Tutorial 10

Data Structures 1, 2. 5. 2025 https://iuuk.mff.cuni.cz/~chmel/2425/dslen/

Exercise 1 (4-independence of tabulation hashing)
Show that tabulation hashing is not 4-independent (if we use at least two tables).
Hint:ygunof ayy fo ysvy ay3 saurwtaap fiponbiun aoayy 1541f 2y3 Jo saysvy ay3 10y3 yons sindui unof puif og fiif

Theorem. Tabulation hashing is 3-independent

Exercise 2 (We will prove this theorem)
Prove the previous theorem using the following procedure. Let a,b,c € Z5, x # y # z # x € ZY¥, and use
tabulation hashing with d parts. Then we want to show that Prjey[h(z) =a Ah(y) =bAh(z) =] < L

ﬁ.
a) First, realize that if we have only one part, and thus one table, the claim is trivial.

Now assume we have at least two parts. Since x,y, z are distinct, they must differ (pairwise) in at least
one part.

b) Start with the case where there exists a part i such that x?,y¢, 2% are all different. Let the other tables,
except for table T;, be arbitrarily chosen. With what probability can we choose the function for table T;
so that h(z) = a,h(y) = b,h(z) = ¢?

c¢) Otherwise, there exist (WLOG) parts i,j such that z' = 2° # 3 and y/ = 2/ # 2J. Then we have the
following system of equations, where v,, vy, v, are the XORed results from the other tables:

Tilz") & Tyl2?) © v, = a
Tily') & Ty[y’] ® vy = b

Tilz' @ T2 | ®v. = ¢

Again, suppose that v,, vy, v, are already known. With what probability will the randomly chosen tables
T;,T; satisfy this system of equations?

d) Realize that this is sufficient.

Exercise 3 (Rolling hash is d-universal)

For a prime p and vector length d, we define the hash function family R = {h,: a € Z,}, where h,(z) =
Zf:_ol 410’ and everything is computed modulo p (so we are using the field Z,). (We consider = € Z£, vectors
are indexed starting with one.)

Prove that this family is (d — 1)-universal.

Hint:-ouo puyf 03 fiuy — sp004 p 180w 0 $0Y P 294b2p [0 prwoufijod fiioas :0.4qab)y [0 WaL0dY], DIUUWDPUNT Y],

Exercise 4 (Finding a needle in a text)
Design an algorithm for finding all occurrences of a substring x of length n in a text T of length m using hashing,
which runs in expected time O(n + m + k - n), where k is the number of occurrences of x in 7.

Bonus exercises

Exercise 5 (FKS (Fredman, Komlés, Szemerédi))

We will demonstrate the construction of a (static) collision-free hash table for a subset S of size n of a universe
U. You might have encountered a construction that required €(n?) memory (more precisely, memory cells). We
will manage this with a linear number of memory cells (assuming we can have a truly random hash function,
which we can construct and sample in constant time, and store in constant space)ﬂ

The process of building the table will proceed as follows: we will build two levels. In the first level, we use a
truly random hash function f to divide the elements of S into buckets By, ..., B, (and denote b; := |B;|). In
the second level, we build a collision-free table using a construction where for each bucket B;, we create a table
of size 2b? for b; elements, and we randomly choose a suitable hash function until there are no collisions.

1The same can be done with a reasonably universal function; this is just for simplicity.

https://iuuk.mff.cuni.cz/~chmel/2425/ds1en/

First level: In constant time, we choose a random hash function f : U — [n], and use it to divide S into
buckets. We repeat this until the condition Y ., b? < 8n holds, with 8 = 4.
We want to show that this step will, on average, be repeated at most twice. Let C denote the number of

collisions.

a) Determine E[C].

b) Determine C' in terms of b;.

¢) Based on the two previous values, determine E[""" | b?].

)
)
)
d) Apply Markov’s inequality to the random variable X = Y7 | b?
result. (Also, the expected value of a geometric distribution will come in handy.)

with a suitable value to get the desired

Second level: In the second level, for each i € [n], we choose a universal hash function g; : U — [ab?] for
a = 2. We repeat this until it is injective (collision-free) for the elements in bucket B;.
Let C; denote the number of collisions of key z € B; at the second level.

a) Formulate an upper bound on E[C,].

b) Use Markov’s inequality and the union bound to upper bound the probability that there exists an element
with at least one collision.

¢) How many times will we have to repeat the process? ([Insert your favorite note about the expected value
of a geometric distribution here.])

Useful notions

Proposition (Union bound). For elements A, Ay, we have Pr[A; U A;] < Pr[A;] 4+ Pr[4s].

Definition (c-universal function system). A system H of functions h : U — [m] is c-universal for ¢ > 0, if for
all z # y, it holds that Pryew[h(z) = h(y)] < 5.
A system H is universal, if it is c-universal for some ¢ > 0.

Definition (Tabulation hashing). Suppose we want to hash n-bit strings into m-bit strings, where n = k-£. We
decompose a string = € 0, 1" into k parts of length ¢, which we denote by z*. Thus, we can write z = 222 ... 2",
Then, the generation of our hash function h : 0,1" — 0,1™ proceeds by selecting k functions 7j : 0,1° — 0,1™
uniformly at random (these are represented by a table — hence the name tabulation hashing). We then evaluate

h(z) = @le Ti(2%) = Ty (z') ® To(2?) @ - - - @ Ty.(z*) where @ denotes bitwise XOR.

Theorem (Markov inequality). Let X be a nonnegative random variable. Then Ve > 0 we have P[X > ¢] <
E[X]

€
Equivalently, for any d > 1, P[X > d-E[X]] <

Ul

