
INTRODUCTION TO APX - HW1
TSP and friends

Every task is worth two points. Deadline: 10. 11. 2015 17:19. Solutions can be sent via email or
handed to me in person.

Exercise one

1. Find a class of graphs showing that the algorithm for metric TSP that uses the minimum
spanning tree tour is no better than a 2-approximation.

2. Find a class of graphs showing that Christo�des' algorithm for metric TSP is no better than a
3/2-approximation.

In both cases we look for an in�nite class of graphs which has a strictly increasing number of vertices,
i.e. we want {Gi|i ∈ N} so that ∀i ∈ N : |V (Gi+1)| > |V (Gi)|. That is a reasonable request; after
all, if the tight bound would hold only for graphs with 20 vertices or less, and the algorithm would
be 1.25-approximation for larger graphs, we would say that the algorithm is asymptotically a 1.25-
approximation.

In this example we do not require tight bounds for small graphs, which means you can for instance
prove that Christo�des' algorithm on a graph Gi is no better than a (3/2−xi)-approximation, where
xi → 0. In other words, if your example will �clearly show� that in the limit the bound is 3/2, you
are done.

Solution. Our main gadget will be a wheel � n vertices c1, c2, . . . cn connected in a cycle C and an
extra vertex s (the center) with additional edges (called spokes) sc1, sc2, . . . , scn.

In our �rst example, we set the edges of C to be of length 1 and the spokes to be of length 1. We
choose the minimum spanning tree which takes all the spokes � of length n.

What is also important is the order of the vertices in the spanning tree, as we will use the order in the
shortening part of the doubling algorithm. Since there was no restriction on the order in the exercise,
we can assume a very bad order � for instance, we can take the order s, c1, c3, c5, c7, . . . followed by
c2, c4, c6, c8 . . ..

When we double the spanning tree, our total length will be 2n. When we do the shortening, we note
that we cannot shorten anything, because the distance d(c1, c3) = 2 is the same in the spanning tree
and in the metric. (Here we used our assumption on the order of the vertices.)

The optimal TSP is of length n+ 1, because the graph is hamiltonian. The ratio is 2n/n+ 1, which
is 2 in the limit, as promised.

In our example for Christo�des, we assume n is even, set the edges of C to be of length 1 and the
spokes to be of length 1− ε for some 0 < ε < 1/n. The spanning tree is the same, except this time
the spanning tree is of length n− εn.
One of the minimum-cost matchings for the odd-degree vertices of our spanning tree is the following:
we connect every odd-numbered vertex c2i−1 with the even-numbered vertex c2i.

Our TSP tour is now of length n + n/2 − εn, which is okay as the optimal TSP tour is of length
n+1−2ε (we could just traverse the cycle C of the wheel and visit s last). Except for the shortcutting,
we have the desired bound 3n/2.

Indeed, if we had a bad order on the vertices, we could visit s, c1, c2 and follow this by c3, which we
could shortcut. Therefore, we need to argue that our traversal visits some other vertex cj afterwards.
But, as we argued before,i we can choose the order of the vertices (the algorithm does not specify
it), so we just choose a bad one.

Exercise two Consider the following algorithm for asymmetric TSP on a graph ~G with



a given distance function d : ~E → R+:

1. We �nd a directed circuit ~C in ~G which minimizes
∑

~e∈~C
d(~e)

| ~C|
.

2. We add all the edges ~E(~C) to the solution.

3. We remove all vertices of ~C except one. We continue recursively until ~G is only a single vertex.

Your task is:

• Explain how we can achieve point 1 in polynomial time.
• Prove that the previous algorithm is an O(log n)-approximation for asymmetric TSP.

Solution: Point 1 in polynomial time. We use a dynamic program for computing the values
dk(x, y), which will be equal to the length of the shortest k-vertex walk between x and y. Note that
we allow vertices and edges to be repeated in this walk.

