Mathematics++

Practicals 3 – Functional analysis

April 2, 2025

All the vector spaces (also called linear spaces) are over the field \mathbb{R} .

Definition: Let E be a normed linear space. A **closed hyperplane** is every set of the form $H = \{x \in E : f(x) = \alpha\}$ where $f \in E^*$, $f \neq 0$ and $\alpha \in \mathbb{R}$. (This is the same as translations of maximal proper subspaces).

- 1. Find a function $f: \mathbb{R} \to \mathbb{R}$ such that |f(x) f(y)| < |x y| but f is not a contraction.
- 2. Find a function $f: \mathbb{R} \to \mathbb{R}$ such that |f(x) f(y)| < |x y| but f has no fixed point.
- 3. Show that every subspace of a normed linear space of finite dimension is closed and find a counterexample for a space of infinite dimension.
- 4. Show that unit ball in a Hilbert space of infinite dimension is not compact.
- 5. Prove Mazur theorem: Let C be an open convex subset of a normed linear space E and $z \in E \setminus C$. Then there exists a closed hyperplane $H \subset E$ such that $z \in H$ and $H \cap C = \emptyset$.
- 6. Decide whether following functionals on a normed linear space X are linear and continuous. If so, determine their norm.
 - (a) $F: (x_n)_{i \in \mathbb{Z}^+} \mapsto \sum_{i=1}^{\infty} \frac{x_i}{i^2}, X = c_0$
 - (b) $F: f \mapsto \int_0^1 t f(t) dt, X = L^p([0,1])$
 - (c) $F: f \mapsto \lim_{n \to \infty} \int_0^1 f(t^n) dt, X = \mathcal{C}([0, 1])$