Topological methods in combinatorics

Class work 1 – Basics of general and algebraic topology

29.02.2024

- 1. Let $f: (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ and $g: (Y, \mathcal{O}_Y) \to (Z, \mathcal{O}_Z)$ be a pair of continuous functions. Define $h: (X, \mathcal{O}_X) \to (Z, \mathcal{O}_Z)$ by setting h(x) = g(f(x)). Show that h defines a continuous function.
- 2. Show that an $f: X \to Y$ is continuous if and only if $\forall A \subseteq Y$, if A is closed, then $f^{-1}(A)$ is closed.
- 3. Construct an $f: X \to Y$ that is open (i.e., the image of an open set is an open set) but not continuous.
- 4. Decide and justify if the following functions are continuous
 - (a) $id: x \in (\mathbb{R}, \mathcal{O}_{\text{Euclid}}) \mapsto x \in (\mathbb{R}, \mathcal{O}_{\text{Discrete}}).$
 - (b) $id: x \in (\mathbb{R}, \mathcal{O}_{\text{Discrete}}) \mapsto x \in (\mathbb{R}, \mathcal{O}_{\text{Euclid}}).$
 - (c) Let $p(x_0, \ldots, x_n)$ be a polynomial on variables x_0, \ldots, x_n with real coefficients, define $eval_p: x \in (S^n, \mathcal{O}_{\text{Euclid}}) \mapsto p(x) \in (\mathbb{R}, \mathcal{O}_{\text{Euclid}}).$
- 5. Show that $f: X \to Y$ is a homeomorphism if and only if f is continuous, bijective and open/closed.
- 6. (Product topology) Let (X, \mathcal{O}_X) and (Y, \mathcal{O}_Y) be topological spaces. The cartesian product $X \times Y$ has the collection $\{U \times V : U \in \mathcal{O}_X, V \in \mathcal{O}_Y\}$ as basis. Decide if $(\mathbb{R}^2, \mathcal{O}_{Euclid})$ and $\mathbb{R} \times \mathbb{R}$ with the product topology are homeomorphic.
- 7. (Quotient topology) Let (X, \mathcal{O}_X) topological space and \simeq an equivalence relation on the elements of X. The topology on X/\simeq on the equivalence classes is given by $q: X \to X/\simeq$, $U \subset X/\simeq$ is open if and only if $q^{-1}(U)$ is open. Show that $[0, 1]/\{0, 1\}$ and S^1 are homeomorphic.
- 8. Show that \mathbb{R} , $S^1 \setminus \{(0,1)\}$ and (0,1) are homeomorphic.
- 9. Show that S^1 and $\partial([0,1]^2)$ are homeomorphic.
- 10. Prove that a topological space X is Hausdorff if and only if the diagonal $\Delta = \{(x, x) \in X \times X : x \in X\}$ is closed in $X \times X$.
- 11. Let $f, g: X \to Y$ be continuous. If Y is Hausdorff, then $\{x \in X : f(x) = g(x)\}$ is closed in X.

Useful definitions

- Topological space: $(X, \mathcal{O}) : \mathcal{O} \subseteq \mathcal{P}(X), \emptyset \in \mathcal{O}, X \in \mathcal{O}, \text{ and } \mathcal{O} \text{ is closed under arbitrary union and finite intersection.}$
- For a metric space (X, d), where $d : X \times X \to \mathbb{R}^+_0$ is a metric, we can define a topology \mathcal{O}_d by taking all open balls $B(x, \varepsilon) = \{y \in X : d(x, y) \le \varepsilon\}$, and then closing the family under union. (In other words, we take the family of all open balls as the basis of the topology.)
- For a topology \mathcal{O} , its basis is $\mathcal{B} \subseteq \mathcal{O}$ such that every $U \in \mathcal{O}$ can be written as a union of members of \mathcal{B} .
- The discrete topology on X is $\mathcal{O}_{\text{Discrete}} = \mathcal{P}(X)$.
- A function $f: (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ is continuous if $\forall A \in \mathcal{O}_Y, f^{-1}(A) \in \mathcal{O}_X$.
- A bijection $f: (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ is a homeomorphism if f and f^{-1} are both continuous.
- The *n*-sphere is $S^n := \{x \in \mathbb{R}^{n+1} : ||x||_2 = 1\}.$
- A topological space (X, \mathcal{O}) is Hausdorff, if for all $x \neq y \in X : \exists U_x, U_y \in \mathcal{O}$ that are disjoint (and open) such that $x \in U_x, x \notin U_y$, and $y \in U_y, y \notin U_x$.
- A topological space X is connected if it can't be written as a union of two disjoint open sets.
- Connected components of X are inclusion-wise maximal subsets that are connected (as subspaces of X).