NMAI057 – Linear algebra 1

Tutorial 2

Date: October 12, 2021

TA: Pavel Hubáček

Problem 1. Over \mathbb{R} , find all solutions for the system of linear equations

$$\begin{aligned} x + 2y &= 5\\ 2x - y &= 0 \end{aligned}$$

Solution. We use the matrix representation for the system and reduce it as follows

$$\begin{pmatrix} 1 & 2 & | & 5 \\ 2 & -1 & | & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & | & 5 \\ 0 & -5 & | & -10 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & | & 5 \\ 0 & 1 & | & 2 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & | & 1 \\ 0 & 1 & | & 2 \end{pmatrix}$$

After the reduction, we get x = 1 a y = 2.

Problem 2. Over \mathbb{R} , find all solutions for the system of linear equations

$$\begin{aligned} x - 3z &= 1\\ -2x + 6z &= -2 \end{aligned}$$

Solution. We use the matrix representation for the system and reduce it as follows

$$\begin{pmatrix} 1 & -3 & | & 1 \\ -2 & 6 & | & -2 \end{pmatrix} \sim \begin{pmatrix} 1 & -3 & | & 1 \\ 0 & 0 & | & 0 \end{pmatrix}$$

We can put a real parameter $t \in \mathbb{R}$ for the z variable and express x in terms of the parameter:

$$\begin{aligned} x - 3t &= 1\\ x &= 1 + 3t \end{aligned}$$

The solution set of the system over \mathbb{R} is

$$\{(x,z)^T \in \mathbb{R}^2 \mid x - 3z = 1\} = \{(1+3t,t)^T \mid t \in \mathbb{R}\} = \{(1,0)^T + t(3,1)^T \mid t \in \mathbb{R}\}.$$

Problem 3. Over \mathbb{R} , find all solutions for the system of linear equations

$$x + y - z = 1$$

$$2x + 2y + z = 5$$

$$x - y - z = -1$$

Solution. We use the matrix representation for the system and reduce it as follows

$$\begin{pmatrix} 1 & 1 & -1 & | & 1 \\ 2 & 2 & 1 & | & 5 \\ 1 & -1 & -1 & | & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & -1 & | & 1 \\ 0 & 0 & 3 & | & 3 \\ 0 & -2 & 0 & | & -2 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & -1 & | & 1 \\ 0 & 1 & 0 & | & 1 \\ 0 & 0 & 1 & | & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & | & 1 \\ 0 & 1 & 0 & | & 1 \\ 0 & 0 & 1 & | & 1 \end{pmatrix}$$

From the final matrix, we get that z = 1, y = 1, and x = 1. Thus, the vector $(1, 1, 1)^T$ is the unique solution over \mathbb{R} .

Problem 4. Over \mathbb{R} , find all solutions for the system of linear equations

$$x + y - z = 1$$
$$2x + 2y + z = 5$$

Solution. We use the matrix representation for the system and reduce it as follows (which we already did in Problem 3)

$$\begin{pmatrix} 1 & 1 & -1 & | & 1 \\ 2 & 2 & 1 & | & 5 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & -1 & | & 1 \\ 0 & 0 & 3 & | & 3 \end{pmatrix}$$

From the second row of the last matrix, we get that z = 1. From the first row of the last matrix, we see that y can take an arbitrary real value, and we express x in terms of the parameter $y \in \mathbb{R}$ and the value of z:

$$x + y - z = 1$$
$$x + y - 1 = 1$$
$$x = 2 - y$$

This gives the solution space

$$\{(2-y,y,1)^T \mid y \in \mathbb{R}\} = \{(2,0,1)^T + y(-1,1,0)^T \mid y \in \mathbb{R}\}\$$

Note that we can easily verify that $(2-y, y, 1)^T$ solves the linear system for all $y \in \mathbb{R}$ by checking that any such vector satisfies both original equations:

$$2 - y + y - 1 = 2 - 1 + y(-1 + 1) = 1$$
$$4 - 2y + 2y + 1 = 5$$

We have verified that $(2 - y, y, 1)^T$ is a solution for all $y \in \mathbb{R}$.

