Topological methods in combinatorics

Problem set 4 - The Ham sandwich theorem, joins

Submitted: 25.04. 2024 - Hints: 09.05. 2024-Deadline: 16.05. 2024
Submit solution via the Postal Owl

1. The ham sandwich theorem for mass distributions says the following:

Given mass distributions μ_{1}, \ldots, μ_{d} (finite Borel measures assigning 0 to hyperplanes) on \mathbb{R}^{d}, there is a hyperplane h such that $\mu_{i}\left(h^{+}\right)=\mu_{i}\left(h^{-}\right)$for all $i \in[d]$, where h^{+}and h^{-}are the two open half-spaces defined by h.

Show the ratio $1: 1$ is the only ratio such that any two compact sets in the plane can be simultaneously partitioned by a line in that ratio.
2. The ham sandwich theorem for point sets says the following:

Given finite sets A_{1}, \ldots, A_{d} of points in \mathbb{R}^{d}, there is a hyperplane h that contains at most $\left\lfloor\frac{\left|A_{i}\right|}{2}\right\rfloor$ points from each set A_{i} in each open half-space determined by h.

Show that if we replace the original definition of bisecting by more natural definition: a hyperplane h bisects $A \subset \mathbb{R}^{d}$, if $\left|h^{+} \cap A\right|+\frac{1}{2}|h \cap A|=\frac{1}{2}|A|$, where h^{+}is one of the open half-spaces defined by h, then there exist two finite point sets in the plane which cannot be bisected.
3. The theorem of Akiyama and Alon says the following:

Consider sets $A_{1}, A_{2}, \ldots, A_{d}$, of n points each, in general position in \mathbb{R}^{d}; imagine that the points of A_{1} are red, the points of A_{2} blue, etc. (each A_{i} has its own color). Then the points of the union $A_{1} \cup \cdots \cup A_{d}$ can be partitioned into "rainbow" d-tuples (each d-tuple contains one point of each color) with disjoint convex hulls.

Prove the planar case $(d=2)$ of this theorem by considering a perfect redblue matching with the minimum possible total length of the edges. In other words, prove that such a matching length does not contain crossing edges. [1]
4. Prove that any mass distribution in the plane can be dissected into 6 equal parts by 3 lines passing through a common point. (If you are using a continuity of certain functions, it is enough to justify the continuity informally.)

Definition (Join of simplicial complexes). Let K and L be simplicial complexes with disjoint vertex sets. The join $\mathrm{K} * \mathrm{~L}$ is the simplicial complex with the vertex set $V(\mathrm{~K}) \cup V(\mathrm{~L})$ and the set of simplicies $\{F \cup G: F \in \mathrm{~K}, G \in \mathrm{~L}\}$.

Definition (Join of topological spaces). Let X and Y be topological spaces. The join $X * Y$ is the quotient space $X \times Y \times[0,1] / \approx$, where the equivalence relation \approx is given by $(x, y, 0) \approx\left(x^{\prime}, y, 0\right)$ for all $x, x^{\prime} \in X$ and all $y \in Y$, and $(x, y, 1) \approx\left(x, y^{\prime}, 1\right)$ for all $x \in X$ and all $y, y^{\prime} \in Y$.
In the next exercise, you may use the following lemma.

Lemma. Consider two bounded subspaces X, Y of \mathbb{R}^{n} such that $X \subseteq U, Y \subseteq$ V, where U and V are skew affine subspaces of R^{n} (that is, $U \cap V=\emptyset$ and the affine hull of $U \cup V$, $\operatorname{aff}(U \cup V)$, has dimension $\operatorname{dim} U+\operatorname{dim} V+1)$. Then the space

$$
Z=\{t x+(1-t) y: t \in[0,1], x \in X, y \in Y\}
$$

is homeomorphic to the join $X * Y$.
5. (a) Let U and V be skew affine subspaces in \mathbb{R}^{n}, and let $A \subset U$ and $B \subset V$ be affinely independent sets. Check that $A \cup B$ is affinely independent.
(b) Verify that the union of all segments connecting a point of $\operatorname{conv}(A)$ to a point of $\operatorname{conv}(B)$ is the simplex $\operatorname{conv}(A \cup B)$.
(c) Use the lemma to prove that $|\mathrm{K} * \mathrm{~L}| \cong|\mathrm{K}| *|\mathrm{~L}|$ for any two finite simplicial complexes K and L (assuming that $|\mathrm{K}|$ and $|\mathrm{L}|$ lie in skew affine subspaces).

