Topological methods in combinatorics

Class work 2 - Homotopy and simplicial complexes

$$
\text { 14.03. } 2024
$$

Lemma 1. Let $f: X \rightarrow Y$ be a continuous function and \simeq an equivalence on X satisfying that $x_{1} \simeq x_{2}$ implies $f\left(x_{1}\right)=f\left(x_{2}\right)$. Then the function $\hat{f}:(X / \simeq) \rightarrow Y$ defined as $\hat{f}([x])=f(x)$ is continuous.
Lemma 2. A continuous function $f: X \rightarrow Y$ from a compact space X to a Hausdorff space Y is closed.

1. Show that the spaces $S^{1} \times S^{1}$ and $I \times I /\{(x, 0) \simeq(x, 1),(0, y) \simeq(1, y)\}$ are homeomorphic.
2. Decide whether S^{1} is homotopy equivalent to the trefoil:

3. Prove that X is contractible, i.e. homotopy equivalent to a point, if and only if for each Y is any continuous map $f: X \rightarrow Y$ nullhomotopic, i.e. homotopic to a constant map.
4. Show that the Möbius strip $M=I \times I /\{(x, 0) \simeq(1-x, 1)\}$ is homotopy equivalent to S^{1}.
5. Take a 2-dimensional sphere (in \mathbb{R}^{3}) and connect the north and south poles by a segment, obtaining a space X. Let Y be a 2 -dimensional sphere with a circle attached by one point to the north pole of the sphere. Show that X and Y are homotopy equivalent.
6. Let K be an abstract 2-simplex and $\operatorname{sd}(K)$ its barycentric subdivision. Show that $|K|$ and $|\operatorname{sd}(K)|$ are homeomorphic.
7. Let σ be geometric 2-simplex, show that its diameter is attained at a pair of vertices of σ.

Useful definitions

- I denotes the unit interval $[0,1] \subset \mathbb{R}$.
- Let $\left(X, \mathcal{O}_{X}\right)$ and $\left(Y, \mathcal{O}_{Y}\right)$ are two topological spaces. Their product $\left(X, \mathcal{O}_{X}\right) \times$ $\left(Y, \mathcal{O}_{Y}\right)$ is a topological space with the universe $X \times Y$ and topology $\{U \times V$: $\left.U \in \mathcal{O}_{X}, V \in \mathcal{O}_{Y}\right\}$.
- Let (X, \mathcal{O}) be a topological space, \simeq an equivalence on X, and $q: X \rightarrow X / \simeq$ a function mapping x to its equivalence class $[x]$. Then $(X, \mathcal{O}) / \simeq$ denotes the space with the universe X / \simeq and topology $\left\{U \subset(X / \simeq): q^{-1}(U) \in \mathcal{O}\right\}$.
- Continuous maps $f, g: X \rightarrow Y$ are homotopic, $f \sim g$, if there is a continuous $\operatorname{map} F: X \times[0,1] \rightarrow Y$ such that $F(\cdot, 0)=f(\cdot)$ and $F(\cdot, 1)=g(\cdot)$.
- Spaces $\left(X, \mathcal{O}_{X}\right)$ and $\left(Y, \mathcal{O}_{Y}\right)$ are homotopy equivalent, $X \simeq Y$, if there are continuous maps $f: X \rightarrow Y, g: Y \rightarrow X$ such that $g \circ f \sim \operatorname{id}_{X}$ and $f \circ g \sim \operatorname{id}_{Y}$.
- A simplex σ is a convex combination of a set $A \subset \mathbb{R}^{n}$ of affinely independent points. The dimension of σ is $\operatorname{dim} \sigma=|A|-1$. That is, 2 -simplex is a triangle.
- A family Δ of simplicies is a (geometric) simplicial complex if:
(i) each face of any simplex $\sigma \in \Delta$ is also a simplex of Δ,
(ii) the intersection $\sigma_{1} \cap \sigma_{2}$ of $\sigma_{1}, \sigma_{2} \in \Delta$ is a face of both σ_{1} and σ_{2}.

The union of all simplices in Δ is the polyhedron of Δ denoted by $|\Delta|$. The vertex set of Δ is the union of vertices of simplices in Δ.

- An abstract simplicial complex is a pair (V, K), where V is a set of vertices and K is a hereditary family of subsets of V, i.e. if $F \in K$ and $G \subseteq F$, then $G \in K$.
- Let K and L be abstract simplicial complexes. A mapping $f: V(K) \rightarrow V(L)$ is a simplicial mapping of K into L if for all $F \in K$ we have $f(K) \in L$.
- Let Δ_{1} and Δ_{2} be geometric simplicial complexes with K_{1} and K_{2} their abstract simplicial complexes. For a simplicial mapping $f: V\left(K_{1}\right) \rightarrow V\left(K_{2}\right)$, we define the mapping $|f|:\left|\Delta_{1}\right| \rightarrow\left|\Delta_{2}\right|$, an affine extension of f, as follows:
(i) for x a vertex of $\Delta_{1},|f|$ maps x to the position of vertex the $f(x)$ in $\left|\Delta_{2}\right|$,
(ii) otherwise, let $\sigma \in \Delta_{1}$ be the unique simplex with vertices v_{0}, \ldots, v_{k} such that $x=\sum_{i=0}^{k} \alpha_{i} v_{i}$ with $\alpha_{i}>0$ and $\sum_{i=0}^{k} \alpha_{i}=1$, then we put $|f|(x)=\sum_{i=0}^{k} \alpha_{i} \cdot|f|\left(v_{i}\right)$.
- For an abstract simplicial complex K, we define it barycentric subdivision $\operatorname{sd}(K)$ to be a simplicial complex whose vertices are faces of K. A subset of faces of K is a simplex of $\operatorname{sd}(K)$ if they form a chain ordered by inclusion.
- The diameter of a geometric simplex σ is the maximum distance between any two points of σ.