To compute d1(x, y) is easy � we just set it to be the distance d(x, y). To compute it for larger
k, we can use the recursion dk(x, y) = minz d

k−1(x, z) + d1(z, y). It looks deceptively simple, but
it actually can be computed this way. (Think for a moment why we cannot solve the Hamiltonian
circuit problem in arbitrary directed graphs using this recursion.)

Alright, so what if we �nd some minimum dk(x, x)/k and the walk minimizing dk(x, x) is not actually
a circuit? Here comes the trick: if a walk attains the minimum average value but it is not a circuit,

then it contains a shorter circuit that attains at most the same average value.

This follows from the fact that if the closed walk W can be split into two closed walks A and B
(which it always can if it is not a circuit itself), then E[W ] = E[A]+E[B] by linearity of expectation.

Therefore, our polynomial-time algorithm computes the table dk(x, x) and then �nds the minimum
value in it, going from smaller k to larger. The �rst occurence of the minimum value is exactly the
value of the smallest circuit. To �nd the circuit itself is done by the standard dynamic programming
argument.

Input format. First, let us discuss the actual setting of the problem. Asymmetric TSP is usually
de�ned on a complete directed graph ~G with edges in both directions with a pseudo-metric d : ~E(~G)→
R+ which satis�es a triangle inequality (but not symmetry).

A second way to specify input for asymmetric TSP is to give a directed graph ~H with edges and
non-edges and an arbitrary function d : ~E(~G) → R+ with no constraint on d; in this case, we think

of working with the shortest path pseudo-metric on the graph ~H.

In the exercise there is an algorithm speci�ed for an asymmetric TSP on a graph ~G. We can observe
that our setting must be the �rst one; with ~G a complete directed graph and d a pseudo-metric. This
is true because if ~G were de�ned as in the second case, then the algorithm does not work at all.

To see this, consider an undirected K5 and add a random direction to every edge (so that it is a
directed complete graph but every edge is present in only one direction). Then, set every edge to be
of distance 1.

If we choose any circuit of length four as our initial ~C in step 1, then removing ~C except for one
vertex leaves us with an acyclic graph of length 2, and so the algorithm cannot �nd any more cycles
and it fails.

By this argument we now know that if the algorithm is to be a O(log n)-approximation, it has to be

de�ned for the �rst setting, where ~G is a complete directed graph with edges in both directions and
d a full pseudo-metric with triangle inequality.

Note: If you have trouble with the exact setting of an exercise in the future, do not be afraid to ask
me via email.

Approximation factor. First of all, because of our problem setting, we know that OPT is a
Hamiltonian circuit.



In the �rst step of the algorithm, we know that d( ~C1)/| ~C1| ≤ d(OPT )/n from the de�nition of ~C1.

After deleting the vertices of ~C1 except one, we want to bound d( ~C2)/n2 by some function of OPT ,

where n2 = n−| ~C1|+1. Again, because of our setting, we can use the fact that the remaining (not-yet

deleted) edges in OPT \ V ( ~C1) can be completed into a Hamiltonian circuit OPT ′ on the smaller

graph ~G \ V ( ~C1) by shortcutting. We get that d(OPT ′) ≤ d(OPT ) from the triangle inequality.

As OPT ′ is a valid circuit, the minimal choice of ~C2 gives us that d( ~C2)/| ~C2| ≤ d(OPT ′)/n2 ≤
d(OPT )/n2. The same will hold for ~C3, ~C4 and so on, with n = n1 > n2 > n3 > n4 > nk > 1 being

the sequence of the remaining vertices in the graph ~G, as we remove one circuit after another.

We now proceed to bound d(T ), the total distance of the ATSP tour T of our algorithm. The

�rst circuit was of d( ~C1), which we can express as d( ~C1) = | ~C1| · d(
~C1)

| ~C1|
≤ | ~C1| · d(OPT )

n
. Similarly,

d( ~Ci) ≤ | ~Ci| · d(OPT )
ni

for i ≥ 2. Putting the bounds together, we see our total cost is

d(T ) ≤
k∑

i=1

| ~Ci| ·
d(OPT )

ni

= d(OPT ) ·

(
k∑

i=1

| ~Ci|
ni

)
.

