Exercise 1 (Light revision)

Matt is practicing basketball and he wants to practice free throws. As he is a beginner, the probability of successfully scoring on a free throw is $p \in (0,1]$ and it is independent on all his previous attempts. Let X be a random variable that denotes the number of attempts made until the first time Matt scores (including the last attempt when he scored). Show that $\mathbb{E}[X] = \frac{1}{n}$.

Exercise 2 (Collision probability)

Show that in a hash-table of size $m = n^2$ with n elements, the probability of a collision is at most 1/2, if we assume the hashing function to be uniformly random.

Exercise 3 (Fixed points of permutations)

Let us have a uniformly random permutation on n elements. Compute the expected number of fixed points of the permutation.

Exercise 4 (Black box)

You are given a hash function $h: \mathcal{U} \to [m]$. If you do not know anything else about the function, how many evaluations of h do you need to always find a k-tuple of elements that share the same bucket?

Exercise 5 (Independence and universality)

Prove the following:

- if a hashing system is (k,c)-independent, it is also (k-1,c)-independent (for $k \geq 2$),
- if a hashing system is (2, c)-independent, it is also c-universal.

Exercise 6 (Truly practical systems)

Let us consider the hashing function system $\mathcal{H}_1 = \{id\}$ that contains just one function, the identity that maps x to x. Is \mathcal{H}_1 c-universal for some c? Is \mathcal{H}_1 (k,c)-independent for some k and c?

Next, consider the system $\mathcal{H}_2 = \{h_a(x) = a : a \in [m]\}$. Prove that this system is (1,1)-independent. Next, show that \mathcal{H}_2 is neither (2, c)-independent nor c-universal for any c.

Exercise 7 (Modulo of a universal system does not need to be universal)

Show that, if we have a universal system of hash functions \mathcal{H} , then the system \mathcal{H}' , where each function is computed modulo m, does not have to be universal. Formally: Show that for every c and m > c, there exists a universe \mathcal{U} and a system \mathcal{H} from \mathcal{U} to \mathcal{U} such that \mathcal{H} is universal but \mathcal{H}' is not c-universal.

Useful notions

Proposition (Union bound). For elements A_1, A_2 , we have $\Pr[A_1 \cup A_2] \leq \Pr[A_1] + \Pr[A_2]$.

Proposition (Linearity of expectation). For random variables X, Y and coefficients $\alpha, \beta \in \mathbb{R}$, we have $\mathbb{E}[\alpha X + \beta Y] = \alpha \mathbb{E}[X] + \beta \mathbb{E}[Y]$.

Definition (Indicator, independence of random variables). Let A be an event in a discrete probability space. Then the indicator of A is a random variable I_A defined as: $I_A(\omega) = 0 \Leftrightarrow \omega \notin A$, otherwise $I_A(\omega) = 1$. Random variables X, Y on a discrete probability space $(\Omega, 2^{\Omega}, P)$ are independent, of $\forall \alpha, \beta \in \mathbb{R}$, the events

 $\{\omega \in \Omega : X(\omega) \leq \alpha\}, \{\omega \in \Omega : Y(\omega) \leq \beta\}$ are independent.

Definition (c-universal function system). A system \mathcal{H} of functions $h: \mathcal{U} \to [m]$ is c-universal for c > 0, if for

all $x \neq y$, it holds that $\Pr_{h \in \mathcal{H}}[h(x) = h(y)] \leq \frac{c}{m}$.

A system \mathcal{H} is universal, if it is c-universal for some c > 0.

Definition (k-independent function system). A system \mathcal{H} of functions $h: \mathcal{U} \to [m]$ is (k, c)-independent for some $k \geq 1, c > 0$, if $\Pr_{h \in \mathcal{H}}[h(x_1) = a_1 \wedge \ldots \wedge h(x_k) = a_k] \leq \frac{c}{m^k}$ for any pairwise distinct x_1, \ldots, x_k and any not necessarily distinct a_1, \ldots, a_k .

A system \mathcal{H} is k-independent, if it is (k,c)-independent for some fixed constant c.