
OPT: HW1
Optimization Methods Summer 2014/15 Deadline: Saturday April 18 2015 at 8:00

General information

Your solutions should be sent to your Practical class TA, with the subject containing OPT: HW1.
Your task consists of creating a generator that creates a linear/integer program and its associated
documentation.

You will �nd a sample of the input data at the URL http://iuuk.mff.cuni.cz/~husek/opt-ukol1.

zip. 1

Besides the sample inputs denoted vstupi-x.txt, where i is the task number and x the id of the
input, the archive also contains various small inputs denoted -s and some (possibly) infeasible inputs
denoted -c.

A generator of an LP/IP instance is a program in any reasonable programming language, which
transforms the given input into an LP/IP instance described in the language GNU MathProg, which
then should be ran through the solver glpsol.

You will �nd a simple introductory guide at the URL http://iuuk.mff.cuni.cz/~bohm/texts/

mathprog_intro.html, the o�cial documentation can be found inside the glpk distribution itself or
alternatively at the address https://www3.nd.edu/~jeff/mathprog/glpk-4.47/doc/gmpl.pdf.

Your generator can read the input from the standard input or from a �le (given as a parameter of
the generator). The same is true for output.

After running the glpsol solver, the solver should print out a speci�c output dependent on the
exercise. See below for details. If your LP/IP has no solution, you do not need to output anything.
However, any such case should be described in the attached documentation.

The generator should be submitted as a source �le, not the compiled program. The following pro-
gramming languages are explicitly allowed: C, C++, Java, C#, Python, Perl, Bash. If you need any
other language, please check it with your TA. The source code of the generator should be human
readable and commented where necessary. On the other hand, the generated LP code can be as long
and unreadable as you require.

An alternate approach to constructing the LP/IP is to use the C bindings of the library glpk and
call the library yourself. You can choose this approach if you wish.

An important and mandatory part of the homework submission is the documentation, which should
contain:

1. Instructions on how to build the generator.
2. Instructions on how to operate the generator.
3. A brief description of the resulting LP/IP.
4. How to intepret situations when the IP/LP has no solution or has an unbounded solution.

The documentation does not need to be too long; we expect it to �t on one or two pages. The
documentation should be submitted as either a PDF or as plain text (Markdown is �ne).

Note: Any submitted homework solution must use a linear program in a substantial way. You can
use some reasonable preprocessing of the input, but you must not solve the problem combinatorially
and then print out just a trivial LP. The goal is to practice creating LP models; a more challenging
task will be given in Homework 2.

1Your generator needs to work for other inputs as well.

http://iuuk.mff.cuni.cz/~husek/opt-ukol1.zip
http://iuuk.mff.cuni.cz/~husek/opt-ukol1.zip
http://iuuk.mff.cuni.cz/~bohm/texts/mathprog_intro.html
http://iuuk.mff.cuni.cz/~bohm/texts/mathprog_intro.html
https://www3.nd.edu/~jeff/mathprog/glpk-4.47/doc/gmpl.pdf


Task 1: Topological sorting [10 points]

You get an unweighted directed graph on input. Your task is to formulate an LP program that
attempts to �nd a (partial) ordering of the vertices such that the following is satis�ed:

For every edge uv it holds that the vertex u is ordered before vertex v.

Your ordering should be represented as non-negative integers starting with 0. The expected running
time of your solver on the test data should be around 10 seconds.

Input format

The input �le has the following syntax:

The �rst line starts with the word DIGRAPH which is followed by two integers representing the number
of vertices and number of edges, respectively. The three items on the �rst line are separated by a
single space each.

The vertices are numbered starting with 0. Any other line describes a single edge, containing i-->j
which says that the edge goes from i to j. An example of the graph K1,2:

DIGRAPH 3 2

0 --> 1

0 --> 2

Output format

The solver may output any debug information that you need, but it must contain at some point the
following mandatory part:

The mandatory part starts with #OUTPUT: and ends with #OUTPUT END. Between the two lines there
is a sequence of vertex orders of the form v_i: x, where i is an id of the vertex and x is its position in
the order. The position in the order must be a non-negative integer. A sample output for the graph
K1,2 follows:

#OUTPUT:

v_0: 0

v_1: 1

v_2: 1

#OUTPUT END



Task 2: Removing short cycles [15 points]

You start with an input digraph with a weight function on the edges.

Your task is to write an integer progrm which �nds the minimum weighted subset of edges R such
that removing all the edges of R from the graph disconnects every directed cycle of length 4 or
less. We do not care about larger cycles and we do not care about incorrectly-directed cycles.

The input graph contains no loops. The expected running time of the solver is between 5 and 120
seconds, depending on the input.

Input format

The input �le containing the digraph has the following format: The �rst line starts with the word
WEIGHTED DIGRAPH, which is followed by a number of vertices and the number of edges, both sepa-
rated by a single space.

The vertices are denoted by non-negative integers, starting with 0. Further lines are of the form
i-->j (w) and describe the edges of the digraph, including w, the non-negative integral weight of
an edge.

An sample input containing K4:

WEIGHTED DIGRAPH 4 6

0 --> 1 (4)

0 --> 2 (3)

0 --> 3 (1)

1 --> 2 (4)

2 --> 3 (2)

3 --> 1 (5)

Output format

The solver may output any debug information that you need, but it must contain at some point the
following mandatory part:

The mandatory part starts with the line #OUTPUT: W and ends with the line #OUTPUT END, W is
the total weight of removed edges. Between the two de�ning lines, there should be a list of edges
that are removed, one edge per line. The format for a line is again i-->j. An example for the input
above:

#OUTPUT: 2

2 --> 3

#OUTPUT END


