
INTRODUCTION TO APX � HW2
greedy algs, SAT, LP and more

Exercise one On the input for Maximum k-cut we get an undirected graph G and
weights on the edges w : E(G) → R+. Our goal is to partition the vertices into k disjoint sets
V1, V2, . . . , Vk so that we maximize the sum of all �multicolored� edges (those that go from any one
set to any other set).

Suggest and analyze a probabilistic k−1
k
-approximation algorithm for Maximum k-cut.

Solution. The algorithm is easy enough: for every vertex we throw a k-sided die and put it into the
partition assigned by the die.

Our expected value is then

E[value] =
∑
uv∈E

w(uv)P [uv is multicolored ] =
∑
uv∈E

w(uv)P [uin di�erent bin than v] =

=
∑
uv∈E

w(uv)(1− 1/k) =
∑
uv∈E

w(uv)

(
k − 1

k

)
.

Clearly
∑

uv∈E w(uv) ≥ OPT and we are done.

Exercise two You might recall the algorithm LP-Sat for the problem Max Sat from
the lecture. After combining with the naive Rand-Sat, we have produced a 3/4-approximation
algorithm.

We try to avoid the combining part and apply another trick instead: we start with the optimal solution
(y∗, z∗) for the exact same LP as in the algorithm LP-Sat but instead setting P [xi = 1] = y∗i we set
the probability to be P [xi = 1] = f(y∗i ), where the function f : [0, 1]→ [0, 1] is de�ned as follows:

f(p) =


3p
4
+ 1

4
for 0 ≤ p ≤ 1

3
1
2

for 1
3
≤ p ≤ 2

3
3p
4

for 2
3
≤ p ≤ 1

Prove that this choice (without any sort of combination) leads to a 3
4
-approximation algorithm for

Max Sat.

Solution. The key to solving this exercise is to simplify as much as possible and then think about
what we want to prove.

First we recall the LP in LP-Sat:

max
∑

c clause

yc

∀c clause :
∑

xi appears positive in c

xi +
∑

xiappears negative in c

(1− xi) ≥ yc

∀c clause : yc ≤ 1

∀i : xi ≥ 0

As is customary in randomized algorithms, we will argue clause by clause, as their expectation of
being true is independent by linearity of expectation.) Formally:



E[algorithm] =
∑

c clause

E[c] =
∑

c clause

P [c satis�ed].

What can we simplify next? Well, we notice that our function f is symmetric in terms of switching
between xi and ¬xi. Therefore, as in the lecture on LP-Sat, we can assume without loss of generality
that our clause contains only positive literals.

We also move from P [c satis�ed] to (1 − P [c unsatis�ed]), as the second probability is just a big
product depending on the optimum vector x∗, as we see below:

P [c unsat] =
∏
x∗
i≤

1
3

(1− f(x∗i ))
∏

1
3
≤xi≤ 2

3

1

2

∏
x∗
i≥

2
3

(1− f(x∗i )) =
∏
x∗
i≤

1
3

(
3

4
− 3x∗i

4
)
∏

1
3
≤xi≤ 2

3

1

2

∏
x∗
i≥

2
3

(1− 3x∗i
4

).

The product on the right is the probability that a clause c is unsatis�ed. Our goal is a 3/4 approxi-
mation, so we would like the probability to be always less than 1/4, but this is too ambitious. Indeed,
if we were able to prove that immediately for all clauses, we would not use the LP bound on the
optimum � that would be highly suspicious!

To use the LP bound, we would like to prove the following:

∏
x∗
i≤

1
3

(
3

4
− 3x∗i

4
)
∏

1
3
≤xi≤ 2

3

1

2

∏
x∗
i≥

2
3

(1− 3x∗i
4

) ≤ 1−
∑

i|xi appears in c

3x∗i
4

.

Indeed, if we can prove this, we can use it the following calculation, where we also use the LP
inequality

∑
i|xiappears in c xi ≥ yc and the standard fact that LP optimum is a lower bound on OPT :

E[algorithm] =
∑

c clause

(1− P [c unsatis�ed]) ≥
∑

c clause

(
∑

i|xi appears in c

3x∗i
4

.) ≥
∑

c clause

3yc
4
≥ 3OPT

4
.

