3. CVIČENÍ Z ÚVODU DO APROXIMACÍ

EXERCISE ONE Consider the classic NP-hard KNAPSACK PROBLEM, where we have n objects a_1, \ldots, a_n , each object has a weight w_i and cost c_i , and our bag has a weight limit of B.

Find a greedy 2-approximation algorithm for this problem.

EXERCISE TWO Consider SCHEDULING WITH DEPENDENCIES: we schedule jobs of different lengths on m computers (m is a part of the input), but we also have a *dependence graph* on the jobs, and we can schedule a job only when all its dependencies are completed.

Find a greedy 2-approximation algorithm for this problem.

EXERCISE THREE You may recall MAX SAT from the last exercise session, where we formulated a randomized approximation algorithm for it. This algorithm was effective for clauses of length 2 or more, but when there were too many clauses of type (x_i) or $(\neg x_j)$, it was only a 1/2-approximation.

Let us prove that we can assume the input is a little bit nicer:

- 1. Prove the following: Suppose we have a *c*-approximation algorithm for a subset of MAX SAT it only works on inputs which contain no negative mono-clauses like $(\neg x_i)$. Then we can transform it into a *c*-approximation algorithm for MAX SAT on all inputs.
- 2. Prove that the same holds for WEIGHTED MAX SAT, where each clause has weight w_i and we maximize the weighted sum of satisfied clauses, i.e. $\max \sum_i w_i C_i$.

EXERCISE FOUR We have learned from the previous exercise that we can only deal with MAX SAT on inputs that contain no negative mono-clauses like $(\neg x_i)$. We should use this fact to choose a better probability p, which we use in the randomized algorithm for setting a variable to 1:

- 1. Prove that if all variables x_i are randomly set to be true with probability $p > \frac{1}{2}$, then the probability of satisfying a clause is at least $\min(p, 1 p^2)$.
- 2. Choose a good p and finish the analysis of the suggested randomized algorithm for MAX SAT.

EXERCISE FIVE We now consider MAX DICUT. On the input we get a directed graph $G = (V, \vec{E})$ and a non-negative weight function on the edges. Our task is to find a subset of vertices S so that $\vec{E}(S, V \setminus S)$ (the edges directed from S to the rest) have maximum possible weight.

Suggest a probabilistic $\frac{1}{4}$ -approximation algorithm for MAX DICUT.

EXERCISE SIX Let us try to improve on our algorithm for MAX DICUT:

- 1. Suggest a natural $\{0, 1\}$ -integer program solving MAX DICUT.
- 2. Choose each vertex v_i with probability $1/4 + x_i^*/2$, where x_i^* is the optimum of the linear relaxation of the previous integer program. Show that it is a 1/2-approximation.