Topological methods in combinatorics

Problem set 1 - Basics of general and algebraic topology
Published: 29.02.2024-Hints: 14.03.2024-Deadline: 21.03. 2024
Submit your solutions via the Postal Owl

1. Let X and Y be topological spaces, $f: X \rightarrow Y$ continuous function and $M, N \subset X$. Decide if the following claims hold, justify in each case.
(a) If M is closed set, then $f(M)$ is closed.
(b) If M is open set, then $f(M)$ is open.
(c) If M is connected then $f(M)$ is connected.
(d) If M is disconnected, then $f(M)$ is disconnected.
2. Let us consider the deleted product $X=\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right) \backslash\left\{(x, x): x \in \mathbb{R}^{n}\right\}$. (The topology on X is the subspace topology of the product topology.) Prove that X is homeomorphic to $S^{n-1} \times R^{n+1}$.
3. Prove that the two following definitions of a continuous function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ coincide:
(a) If $U \subseteq \mathbb{R}^{n}$ is open, then $f^{-1}(U)$ is also open.
(b) For every $a \in \mathbb{R}^{n}$ and every $\varepsilon>0$, there exists $\delta>0$ such that for all $b \in \mathbb{R}^{n}$, if $\|b-a\|<\delta$, then $\|f(b)-f(a)\| \leq \varepsilon$.
4. Let $1 \leq r \leq n / 2$, the Kneser graph $K G_{n, r}$ is the graph with vertex set all the r-subsets of $[n]$, i.e. $V\left(K G_{n, r}\right)=\{S \subset[n]:|S|=r\}$. A pair of r-sets S, T form an edge in $K G_{n, r}$ if $S \cap T=\emptyset$. Show that the chromatic number of $K G_{n, r}$ is at most $n-2 r+2$.
5. (Gluing lemma for continuous functions) Let X be a topological space and A_{1}, \ldots, A_{n} closed subspaces of X such that $X=\cup_{i=1}^{n} A_{i}$. Let $f: X \rightarrow Y$ function between topological spaces. Show that f is continuous if and only if the restriction of f to each A_{i} is continuous.
6. Show that the connected components of a topological space X are closed subsets.