We will be done when we show that the sum on the right is upper bounded by O(log n). This is an
easy exercise in combinatorics, but we include it here for completeness.

We �rst split the sum into two parts:(
k∑

i=1

| ~Ci|
ni

)
=

(
k∑

i=1

1

ni

)
+

(
k∑

i=1

| ~Ci| − 1

ni

)

The �rst part is clearly bounded from above by
∑n−1

i=0
1

n−i ≤ log n.

The second part seems to be more di�cult to bound, because it contains | ~Ci| − 1 in the numerator.

Suppose now for a second that | ~C1| = 4 and | ~C2| = 3. This means that n2 = n− 3. In this case, the
initial part of the sum can be written as:

3

n
+

2

n− 3
+ . . . =

1

n
+

1

n
+

1

n
+

1

n− 3
+

1

n− 3
+ . . .

The right-hand side of the last equation is bounded from above by
∑n−1

i=0
1

n−i , which is again at most
log n, and we have our total bound of O(log n).

Exercise three In the Steiner tree problem we get on input a connected undirected graph
G = (V,E), an edge cost function c : E → R+, and �nally a list of terminals S ⊆ V . A feasible
solution to our problem is any subset of edges E ′ ⊆ E so that the graph G′ = (V,E ′) has all the
terminals in one connected component. We aim to minimize the cost, i.e.

∑
e∈E′ c(e). Your task is to

design a 2-approximation algorithm.

Hint: The graph does not need to satisfy the triangle inequality. First, think about the case when it
does (it should be easy then). To solve the general case, try to use some of the techniques from the
TSP approximation.

Solution. We �rst observe that an optimum Steiner tree is always a tree, as there is no reason to
consider cycles or other graphs other than trees.

After learning this, our �rst idea should be some sort of spanning tree � either on all vertices or just
on the terminal vertices. Clearly, the former idea is a bad one, as there can be a very distant vertex
that is not part of the terminals and any optimum avoids it.



We now claim that the minimum spanning tree on just the terminal vertices is a 2-approximation in
the metric case.

Okay, suppose that we have some optimal tree OPT that also includes some other vertices. We wish
to bound our cost by 2c(OPT ), but we will do it in an indirect way. Consider a DFS traversal of the
tree OPT . From the DFS traversal, we create a list L of terminals by adding every terminal when
we �rst encounter it.

Now, we think of L as a path PL on the terminals � if the list is [t1, t2, t3], we go from t1 to t2 and
from t2 to t3. We claim that c(PL) ≤ 2c(OPT ). This follows from the fact that a DFS traversal visits
each edge of the tree OPT at most twice, and our shortcuts t1 − t2 and t2 − t3 are shorter than the
paths in OPT by triangle inequality.

To �nish the metric case, we just note that PL is a valid spanning tree on the terminals, and so the
minimum spanning tree has to be even shorter.

The general case works basically the same way, we just need to work with the shortest path metric.

Exercise four Consider a cubic 2-edge-connected graph G. The word cubic means that
every degree of the graph is equal to 3. The word 2-edge-connected means that the graph does not
contain a bridge, which is an edge whose removal disconnects the graph. The graph is not weighted,
so all the edges have distance one.

1. Show that any such graph has a TSP tour of length at most 4|E|/3.
2. Prove that the point (1/3, 1/3, 1/3, . . . , 1/3) lies always in the perfect matching polytope of G.
3. Prove that for G there exists a set of perfect matchings M1, . . .Mk of G and a corresponding

set of constants λ1 ≥ 0, λ2 ≥ 0, λ3 ≥ 0, . . . , λk ≥ 0,
∑k

i=1 λi = 1 having the following property:
if we take any perfect matching Mi randomly with probability λi, then for every edge e in the

whole E(G) it holds that P [e ∈Mi] = 1/3.