However, if we can prove the product to be below 1/4 as described above, we have that probability
of satisfying is at least 3/4, which is certainly more than 3yc

4
for any one clause.

In summation, our setting and goal is as follows:

For a CNF clause c with no negative literals, we have the expression:

∏
x∗
i≤

1
3

(
3

4
− 3x∗i

4
)
∏

1
3
≤xi≤ 2

3

1

2

∏
x∗
i≥

2
3

(1− 3x∗i
4

).

We �win� (and complete our argument) if:

• we can prove that the expression is less than or equal 1/4;

• or if we can prove that the expression is less than or equal 1−
∑

i|xi appears in c
3x∗

i

4
.

What helped me personally is to imagine the proof of the inequality∏
x∗
i≤

1
3

(
3

4
− 3x∗i

4
)
∏

1
3
≤xi≤ 2

3

1

2

∏
x∗
i≥

2
3

(1− 3x∗i
4

) ≤ 1−
∑

i|xi appears in c

3x∗i
4

.

as a game between the left-hand side and the right-hand side. In the beginning, we have no variables
on either side, so there is an empty product (1) on the left-hand side and 1 − 0 on the right-hand
side.



We continue the game by multiplying a number on the left-hand side (corresponding to one x∗i )
and subtracting a value on the right-hand side. If we can prove in every step of the game that the
inequality is preserved, we �win�. We can also win immediately by a �wild card� if the left-hand side
drops below 1/4.

We start our argument by noting how the value of x∗i in�uences the left-hand and right-hand side:

• x∗i >
2
3
: LHS multiplied by a number in [1

4
, 1
2
), RHS subtracts a number in (1

2
, 3
4
].

• 2
3
≥ x∗i ≥ 1

3
: LHS multiplied by exactly 1

2
, RHS subtracts a number in [1

4
, 1
2
].

• x∗i <
1
3
: LHS multiplied by a number in (1

2
, 3
4
], RHS subtracts a number in [0, 1

4
).

From these we can easily deduce the following observations, which we state without proof:

1. One step of the game with x∗i >
2
3
or 2

3
≥ x∗i ≥ 1

3
preserves the inequality.

2. There cannot be two variables with x∗i ≥ 1
3
or LHS drops below 1

4
.

The remaining case is to deal with several variables of type x∗i < 1
3
which decrease both sides only

slightly. Let us rephrase the �nal situation in a more general way:

• We have LHS A and RHS B, with 1
4
< A ≤ B ≤ 1. We have a value p < 1

3
.

• We multiply A by (3
4
− 3p

4
) and we subtract 3p

4
from RHS.

• We know that the new A′ ··= (3
4
− 3p

4
)A satis�es A′ > 1

4
.

• The new B′ ··= B − 3p
4
.

• We want to prove that A′ ≤ B′ � for contradiction we can assume that A′ > B′.

There are several ways to �nish this argument. Personally, I prefer the �lazy� way � just plug these
inequalities into Wolfram Alpha, which concludes there is no solution � and so A′ ≤ B′ after every
step of the game with x∗i <

1
3
.

Therefore, after all steps of the game, either the LHS is below 1
4
or the inequality

∏
x∗
i≤

1
3

(
3

4
− 3p

4
)
∏

1
3
≤xi≤ 2

3

1

2

∏
x∗
i≥

2
3

(1− 3p

4
) ≤ 1−

∑
i|xiappears in c

3x∗i
4

holds. Knowing this, we prove the 3
4
-approximation using the LP bound as above.

Exercise three Consider the problem of Graph balancing, where you get an undirected
graph G with weights on the edges p : E(G) → R+. Our goal is to make the graph directed so
that the most loaded vertex (the vertex with the most weight directed towards it) has minimum
possible load. Formally we seek an orientation of the edges which minimizes the goal function u =
maxv∈V

∑
e∈E;e directed to v.

Suggest and analyze a 2-approximation algorithm for the problem.

Tip: Linear programming might come in handy.

Solution.

