Topological methods in combinatorics

Problem set 5 – Non-embeddability, Homology

Submitted: $09.\,05.\,2024$ - Hints: on individual request (via Owl) - Deadline: $30.\,06.\,2024$

Submit solution via the Postal Owl

1. (a) Find a map $f: S^2 \to D_1 * K_4$ that does not identify antipodal points. [2]

(b) Find a map
$$g: S^5 \to D_1 * K_4 * K_4$$
 that does not identify antipodal points. [2]

- (c) Prove that $K_4 * K_4$ cannot be embedded to \mathbb{R}^4 . [1]
- 2. Let $f: X \to Y$ be a simplicial map between triangulated spaces. Prove that the associated maps $f_{\#}: C_n(X) \to C_n(Y)$ satisfy the relation $\partial f_{\#} = f_{\#}\partial$. [2]
- 3. Compute the homology groups of $\partial \Delta_d$ from the definition of simplicial homology. You can use that $H_0(\Delta_d) \cong \mathbb{Z}$, and $H_n(\Delta_d) \cong 0$ for $n \ge 1$. [3]
- 4. Let K be a simplicial complex such that $|\mathsf{K}|$ has k path-connected components. Prove that $H_0(\mathsf{K}) \cong \mathbb{Z}^k$. [2]
- 5. If $A \subseteq X$, a retraction $r: X \to A$ is a continuous map such that r(a) = a for all $a \in A$. Show that there is no retraction $r: S^1 \times B^2 \to S^1 \times S^1$. [3]
- 6. Find an arbitrary triangulation of the projective plane and a homologically non-trivial 1-cycle c with the property that 2c is homologically trivial. That is, find $c \in \text{Ker } \partial_1$ such that $[c] \neq 0$ and [2c] = 0. [3]