The perfect matching polytope is this one:

∀v ∈ V :
∑
e=vx

xe = 1

∀S ( V, S 6= ∅, |S| odd :
∑

e∈E(S,V \S)

xe ≥ 1

∀e ∈ E : xe ≥ 0

Solution.

1. If we take every edge once plus a perfect matching, we take |E|+ |E|/3 = 4|E|/3 edges and the
graph is now connected and has all degrees even. Why does this graph always have a perfect
matching? It is more or less an exercise from graph theory, but let me answer with a trick:
because the perfect matching polytope is non-empty! If it is nonempty, then there is at least
one vertex of the polytope, which is a perfect matching. And why is it nonempty? Because
(1/3, 1/3, . . . , 1/3) lies inside, as we claim in our next section.

2. We verify the conditions of the matching polytope. The �rst equality is clear: around every
vertex we total 1/3 + 1/3 + 1/3 = 1, as the graph has degree 3.
The second inequality needs a bit more thought. We look at any set S of odd size and the edges
going out of it. First of all, the sum on the edges cannot be equal to 1/3, because then there
would be a bridge � which is forbidden by 2-edge-connectedness. So why not 2/3? It turns out
that we have |S| odd, and the sum of the degrees in this set is 3|S|, which is an odd number �
so there has to be an odd number of edges going out of S. Therefore at least three edges have
to be going out, and the total sum is at least 1.



3. This is just an exercise in equivalent de�nitions. We know that P = (1/3, 1/3, . . . , 1/3) is a
point in the perfect matching polytope of our graph. From a linear optimization course, we
know this is equivalent to P being a convex combination of some (�nite) subset of vertices of
the perfect matching polytope.
Now, the vertices of the perfect matching polytope are just perfect matchings (we know this
again from a linear optimization course). And what does being a convex combination mean?
It means that there are λ1, λ2, . . . , λn ≥ 0 with

∑
i λi = 1 such that P =

∑
λiVi for the

aforementioned vertices/perfect matchings.
We therefore have that there is a set of perfect matchings and associated lambdas so that P
can be thought of as a convex combination of those. But those positive λi that sum up to 1 can
be also used to de�ne a probability distribution � indeed, if we take any Vi (a perfect matching)
with probability λi, we get the distribution/point P . Finally, we observe that a probability of
an edge belonging to this distribution P is precisely its coordinate � and all those are equal to
1/3, as we wanted.

Notes. This exercise is interesting because of the three following reasons:

• The arguments presented here is a starting step that leads to an improved approximation
algorithms that return a tour of length at most 4n/3 − 2/3 on subcubic bridgeless graphs
(there are more steps, though).
• You may have considered �nding 3 perfect matchings so that every edge is covered exactly
once; this would indeed prove the task 3.3. However, you cannot �nd them � in fact, there is a
large family of cubic 2-edge-connected graphs (called snarks) which cannot be partitioned this
way.
After learning of snarks, you could have considered �nding 6 perfect matchings so that every
edge is covered exactly twice. However, whether this is possible is an important open problem
called the Berge-Fulkerson conjecture.
• We have proven the equivalence of probability distributions of points and convex combination
of points. Our use of this was very simplistic, but this equivalence is a very useful fact which
is used as a basis of Lasserre hierarchies of semide�nite programs, which is a cutting-edge tool
in the theory of approximation algorithms.
To de�ne it in very broad terms, a hierarchy of level r creates a spectrum of pseudodistributions
which behave like distributions only if you look at probability events of size at most r. A hierar-
chy of level n is equivalent to a full probability distribution on the vertices of the polytope, but
it is often exponentially hard to compute � whereas O(1) levels can be computed in polynomial
time and they often su�ce to compute some sort of approximation.


