3. CVICENI Z UVODU DO APROXIMACI greed, cut, SAT

EXERCISE ONE Consider the classic NP-hard KNAPSACK PROBLEM, where we have n ob-
jects aq,...,a,, each object has a weight w; and cost ¢;, and our bag has a weight limit of B.

Find a greedy 2-approximation algorithm for this problem.

EXERCISE TWO Consider SCHEDULING WITH DEPENDENCIES: we schedule jobs of different
lengths on m computers (m is a part of the input), but we also have a dependence graph on the jobs,
and we can schedule a job only when all its dependencies are completed.

Find a greedy 2-approximation algorithm for this problem.

EXERCISE THREE You may recall MAX SAT from the last exercise session, where we formu-
lated a randomized approximation algorithm for it. This algorithm was effective for clauses of length 2
or more, but when there were too many clauses of type (z;) or (—z;), it was only a 1/2-approximation.

Let us prove that we can assume the input is a little bit nicer:

1. Prove the following: Suppose we have a c-approximation algorithm for a subset of MAX SAT
— it only works on inputs which contain no negative mono-clauses like (—z;). Then we can
transform it into a c-approximation algorithm for MAX SAT on all inputs.

2. Prove that the same holds for WEIGHTED MAX SAT, where each clause has weight w; and we
maximize the weighted sum of satisfied clauses, i.e. max ), w;C;.

EXERCISE FOUR We have learned from the previous exercise that we can only deal with
MAX SAT on inputs that contain no negative mono-clauses like (—x;). We should use this fact to
choose a better probability p, which we use in the randomized algorithm for setting a variable to 1:

1. Prove that if all variables z; are randomly set to be true with probability p > %, then the

29
probability of satisfying a clause is at least min(p, 1 — p?).
2. Choose a good p and finish the analysis of the suggested randomized algorithm for MAX SAT.

EXERCISE FIVE We now consider MAX DicuT. On the input we get a directed graph
G = (V, E) and a non-negative weight function on the edges. Our task is to find a subset of vertices
S so that E(S,V '\ 9) (the edges directed from S to the rest) have maximum possible weight.

Suggest a probabilistic }L—approximation algorithm for MAX DICUT.

EXERCISE SIX Let us try to improve on our algorithm for MAX DicuUT:

1. Suggest a natural {0, 1}-integer program solving MAX DICUT.
2. Choose each vertex v; with probability 1/4 + z}/2, where z} is the optimum of the linear
relaxation of the previous integer program. Show that it is a 1/2-approximation.