We �rst design an ILP relaxation for this problem, using [0, 1]-variables xe→u and xe→v to denote
whether e is assigned to u or v. The program is as follows:

min p

∀v ∈ V :
∑
uv∈E

p(uv)xuv→v ≤ p

∀uv ∈ E : xuv→u + xuv→v = 1

∀v ∈ V, ∀uv ∈ E : xuv→v ≥ 0



After solving the LP and getting the optimal vector x∗ and the value p∗, we aim to round it so we
get an integral approximate solution. Here we can use that xuv→u + xuv→v = 1 and use the idea from
2-approximation of Vertex Cover � just round the number that is at least 0.5 to 1. A quick check
of the inequalities reveals that indeed, this solution increases p to at most 2p, and from the fact that
p∗ ≤ OPTILP = OPT (a linear program must have a lower value than an integer program) we have
our proof of 2-approximation.

Exercise four In the metric k-supplier problem we get m+ n points on input, where
m of them are (in advance) marked as suppliers and the rest are consumers. Between all those points
is a metric (with a triangle inequality as usual). Our task in this case is to select k suppliers so that
we minimize the longest distance between a customer and its closest supplier.

Suggest and analyze a 3-approximation algorithm for the k-supplier problem.

Tip: This problem is related to the k-center problem, which is going to be presented at the
exercise session and if you miss it, you can also read about it in the Williamson, Shmoys book,
chapter 2.2.

Solution. We will proceed in an analytical fashion to show the process of �guring out the solution.

Recalling the k-center problem, we consider the optimum placement of the k suppliers and balls
of radius OPT around each optimal supplier sOPT (by ball of radius r we just mean the set of all
suppliers and consumers within distance r, as de�ned by the metric of the problem).

As in k-center, we know that (by optimality) all consumers are located within these k balls. In
the analysis of k-center, we claimed that all centers selected by our algorithm are also within these
k balls, and in fact every ball contains at least one of those.

We will use to our advantage that we have a di�erent approximation ratio to prove � here we can use
3-approximation instead of just 2. This means we can increase the balls. How much can we enlarge
them?

Setting them to 2OPT is a natural choice, and a right one � if we can prove that every ball of radius
2OPT contains at least one supply center sALG selected by the algorithm, then ALG ≤ 3OPT . This
will be true because the distance from sALG to sOPT is at most 2OPT , and the distance from sOPT

to any consumer point c covered by sOPT is OPT by the assumption of optimality. In total, we get
d(sALG, c) ≤ 3OPT .

A snag in the k-supplier problem is that there can be possible supplier centers completely outside
every ball, and the algorithm could have erroneously selected those instead of the suppliers within
the balls. You can imagine one (very bad) supply center being 100cm away while OPT is just 1cm.

To eliminate the bad supply centers, we look at one possible consumer (located in at least one ball
of radius 2OPT ). We observe that all points within distance OPT to this consumer (including the
optimal supply center and possibly other supply centers) are within the ball of radius 2OPT as well.

We cannot teach the algorithm to ignore all supply centers further than OPT from any customer �
the algorithm does not know OPT in advance. We need to use a lower bound on OPT and ignore
all supply centers further away than this lower bound.

A natural lower bound for one consumer c is just d(c, s) for the nearest supply point s. Any other
supply point chosen by the algorithm or optimum has to be in distance at least d(c, s).

We therefore separate supply points into two groups: A supply point s is interesting if there exists a
consumer which has s as the closest supply point to it. The rest are uninteresting.

Looking back, we see that our choice is a good one � for any supply point sOPT of the optimum, the
ball of radius 2OPT contains all interesting points for every consumer c with d(sOPT , c) ≤ OPT .
In other words, if our algorithm chooses only interesting points, it will never select a point that is
outside every ball.



What remains is to give an algorithm and show that indeed, our algorithm does not select two points
from the same ball while leaving one ball completely empty.

A possible algorithm is the following:

1. Choose one interesting point as a supply center arbitrarily.
2. Then, choose every next interesting point that minimizes the current maximum the most.

Proceed until you place all k points.

The rest of the analysis of this algorithm is the same as for the k-center problem.


