
INTRODUCTION TO APX - PRACTICAL 2 randomness in computer science

Exercise one Warmup with tokens. Consider 10 tokens with values 1, 2, . . . , 10. If we
split them into two groups – even valued and odd valued – the average of the odd group is 5 and the
average of the even group is 6. Prove or disprove the following:

1. Can we reorder the tokens into two different groups so that the average of both groups increases?
2. Can we reorder the tokens into two different groups so that the average of both is above 5.5?

Exercise two Card tricks. An exercise heard at the lecture: we have 52 cards, half
red, half black, randomly shuffled (a uniformly random permutation). We now reveal one card after
another. Before each card you have the option of saying “I want the next card”. Then we reveal the
next card and you win if it is red, and the game ends if it is black. We are interested in the best
algorithm, that is one maximizing the probability that it wins.

1. What is the probability of winning for the algorithm Fi ≡ “always pick the first card”? And
what is the probability for La ≡ “always pick the last card”?

2. Let us search for a “better” algorithm compared to La in the following sense: We want to find
an algorithm B for which it is true that with probability strictly greater than 1/2, assuming
that La pointed at a black card, B points at a red card. What is the major problem with such
a notion of “better”?

3. Now let us return to the original notion of quality and consider the following algorithm that
aims to be better than La: “We keep revealing cards until we have more black cards revealed
than red cards revealed. In such a situation, we stop: clearly in the deck there remain more red
cards and our probability of picking the next card is strictly more than 1/2. This situation is
very likely to happen; after all, the expected number of red cards and black cards in the revealed
section is 0 on even turns, so the color balance has to fluctuate around that. In the worst case
when this never happens, we pick the last card, so we are at least as good as La.”
Try to brainstorm a few informal/intuitive arguments that show or disprove that this new
algorithm is better than La.

4. Our main and final task: find an algorithm which chooses the red card with probability strictly
more than 1/2 – or prove that no such algorithm exists.

Exercise three Maximizing satisfiability. In the maximization problem Max-Sat we
get on input a Boolean formula (expression) in the CNF form ((x1∨¬x2)∧(x2∨x3)∧. . .). Throughout
this exercise we will assume that every clause has at least two literals. Our task is not to check whether
the entire clause is satisfiable, but to maximize the number of clauses that are satisfied.

1. Consider the following algorithm A: “we take two assignments: one sets every variable to 1, one
every variable to 0. We then return the assignment which satisfied more clauses.” What is the
approximation ratio of this deterministic algorithm?

2. We strengthen A as follows: consider any algorithm B such that it tries constantly many
assignments that are fixed before the input (similarly to A). It tries evaluating them all and it
returns the best one. An assignment is any function p : N→ {0, 1}, so it can be applied to any
possible formula on input. What is the best approximation ratio that B achieves?

3. Recall from the lecture: What if we try a uniformly random assigment? Compute the expected
number of satisfied clauses in this case.

4. Is Max-k-Sat as hard as k-Sat? No, it is not. First let us verify that 2-Sat (on input we have
a CNF formula with at most two literals per clause, and we have to check whether the formula
is satisfiable) is polynomial-time solvable.

5. Show that Max-2-Sat (On input we get a number c and a CNF formula with at most two
literals per clause and we have to decide whether there is an assignment satisfying at least c
clauses) is NP-hard.


