HW4

November 11, 2024

Name: _____

Finite projective plane:

The pair (X, \mathcal{P}) where X is a finite set ("points") and $\mathcal{P} \subseteq 2^X$ is a collection of its subsets ("lines"), such that:

- (A0) $(\exists C \subseteq X, |C| = 4)$: $\forall P \in \mathcal{P}$: $|C \cap P| \le 2$ (There exist 4 points in general position).
- (A1) $\forall x \neq y \in X \ (\exists ! P \in \mathcal{P}): x, y \in P$ (Every pair of points is contained in exactly one line).
- (A2) $\forall P \neq Q \in \mathcal{P}$: $|P \cap Q| = 1$ (Every pair of lines intersects in exactly one point).

- 1. Give two examples of a pair (X, \mathcal{P}) that satisfies axioms A1 and A2, but not axiom A0.
- 2. For an infinite number of values of n, construct a graph on n vertices with $\Omega(n^{3/2})$ edges, which does not contain a 4-cycle $(K_{2,2})$ as a subgraph.
- 3. (5 additional points) Determine all the pairs (X, \mathcal{P}) that satisfies axioms A1 and A2, but not axiom A0.