
INTRO TO APPROXIMATION � HW1
TSP and friends

Every task is worth two points. Deadline: 16. 11. 2016 23:59 via email. Please send PDFs only.
High-quality scans (with high-quality handwriting) are acceptable. Do not be afraid to email me if
any task is unclear to you.

Exercise one In the Steiner tree problem we get on input a connected undirected graph
G = (V,E), an edge cost function c : E → R+, and �nally a list of terminals S ⊆ V . A feasible
solution to our problem is any subset of edges E ′ ⊆ E so that the graph G′ = (V,E ′) has all the
terminals in one connected component. We aim to minimize the cost, i.e.

∑
e∈E′ c(e). Your task is to

design a 2-approximation algorithm.

Hint: The graph does not need to satisfy the triangle inequality. First, think about the case when it
does (it should be easy then). To solve the general case, try to use some of the techniques from the
TSP approximation.

Exercise two Consider the problemMaxSat � given a CNF Boolean formula with clauses
of any size, we need to �nd an assignment that satis�es as many clauses as possible (even if the full
formula is unsatis�able).

We will analyze the following algorithm:

�Try setting all variables to 0 and compute how many clauses we have satis�ed. Then, try setting all
variables to 1 and compute how many clauses we have satis�ed. Take the bigger of the two values
and return it as the approximation.�

1. Thoroughly analyze the approximation ratio of the algorithm; that is, prove that it is an r-
approximation algorithm and also prove that it is not an r′-approximation for any r′ < r.

2. Let us consider any constant-testing algorithm � such an algorithm does the same thing as the
one described above, but instead of two assignments, it tests c pre-selected assignments, where
c is a constant not dependent on the input. (An assignment is any in�nite sequence of 0/1
values, where we assign the �rst value to x1, the second value to x2 and so on, until we run out
of variables.)
What is the tight approximation ratio of any constant-testing algorithm? Again, you need to
�nd a number r2 such that some constant-testing algorithm is an r2-approximation and prove
that no constant-testing algorithm is strictly better than an r2-approximation.

Exercise three Given a directed graph ~G with distance function d : ~E → R+, design and
analyze a polynomial-time algorithm for �nding the directed circuit which is shortest on average �

it is a circuit minimizing
∑

~e∈~C
d(~e)

| ~C|
.

Keep in mind that the shortest averaged circuit can often be longer and have more edges than the
shortest circuit overall.

Exercise four Assume there is a polynomial-time algorithm for �nding the shortest aver-
aged circuit (see above).

Consider the following algorithm for asymmetric TSP on n elements with the asymmetric function
d : {1, . . . , n} × {1, . . . , n} → R+ which satis�es the triangle inequality:

1. We �nd a directed circuit ~C in the metric which minimizes
∑

~e∈~C
d(~e)

| ~C|
.

2. We add all the edges ~E(~C) to the solution.

3. We remove all vertices of ~C except one. We continue recursively until only one vertex remains.
4. We use shortcutting on the Eulerian walk and return a directed Hamiltonian circuit.



Prove that the previous algorithm is an O(log n)-approximation for asymmetric TSP.

Bonus exercise

We know from the lecture that the Christo�des algorithm satis�es ALG ≤ 3
2
OPT, where ALG is the

value of the solution for the algorithm and OPT is the value of the minimum/optimum solution.

Let us refresh linear programming by proving that for Christo�des algorithm, it is also true that
ALG ≤ 3

2
OPTLP, where OPTLP is the optimum value of the following linear relaxation:

(P ) : min
∑
e∈E

cexe

∀v ∈ V :
∑
e=vx

xe = 2

∀S ( V, S 6= ∅ :
∑

e∈E(S,V \S)

xe ≥ 2

∀e ∈ E : 0 ≤ xe ≤ 1

The battle plan is as follows:

1. First verify that ALG ≤ 3
2
OPTLP implies the original claim of ALG ≤ 3

2
OPT.

2. Next, prove that for an optimum solution x∗ of the LP (P ) (that is precisely the point of value
OPTLP) it holds that

n−1
n
x∗ is a point inside the spanning tree polytope for the same graph.

3. Finally, use point 2 and �nish the claim that ALG ≤ 3
2
OPTLP.

If you do not remember, the spanning tree polytope is the polytope given by these linear constraints:

∑
e∈E

xe = n− 1

∀S ( V, S 6= ∅ :
∑

e∈E(S,V \S)

xe ≥ 1

∀e ∈ E : xe ≥ 0

The matching polytope looks like this:

∀v ∈ V :
∑
e=vx

xe ≤ 1

∀S ( V, S 6= ∅, |S|odd :
∑

e∈E(S,V \S)

xe ≥ 1

∀e ∈ E : xe ≥ 0


