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Exercise 1 ((a, b)-trees in your hands)

In the figure, you can see a (2, 3)-tree. Perform the following operations on this tree (always just one and

then start with a new tree): Insert(7), Insert(48), Delete(44), Delete(40), Delete(32), Delete(30),

Delete(16).

Solution

Exercise 2 (Correct parameter choice)

From the lecture, we know that an arbitrary sequence of m operations Insert and Delete on an originally

empty (a, 2a)-tree makes only O(m) node modifications (splits and merges). Show that this is not true for

(a, 2a − 1)-trees. That is, for any m,n, design a sequence of m operations on a tree with Θ(n) nodes that

changes Ω(m log n) nodes in total.

You can start with (2, 3)-trees and then generalize for an arbitrary a. You can also start with an arbitrary

(valid) n-node tree and then show that you can indeed build the tree from the empty tree.

Solution

In general: a tree that has most nodes almost empty (only a children), and just the right path (spine) has all

nodes full (2a − 1 children). Let us use M to denote 1+ the maximum key in the tree, then the operations

Insert(M),Delete(M) must first split all nodes and then, they must merge all of those back together.

After the insert, the lowest node will have 2a children, and thus it must split into two nodes with achildren. But

then the problem moves a layer up. When we delete, the node that contained M will have only a− 1 children,

and thus we need to add more children – but its only sibling also has only a children, so we must merge. This

also changes the number of children of the node’s parent, and the problem bubbles up to the root again.

Exercise 3 (Better fill factor)

Try to tweak the (a, b)-tree and its operations Insert, Delete so that all its nodes can be a little more full.

In particular, we want to be able to build a
(
2
3b, b

)
-tree (for b a multiple of three).

Solution

The main trick is in suitable merging and splitting of the nodes. In standard (a, b)-trees, we join two nodes into

one, and split one node into two. Thus, we want to merge three nodes into two and split two nodes into three.

For Insert: the element is inserted as usual, and if we have and overfull node, we attempt to move one of its

elements into its sibling. If the sibling is also overfull, we have two nodes with 2b+ 1 children in total, and we

can split these into three nodes with 2b/3 children each.

For Delete: we can also merge three nodes into two. If a node has 2b/3− 1 children, we can first try to steal a

child from our sibling. If this is not possible because both of our siblings have too few children, then we have

merge the three nodes into two: we have 2b children for the two nodes, which is just the right number.

Note that there is a special case for the leftmost and rightmost nodes in each layer – there, we have only one

sibling, but we can reduce to the usual case by stealing unconditionally from the only sibling.

Exercise 4 ((a, b)-Join)

Design the Join operation for (a, 2a)-trees: you have two (a, 2a)-trees T1, T2 such that all keys in T1 are smaller

than all keys in T2, and your goal is to build a single tree from the two trees. Beware that the trees can have

different heights.

(For the analysis of Split, it might be useful to analyse the complexity more precisely than just O(log n).)

https://iuuk.mff.cuni.cz/~chmel/2425/ds1en/


Solution

We have two trees, one of those might be taller (WLOG the left tree is not higher than the right tree). What

we do is, we find the leftmost node on a suitable level of the right tree, and we merge it with the roof of the left

tree. This one node might be too large, but we can fix this as if we were inserting.

For the implementation, we actually need to know the depth of the tree, so we maintain a counter for it.

There is also a second problem: as we are working with the version where the values are in all nodes, we must

add a value that is in the tree. We do this by maintaining a pointer to the minimum element in each tree and

maintaining the invariant that the node containing the minimum key in the tree has at least a+ 1 children so

that we can steal the element without any node reorganizations necessary (here we need to have (a, 2a)-trees).

Importantly, we do not need to do additional work after the join, and the pointer to the minimum element is

still correct (we always use the minimum element of the right tree).

The complexity is then O(log(|T2|)− log(|T1|)) – we only need to go down to the layer log(|T2|)− log(|T1|) for
the merge, and then we bubble back up again.

Bonus exercises

Exercise 5 ((a, b)-Split)

Design the Split operation: you have an (a, 2a)-tree T and a key k, and you want to split T into two trees such

that one contains all nodes less than k and the other contains the rest. Moreover, we want the operation to run

in time O(log n).

Solution

We search for k according to which we are supposed to split (if it is not in the tree, we go into a leaf). Then we

take all subtrees to the right of the path from the root to k and we split these from the original tree. Note that

the split trees are valid (a, b)-trees, as we potentially broke only their roots.

We then take these cut-off trees and merge those using join as in previous exercise. The cost then telescopes to

O(log n).

We also need to fix the left tree, which is done similarly to fixing after a delete.