Problem 5. Over \mathbb{R} , find all solutions for the system of linear equations

$$2x + 2y + z = 5$$
$$x - y - z = -1$$

Solution.

$$\begin{pmatrix} 2 & 2 & 1 & | & 5 \\ 1 & -1 & -1 & | & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & -1 & | & -1 \\ 2 & 2 & 1 & | & 5 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & -1 & | & -1 \\ 0 & 4 & 3 & | & 7 \end{pmatrix}$$

From the second row of the last matrix, we see that z can take an arbitrary real value, and we express y in terms of the parameter $z \in \mathbb{R}$:

$$4y + 3z = 7$$

$$4y = 7 - 3z$$

$$y = \frac{1}{4}(7 - 3z)$$

From the first row of the last matrix, we can express x in terms of the parameter $z \in \mathbb{R}$:

$$\begin{aligned} x - y - z &= -1 \\ x - \frac{1}{4}(7 - 3z) - z &= -1 \\ x &= -1 + \frac{1}{4}(7 - 3z) + z = \frac{1}{4}(3 + z) \end{aligned}$$

This gives the solution space

$$\left\{ \left(\frac{1}{4}\left(3+z\right), \frac{1}{4}\left(7-3z\right), z\right)^T \mid z \in \mathbb{R} \right\} = \left\{ \left(\frac{3}{4}, \frac{7}{4}, 0\right)^T + z\left(\frac{1}{4}, -\frac{3}{4}, 1\right)^T \mid z \in \mathbb{R} \right\} .$$

Problem 6. Over \mathbb{R} , find all solutions for the system of linear equations

$$x_1 + x_2 + x_3 + x_4 = 3$$

$$x_1 - 2x_2 - x_3 - x_4 = 1$$

Solution. We use the matrix representation for the system and reduce it as follows

$$\begin{pmatrix} 1 & 1 & 1 & 1 & | & 3 \\ 1 & -2 & -1 & -1 & | & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 1 & 1 & | & 3 \\ 0 & -3 & -2 & -2 & | & -2 \end{pmatrix}$$

From the second row of the last matrix, we see that x_3 and x_4 can take arbitrary real values, and we express x_2 in terms of the parameters $x_3, x_4 \in \mathbb{R}$:

$$-3x_2 - 2x_3 - 2x_4 = -2$$

$$-3x_2 = -2 + 2x_3 + 2x_4$$

$$x_2 = \frac{2}{3}(1 - x_3 - x_4)$$

From the first row of the last matrix, we can now express x_1 in terms of the parameters $x_3, x_4 \in \mathbb{R}$:

$$x_1 + x_2 + x_3 + x_4 = 3$$

$$x_1 + \frac{2}{3}(1 - x_3 - x_4) + x_3 + x_4 = 3$$

$$x + 1 = 3 - \frac{2}{3}(1 - x_3 - x_4) - x_3 - x_4 = \frac{7}{3} - \frac{1}{3}(x_3 + x_4)$$

This gives the solution space

$$\left\{ \left(\frac{7}{3} - \frac{1}{3}(x_3 + x_4), \frac{2}{3}(1 - x_3 - x_4), x_3, x_4\right)^T \mid x_3, x_4 \in \mathbb{R} \right\}$$

=
$$\left\{ \left(\frac{7}{3}, \frac{2}{3}, 0, 0\right)^T + x_3 \left(-\frac{1}{3}, -\frac{2}{3}, 1, 0\right)^T + x_4 \left(-\frac{1}{3}, -\frac{2}{3}, 0, 1\right)^T \mid x_3, x_4 \in \mathbb{R} \right\} .$$

The solution set is a plane containing the point $(\frac{7}{3}, \frac{2}{3}, 0, 0)^T$.

Problem 7. Over \mathbb{R} , find all solutions for the system of linear equations

$$2y - 3z = -1$$
$$x - 5y + 4z = 1$$
$$-3x + y + 2z = -3$$

Solution. We use the matrix representation for the system and reduce it as follows

$$\begin{pmatrix} 0 & 2 & -3 & | & -1 \\ 1 & -5 & 4 & | & 1 \\ -3 & 1 & 2 & | & -3 \end{pmatrix} \sim \begin{pmatrix} 1 & -5 & 4 & | & 1 \\ 0 & 2 & -3 & | & -1 \\ 0 & -14 & 14 & | & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & -5 & 4 & | & 1 \\ 0 & 2 & -3 & | & -1 \\ 0 & 0 & -7 & | & -7 \end{pmatrix}$$

The unique solution is the vector $(2, 1, 1)^T$.