
Tutorial 10

Data Structures 1, 2. 5. 2025 https://iuuk.mff.cuni.cz/~chmel/2425/ds1en/

Exercise 1 (4-independence of tabulation hashing)

Show that tabulation hashing is not 4-independent (if we use at least two tables).

Hint:

Trytofindfourinputssuchthatthehashesofthefirstthreeuniquelydeterminethehashofthefourth.

Theorem. Tabulation hashing is 3-independent

Exercise 2 (We will prove this theorem)

Prove the previous theorem using the following procedure. Let a, b, c ∈ Zℓ
2, x ̸= y ̸= z ̸= x ∈ Zw

2 , and use

tabulation hashing with d parts. Then we want to show that Prh∈H[h(x) = a ∧ h(y) = b ∧ h(z) = c] ≤ 1
m3 .

a) First, realize that if we have only one part, and thus one table, the claim is trivial.

Now assume we have at least two parts. Since x, y, z are distinct, they must differ (pairwise) in at least

one part.

b) Start with the case where there exists a part i such that xi, yi, zi are all different. Let the other tables,

except for table Ti, be arbitrarily chosen. With what probability can we choose the function for table Ti

so that h(x) = a, h(y) = b, h(z) = c?

c) Otherwise, there exist (WLOG) parts i, j such that zi = xi ̸= yi and yj = xj ̸= zj . Then we have the

following system of equations, where vx, vy, vz are the XORed results from the other tables:

Ti[x
i]⊕ Tj [x

j]⊕ vx = a

Ti[y
i]⊕ Tj [y

j]⊕ vy = b

Ti[z
i]⊕ Tj [z

j]⊕ vz = c

Again, suppose that vx, vy, vz are already known. With what probability will the randomly chosen tables

Ti, Tj satisfy this system of equations?

d) Realize that this is sufficient.

Exercise 3 (Rolling hash is d-universal)

For a prime p and vector length d, we define the hash function family R = {ha : a ∈ Zp}, where ha(x) =∑d−1
i=0 xi+1a

i and everything is computed modulo p (so we are using the field Zp). (We consider x ∈ Zd
p, vectors

are indexed starting with one.)

Prove that this family is (d− 1)-universal.

Hint:

TheFundamentalTheoremofAlgebra:everypolynomialofdegreedhasatmostdroots–trytofindone.

Exercise 4 (Finding a needle in a text)

Design an algorithm for finding all occurrences of a substring x of length n in a text T of length m using hashing,

which runs in expected time O(n+m+ k · n), where k is the number of occurrences of x in T .

Bonus exercises

Exercise 5 (FKS (Fredman, Komlós, Szemerédi))

We will demonstrate the construction of a (static) collision-free hash table for a subset S of size n of a universe

U . You might have encountered a construction that required Ω(n2) memory (more precisely, memory cells). We

will manage this with a linear number of memory cells (assuming we can have a truly random hash function,

which we can construct and sample in constant time, and store in constant space)1.

The process of building the table will proceed as follows: we will build two levels. In the first level, we use a

truly random hash function f to divide the elements of S into buckets B1, . . . , Bn (and denote bi := |Bi|). In
the second level, we build a collision-free table using a construction where for each bucket Bi, we create a table

of size 2b2i for bi elements, and we randomly choose a suitable hash function until there are no collisions.

1The same can be done with a reasonably universal function; this is just for simplicity.

https://iuuk.mff.cuni.cz/~chmel/2425/ds1en/

First level: In constant time, we choose a random hash function f : U → [n], and use it to divide S into

buckets. We repeat this until the condition
∑n

i=1 b
2
i ≤ βn holds, with β = 4.

We want to show that this step will, on average, be repeated at most twice. Let C denote the number of

collisions.

a) Determine E[C].

b) Determine C in terms of bi.

c) Based on the two previous values, determine E[
∑n

i=1 b
2
i].

d) Apply Markov’s inequality to the random variable X =
∑n

i=1 b
2
i with a suitable value to get the desired

result. (Also, the expected value of a geometric distribution will come in handy.)

Second level: In the second level, for each i ∈ [n], we choose a universal hash function gi : U → [αb2i] for

α = 2. We repeat this until it is injective (collision-free) for the elements in bucket Bi.

Let Cx denote the number of collisions of key x ∈ Bi at the second level.

a) Formulate an upper bound on E[Cx].

b) Use Markov’s inequality and the union bound to upper bound the probability that there exists an element

with at least one collision.

c) How many times will we have to repeat the process? ([Insert your favorite note about the expected value

of a geometric distribution here.])

Useful notions

Proposition (Union bound). For elements A1, A2, we have Pr[A1 ∪A2] ≤ Pr[A1] + Pr[A2].

Definition (c-universal function system). A system H of functions h : U → [m] is c-universal for c > 0, if for

all x ̸= y, it holds that Prh∈H[h(x) = h(y)] ≤ c
m .

A system H is universal, if it is c-universal for some c > 0.

Definition (Tabulation hashing). Suppose we want to hash n-bit strings into m-bit strings, where n = k ·ℓ. We

decompose a string x ∈ 0, 1n into k parts of length ℓ, which we denote by xi. Thus, we can write x = x1x2 . . . xk.

Then, the generation of our hash function h : 0, 1n → 0, 1m proceeds by selecting k functions Ti : 0, 1
ℓ → 0, 1m

uniformly at random (these are represented by a table – hence the name tabulation hashing). We then evaluate

h(x) =
⊕k

i=1 Ti(x
i) = T1(x

1)⊕ T2(x
2)⊕ · · · ⊕ Tk(x

k) where ⊕ denotes bitwise XOR.

Theorem (Markov inequality). Let X be a nonnegative random variable. Then ∀ε > 0 we have P [X ≥ ε] ≤
E[X]
ε .

Equivalently, for any d ≥ 1, P [X ≥ d · E[X]] ≤ 1
d .

