
3. CVIČENÍ Z ÚVODU DO APROXIMACÍ greed, cut, SAT

Exercise one Consider the classic NP-hard Knapsack problem, where we have n ob-
jects a1, . . . , an, each object has a weight wi and cost ci, and our bag has a weight limit of B.
Find a greedy 2-approximation algorithm for this problem.

Exercise two Consider Scheduling with dependencies: we schedule jobs of different
lengths on m computers (m is a part of the input), but we also have a dependence graph on the jobs,
and we can schedule a job only when all its dependencies are completed.
Find a greedy 2-approximation algorithm for this problem.

Exercise three You may recall Max Sat from the last exercise session, where we formu-
lated a randomized approximation algorithm for it. This algorithm was effective for clauses of length 2
or more, but when there were too many clauses of type (xi) or (¬xj), it was only a 1/2-approximation.
Let us prove that we can assume the input is a little bit nicer:

1. Prove the following: Suppose we have a c-approximation algorithm for a subset of Max Sat
– it only works on inputs which contain no negative mono-clauses like (¬xi). Then we can
transform it into a c-approximation algorithm for Max Sat on all inputs.

2. Prove that the same holds for Weighted Max Sat, where each clause has weight wi and we
maximize the weighted sum of satisfied clauses, i.e. max

∑
i wiCi.

Exercise four We have learned from the previous exercise that we can only deal with
Max Sat on inputs that contain no negative mono-clauses like (¬xi). We should use this fact to
choose a better probability p, which we use in the randomized algorithm for setting a variable to 1:

1. Prove that if all variables xi are randomly set to be true with probability p > 1
2
, then the

probability of satisfying a clause is at least min(p, 1− p2).
2. Choose a good p and finish the analysis of the suggested randomized algorithm for Max Sat.

Exercise five We now consider Max Dicut. On the input we get a directed graph
G = (V, ~E) and a non-negative weight function on the edges. Our task is to find a subset of vertices
S so that ~E(S, V \ S) (the edges directed from S to the rest) have maximum possible weight.
Suggest a probabilistic 1

4
-approximation algorithm for Max Dicut.

Exercise six Let us try to improve on our algorithm for Max Dicut:
1. Suggest a natural {0, 1}-integer program solving Max Dicut.
2. Choose each vertex vi with probability 1/4 + x∗

i /2, where x∗
i is the optimum of the linear

relaxation of the previous integer program. Show that it is a 1/2-approximation.


