Math++ tutorials

Practicals 1 – Measure and σ -algebras

February 26, 2025

Definition: A set $X \subseteq \mathbb{R}$ is *open*, if for every $x \in X$ there is $\epsilon > 0$ such that $B(x, \epsilon) \subseteq X$, where $B(x, \epsilon) = \{y \in R : |x - y| < \epsilon\}$.

Definition: A set is *dense*, if it has non-empty intersection with every non-empty open set.

Definition: Given a set system \mathcal{H} , the minimal σ -algebra generated by \mathcal{H} is defined as a minimal σ -algebra containing \mathcal{H} . A *Borel set* is an element of σ algebra generated by all open balls (intervals of finite length in \mathbb{R}^1).

Definition: Let $(X, \mathcal{S}_X, \mu_X)$ and $(Y, \mathcal{S}_Y, \mu_Y)$ be measurable spaces. A function $f: X \to Y$ is *measurable* if $f^{-1}(S) \in \mathcal{S}_X$ for all $S \in \mathcal{S}_Y$.

Definition: A real function is *measurable* if it is measurable as above with respect to Lebesgue measurable sets in the preimage and the Borel sets in the image.

- 1. Provide an example of a subset of \mathbb{R} which is both open and closed. Provide an example of a subset which is neither open nor closed.
- 2. Provide an example of a dense subset of \mathbb{R} .
- 3. Show that every open subset of \mathbb{R} is a union of countably many intervals. [*]
- 4. Show that the intersection of an arbitrary collection of σ -algebras (over the same ground set) is again a σ -algebra.
- 5. Show that the complement of a Lebesgue measurable set is Lebesgue measurable.
- 6. Prove that the interval $(0, +\infty)$ is Lebesgue measurable.
- 7. Let (X, \mathcal{S}, μ) be a measurable space, where \mathcal{S} is a finite σ -algebra. Describe measurable functions $X \to \mathbb{R}$.
- 8. Show that the (Lebesgue) measure of \mathbb{Q} equals 0. [*]
- 9. Construct a compact subset of \mathbb{R} of positive measure such that the complement of this set is dense. [*]
- 10. Decide which of the following subsets of \mathbb{R} are Borel sets: \mathbb{N} , $\mathbb{R} \setminus \mathbb{Q}$, closed intervals.
- 11. Show that a real function f is measurable if and only if the set $\{x : f(x) < \alpha\}$ is measurable for all $\alpha \in \mathbb{R}$. [**]
- 12. Prove that for measurable sets A, B and a measure μ , we have $\mu(A \cup B) + \mu(A \cap B) = \mu(A) + \mu(B)$.

Information about tutorials https://iuuk.mff.cuni.cz/~chmel/2425/mpp/