Topological methods in combinatorics

Problem set 2 – Homotopy and simplicial complexes

Published: 14.03.2024 - Hints: $28.\,03.\,2024$ - Deadline: $04.\,04.\,2024$ Submit solution via the Postal Owl

- 1. (Elementary collapse) Let K be a simplicial complex and let $\sigma \in K$ be contained in a unique maximal face $\tau \in K$, $\sigma \subsetneq \tau$. By an *elementary collapse* we mean an operation that produces a new complex K' from K. The faces of K'are the faces of K except by $\{\mu \in K : \sigma \subseteq \mu \subseteq \tau\}$. Show that K and K' are homotopy equivalent. [3]
- 2. (Barycentric subdivision) Let K be a simplicial complex, show that the geometric realization of K and its barycentric subdivision are homeomorphic, i.e. |K| and $|\operatorname{sd}(K)|$ are homeomorphic. [4]
- 3. (Diameter of barycentric subdivision)
 - (a) Prove that the diameter of an arbitrary simplex σ is equal to the distance between some two vertices of σ . [2]
 - (b) Prove that for every n and $\delta > 0$ there exists k such that if σ^n is any n-dimensional simplex of diameter 1, then all the simplices of $\mathrm{sd}^k(\sigma^n)$, i.e. barycentric subdivision iterated k times, have diameter at most δ . Does k have to depend on n? [2]
- 4. Let $s: K \to L$ and $l: L \to Z$ be a simplicial maps.
 - (a) Show, in detail, that the affine extension $|s|: |K| \to |L|$ is a continuous function. [2]
 - (b) Show that $|l \circ s| = |l| \circ |s|$. [1]
- 5. Show that two connected graphs with the same number of vertices and edges are homotopy equivalent. [4]