.
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The correctness of the above matrix E follows from the definition of matrix pro-
duct. For all A ∈ Rm×n, the product EA is a matrix of order m× n. For all row
indices j ∈ [m] and column indices k ∈ [n] it holds that:

[EA]j,k =
∑
l

Ej,lAl,k

= Ej,jAj,k (Ej,l 6= 0 only for l = j)

=

{
Aj,k for j 6= i

αAj,k for j = i
(substituting the values from Ej,j)

Therefore, the matrix EA has each row equal to the corresponding row of the
matrix A – except for the i-th row, which is equal to the i-th row of A multiplied
by α.

(b) Swapping the i-th and the j-th row. We can use the matrix

E =



1 0 · · · 0 0 0 · · · 0 0 0 · · · 0
0 1 · · · 0 0 0 · · · 0 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
0 0 · · · 1 0 0 · · · 0 0 0 · · · 0
0 0 · · · 0 0 0 · · · 0 1 0 · · · 0
0 0 · · · 0 0 1 · · · 0 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
0 0 · · · 0 0 0 · · · 1 0 0 · · · 0
0 0 · · · 0 1 0 · · · 0 0 0 · · · 0
0 0 · · · 0 0 0 · · · 0 0 1 · · · 0
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
0 0 · · · 0 0 0 · · · 0 0 0 · · · 1



.

E is simply the identity matrix the i-th row and the j-th row swapped.
The correctness of the above matrix E follows from the definition of matrix pro-
duct. For all A ∈ Rm×n, the product EA is a matrix of order m× n. For all row
indices j ∈ [m] and column indices k ∈ [n] it holds that:

[EA]k,l =
∑
`′

Bk,`′D`′,l

=


Ek,kAk,l for k 6= i, j

Ek,iAi,l for k = j

Ek,jAj,l for k = i

(for all other values `′, Ek,`′ = 0)

=


Ak,l for k 6= i, j

Ai,l for k = j

Aj,l for k = i

(substitung the values from E)

Therefore, the matrix EA has each row equal to the corresponding row of the
matrix A – except for the i-th row and the j-th row, which are swapped.

(c) Adding an α-multiple of the i-th row to the j-th row, where i 6= j. We can use the
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matrix

E =



1 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0
0 1 0 · · · 0 0 0 · · · 0 0 0 · · · 0
...

...
...

. . .
...

...
...

. . .
...

...
...

. . .
...

0 0 0 · · · 1 0 0 · · · 0 0 0 · · · 0
0 0 0 · · · 0 1 0 · · · 0 0 0 · · · 0
0 0 0 · · · 0 0 1 · · · 0 0 0 · · · 0
...

...
...

. . .
...

...
...

. . .
...

...
...

. . .
...

0 0 0 · · · 0 0 0 · · · 1 0 0 · · · 0
0 0 0 · · · 0 α 0 · · · 0 1 0 · · · 0
0 0 0 · · · 0 0 0 · · · 0 0 1 · · · 0
...

...
...

. . .
...

...
...

. . .
...

...
...

. . .
...

0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 1



.

We take the identity matrix and change the element at position i, j from 0 to α.
The correctness of the above matrix E follows from the definition of matrix pro-
duct. For all A ∈ Rm×n, the product EA is a matrix of order m× n. For all row
indices j ∈ [m] and column indices k ∈ [n] it holds that:

[EA]k,l =
∑
`′

Ek,`′A`′,l

=

{
Ek,kAk,l for k 6= i

Ek,kAk,l + Ek,jAj,l for k = i
(for all other values of m, Ek,`′ = 0)

=

{
Ak,l for k 6= i

Ak,l + αAj,l for k = i
(substituting the values from E)

Therefore, the matrix EA has each row equal to the corresponding row of the
matrix A – except for the j-th row, which is the sum of the α-multiple of the i-th
row and the j-th row.

Problem 5. Give a non-symmetric matrix A and a symmetric matrix B such that their product
does not commute, i.e., such that AB 6= BA.

Is the product of symmetric matrices commutative?

Solution:
For the first part, we can use the matrices

A =

(
1 2
3 4

)
and B =

(
1 0
0 0

)
.

We get

AB =

(
1 2
3 4

)(
1 0
0 0

)
=

(
1 0
3 0

)
6=
(
1 2
0 0

)
=

(
1 0
0 0

)(
1 2
3 4

)
= BA .

The statement does not hold even for symmetric matrices, as exemplified by the mat-
rices

A =

1 2 3
2 4 5
3 5 6

 and B =

0 1 0
1 0 0
0 0 1

 .
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We get

AB =

1 2 3
2 4 5
3 5 6

0 1 0
1 0 0
0 0 1

 =

2 1 3
4 2 5
5 3 6

 6=
6=

2 4 5
1 2 3
3 5 6

 =

0 1 0
1 0 0
0 0 1

1 2 3
2 4 5
3 5 6

 = BA.

Problem 6. Prove or disprove the following statements:

(a) For all A,B ∈ Rn×n, if A is symmetric and commutes with B then A commutes
also with BT .

(b) For all A,B ∈ Rn×n, if A commutes with B then A commutes with BT .

Solution:

(a) The statement is correct ABT = ATBT = (BA)T = (AB)T = BTAT = BTA.

(b) The statement is incorrect. The counterexample are matrices

A =

0 1 2
0 3 4
0 0 0

 and B =

0 0 1
0 0 0
0 0 0

 .
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