Topological methods in combinatorics

Problem set 1 – Basics of general and algebraic topology Published: **29.02.2024** - Hints: **14.03.2024** - Deadline: **21.03.2024** Submit your solutions via the Postal Owl

- 1. Let X and Y be topological spaces, $f: X \to Y$ continuous function and $M, N \subset X$. Decide if the following claims hold, justify in each case.
 - (a) If M is closed set, then f(M) is closed. [1] Hint: Think of a subset of R that is not closed.
 (b) If M is open set, then f(M) is open. [1] Hint: Think of a subset of R that is not open.
 (c) If M is connected then f(M) is connected. [1] Hint: Verify that it satisfies the definition of connectivity.
 (d) If M is disconnected, then f(M) is disconnected. [1] Hint: Think of a non-injective function
- 2. Let us consider the deleted product $X = (\mathbb{R}^n \times \mathbb{R}^n) \setminus \{(x, x) \colon x \in \mathbb{R}^n\}$. (The topology on X is the subspace topology of the product topology.) Prove that X is homeomorphic to $S^{n-1} \times R^{n+1}$. [4]

Hint: Realize that $\mathbb{R}^n \setminus \{0\}$ is homeomorphic to $S^{n-1} \times \mathbb{R}$.

- 3. Prove that the two following definitions of a continuous function $f : \mathbb{R}^n \to \mathbb{R}^n$ coincide:
 - (a) If $U \subseteq \mathbb{R}^n$ is open, then $f^{-1}(U)$ is also open.
 - (b) For every $a \in \mathbb{R}^n$ and every $\varepsilon > 0$, there exists $\delta > 0$ such that for all $b \in \mathbb{R}^n$, if $||b a|| < \delta$, then $||f(b) f(a)|| \le \varepsilon$.

[2]

Hint: Rewrite this using the definitions, and note that in \mathbb{R}^n , a set $X \subseteq \mathbb{R}^n$ is open iff every point $x \in X$ is contained within a ball $B(x, \varepsilon) \subseteq X$ for $\varepsilon > 0$.

4. Let $1 \leq r \leq n/2$, the Kneser graph $KG_{n,r}$ is the graph with vertex set all the *r*-subsets of [n], i.e. $V(KG_{n,r}) = \{S \subset [n] : |S| = r\}$. A pair of *r*-sets S, T form an edge in $KG_{n,r}$ if $S \cap T = \emptyset$. Show that the chromatic number of $KG_{n,r}$ is at most n - 2r + 2. [2]

Hint: Consider the coloring given by $c(F) = \min\{F, n - 2r + 2\}$.

5. (Gluing lemma for continuous functions) Let X be a topological space and A_1, \ldots, A_n closed subspaces of X such that $X = \bigcup_{i=1}^n A_i$. Let $f: X \to Y$ function between topological spaces. Show that f is continuous if and only if the restriction of f to each A_i is continuous. [2]

Hint: Verify that it satisfies the definition of continuous function with closed sets.

6. Show that the connected components of a topological space X are closed subsets. [2]

Hint: Assume it is not the case. A connected component C is a maximal connected set. Consider the closure Cl(C) of C. The Cl(C) must be disconnected. Following this argument you will reach a contradiction.