Topological methods in combinatorics

Problem set 3 – The Borsuk-Ulam Theorem and its applications

Published: **04. 04. 2024** - Hints: **25. 04. 2024** - Deadline: **02. 05. 2024** Submit your solutions via the Postal Owl

- 1. Prove directly the 1-dimensional version of Lyusternik-Shnirelman theorem (LS-o). In other words, prove, that for each covering of S^1 by two open sets there is a pair of antipodal points in one of these two sets. [2]
- 2. Let the torus be represented as $T = S^1 \times S^1 \in \mathbb{R}^4$.
 - (a) Show that there is a continuous map $f: T \to \mathbb{R}^2$ for which there is no $x \in T$ such that f(x) = f(-x). [1]
 - (b) Show that for each continuous $f: T \to \mathbb{R}$ there is an $x \in T$ such that f(x) = f(-x). [2]
- 3. Show that the following statement is equivalent to one of the versions of the Borsuk-Ulam theorem: Whenever S^n is covered by n+1 sets $A_1, A_2, \ldots, A_{n+1}$, each A_i open or closed, there is an i such that $A_i \cap (-A_i) \neq \emptyset$. [2]
- 4. Show that the following statement is equivalent to one of the versions of the Borsuk-Ulam theorem: If $f: S^n \to S^n$ is antipodal, then every mapping $g: S^n \to S^n$ which is homotopic to f is surjective. [2+2]
- 5. Let SG(n, k) denote *Schrijver graph* whose vertices are stable k-element subsets of $\{1, \ldots, n\}^{-1}$ and whose two vertices form an edge if and only if the corresponding k-element subsets are disjoint.
 - (a) Show that the Schrijver graph SG(n, k) is not regular in general; that is, its vertices need not all have the same degree. [2]
 - (b) Show that not all SG(n, k) are edge-critical (an edge may be removed without decreasing the chromatic number). [3]

¹Recall that $S \subseteq \{1, \ldots, n\}$ is *stable* if it does not contain any two adjacent elements modulo n. That is, if $i \in S$, then $i + 1 \notin S$, and if $n \in S$, then $1 \notin S$.