- 1. (a) Does the set system $M_4 = (\{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\})$, consisting of all 3-element subsets of the set $\{a, b, c, d\}$, have an SDR?
 - (b) Does a similar set system M_5 , consisting of all 3-element subsets of $\{a, b, c, d, e\}$, have an SDR?
 - (c) Find a set system M_6 consisting of six 3-element subsets of $\{a, b, c, d, e, f\}$ that does not have an SDR.
- 2. Prove that the two versions of Hall's theorem are equivalent.
- 3. Let G be a k-regular bipartite graph $(k \ge 1)$.
 - (a) Prove that the parts of the graph G have the same size.
 - (b) Prove that G has a perfect matching.
 - (c) Prove that the edges of G can be colored with k colors so that the edges of each color form a perfect matching.
- On an 8×8 chessboard, there are 24 rooks placed such that each row and each column contains exactly
 Prove that it is possible to rearrange the rows and columns such that 8 of the rooks lie on the diagonal.
- 5. A standard deck of 52 cards is shuffled, and the cards are dealt into 13 piles of 4 cards each. Is it always possible to select one card from each pile so that the selected cards include one ace, one 2, one 3, ..., up to one king?
- 6. A Latin square of order n is an $n \times n$ grid filled with the numbers $1, 2, \ldots, n$, such that each number appears exactly once in each row and each column.
 - (a) Prove that if the first two rows are filled with 1, 2, ..., n such that no number repeats in rows or columns (so far), the remaining cells can be completed to form a Latin square.
 - (b) Prove that the number of Latin squares of order n is $\Omega((n!)^2)$.
- 7. Find an infinite set system that satisfies Hall's condition but does not have an SDR.
- 8. (*Putnam 2013*) In a chess tournament with 2n players and 2n 1 rounds, each player plays against every other player. No match ends in a draw. Arpad had a crystal ball and knew in advance who would win each match. Prove that he could choose one match to watch in each round such that he sees 2n 1 different players win.
- 9. (124 cards) Adam and Bara perform the following trick with a deck of 124 cards numbered 1, 2, ..., 124. A spectator selects 5 cards and gives them to Adam. Adam hides one card and arranges the remaining four on a table in some order. Bara then determines the hidden card.
 - (a) Prove that the trick cannot work reliably for more than 124 cards.
 - (b) Prove that the trick can work reliably for 124 cards.

A matching in a graph G = (V, E) is a set of disjoint edges from E. A matching is perfect if every vertex is an endpoint of one edge.

A vertex cover is a set $C \subseteq V$ such that for every $e \in E$, $e \cap C \neq \emptyset$.

For $A \subseteq V$, let $N_G(A)$ denote the set of neighbors of A, i.e., the set of vertices in $V \setminus A$ that are adjacent to at least one vertex in A.

Let X and I be finite sets. A set system on X is any |I|-tuple of subsets of X, i.e., $M = (M_i : i \in I)$, where $M_i \subseteq X$.

A system of distinct representatives (SDR) is an injective function $f: I \to X$ such that for every $i \in I, f(i) \in M_i$.

Theorem (Hall's for bipartite graphs). A bipartite graph with parts A and B has a matching saturating part A if and only if for every subset $A' \subseteq A$,

$$|N_G(A')| \ge |A'|.$$

Theorem (Hall's for set systems). A set system $M = (M_i : i \in I)$ has an SDR if and only if for every subset $J \subseteq I$,

$$\left| \bigcup_{j \in J} M_j \right| \ge |J|.$$

This condition is known as Hall's condition.

Theorem (Kőnig–Egerváry). In every bipartite graph, the size of a minimum vertex cover equals the size of a maximum matching.