Topological methods in combinatorics

Problem set 4 – The Ham sandwich theorem, joins

Submitted: 25.04.2024 - Hints: 09.05.2024 - Deadline: 16.05.2024Submit solution via the Postal Owl

1. The ham sandwich theorem for mass distributions says the following:

Given mass distributions μ_1, \ldots, μ_d (finite Borel measures assigning 0 to hyperplanes) on \mathbb{R}^d , there is a hyperplane h such that $\mu_i(h^+) = \mu_i(h^-)$ for all $i \in [d]$, where h^+ and h^- are the two open half-spaces defined by h.

Show the ratio 1 : 1 is the only ratio such that any two compact sets in the plane can be simultaneously partitioned by a line in that ratio. [1]

2. The ham sandwich theorem for point sets says the following:

Given finite sets A_1, \ldots, A_d of points in \mathbb{R}^d , there is a hyperplane h that contains at most $\lfloor \frac{|A_i|}{2} \rfloor$ points from each set A_i in each open half-space determined by h.

Show that if we replace the original definition of bisecting by more natural definition: a hyperplane h bisects $A \subset \mathbb{R}^d$, if $|h^+ \cap A| + \frac{1}{2}|h \cap A| = \frac{1}{2}|A|$, where h^+ is one of the open half-spaces defined by h, then there exist two finite point sets in the plane which cannot be bisected. [2]

3. The theorem of Akiyama and Alon says the following:

Consider sets A_1, A_2, \ldots, A_d , of *n* points each, in general position in \mathbb{R}^d ; imagine that the points of A_1 are red, the points of A_2 blue, etc. (each A_i has its own color). Then the points of the union $A_1 \cup \cdots \cup A_d$ can be partitioned into "rainbow" d-tuples (each d-tuple contains one point of each color) with disjoint convex hulls.

Prove the planar case (d = 2) of this theorem by considering a perfect redblue matching with the minimum possible total length of the edges. In other words, prove that such a matching length does not contain crossing edges. [1]

4. Prove that any mass distribution in the plane can be dissected into 6 equal parts by 3 lines passing through a common point. (If you are using a continuity of certain functions, it is enough to justify the continuity informally.) [4]

Definition (Join of simplicial complexes). Let K and L be simplicial complexes with disjoint vertex sets. The join K*L is the simplicial complex with the vertex set $V(K) \cup V(L)$ and the set of simplicies $\{F \cup G : F \in K, G \in L\}$.

Definition (Join of topological spaces). Let X and Y be topological spaces. The join X * Y is the quotient space $X \times Y \times [0,1]/\approx$, where the equivalence relation \approx is given by $(x, y, 0) \approx (x', y, 0)$ for all $x, x' \in X$ and all $y \in Y$, and $(x, y, 1) \approx (x, y', 1)$ for all $x \in X$ and all $y, y' \in Y$.

In the next exercise, you may use the following lemma.

Lemma. Consider two bounded subspaces X, Y of \mathbb{R}^n such that $X \subseteq U, Y \subseteq V$, where U and V are skew affine subspaces of \mathbb{R}^n (that is, $U \cap V = \emptyset$ and the affine hull of $U \cup V$, $\operatorname{aff}(U \cup V)$, has dimension $\dim U + \dim V + 1$). Then the space

$$Z = \{tx + (1-t)y : t \in [0,1], x \in X, y \in Y\}$$

is homeomorphic to the join X * Y.

- 5. (a) Let U and V be skew affine subspaces in \mathbb{R}^n , and let $A \subset U$ and $B \subset V$ be affinely independent sets. Check that $A \cup B$ is affinely independent. [2]
 - (b) Verify that the union of all segments connecting a point of conv(A) to a point of conv(B) is the simplex $conv(A \cup B)$. [2]
 - (c) Use the lemma to prove that $|K * L| \cong |K| * |L|$ for any two finite simplicial complexes K and L (assuming that |K| and |L| lie in skew affine subspaces). [2]