OPTIMIZATION METHODS: CLASS 10

Primal-dual algorithms

D: Suppose there is a (difficult) optimization problem with OPT as the value of the objective
function. We say that an algorithm A is a k-approximation algorithm for this problem if A runs in
polynomial time, returns a feasible solution on every input and the value of the objective function
for any solution A produced by A is bounded by A < k-OPT (in the case of maximization, we want
OPT <k-A).
O:For every solution of a maximization integer LP and for its LP relaxation it holds that OPTp >
OPT;rp. In case of minimization, we have OPTp < OPTp.
D(Slack): Suppose we have a system of linear inequalities (S) and, more specifically, the j-th
inequality

a;121 + ajoTo + aj3Ts + ...+ ajpTy, < b;.
Suppose we are also given a vector x’ that satisfies the j-th inequality. Then the slack of the j-th
inequality and the solution 2’ is sgs) =b; — > a;,
Notice that it always holds that s§s) > 0. If the inequality is >, we define the slack as 5§.S) =
> ajixh — bj, so that again 855) > 0.
T (Complementary slackness): Assume we have a linear program (P) and its dual (D) of the following
form.

max 'z, Ax < b,z >0, (P)
minb"y, ATy > ¢,y > 0. (D)

We are also given a pair of feasible solutions of the primal and dual (', 3’). Then the following holds:

The pair (2/,y') is a pair of optimal solutions if and only if all the following conditions are satisfied:

vie{l,...,n}: 2t sP) =0, (1)

i

Vie{l,...,m}: syl =0 (2)

D:For a graph G = (V, E) with two special vertices s, ¢, an s, t-cut is a subset of vertices C' such that
seC,t¢C.

EXERCISE ONE You have just been presented a 2-approximation algorithm for WEIGHTED
VERTEX COVER, where we generated a pair of feasible solutions (z,y). This pair of feasible solution
will not usually be an optimal pair — it is just a 2-approximation.

Check the complementary slackness conditions and explain which ones hold and which do not.
EXERCISE TWO Below is a bipartite graph with weights on the edges. Next to each vertex
you see a value to a supposedly optimal dual solution for PERFECT MATCHING OF MINIMUM COST.

Prove that this dual solution is optimal.
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EXERCISE THREE Formulate SHORTED s, t-PATH in a positive weighted undirected graph as
an {0, 1}-integer linear program. Your program should use exponentially many conditions, in fact,
one for each s, t-cut in the graph. Dualize this program afterwards.

EXERCISE FOUR Consider the following algorithm:

1. <= 0, where y is a vector of dual variables.

R

. While there is no s, t-path in G[F]:

Consider the unique connected component C' in G[F| which contains s.
Increase yo until some constraint (corresponding to an edge e) is tight.
Add e to F.

7. For each e € F:

If F'\ {e} contains an s, t-path, remove e from F.

9. Return F' as the shortest s, t-path.

Prove that this algorithm finds a shortest path.
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EXERCISE FIVE MINIMUM STEINER FOREST (MSF) is the following problem: on input we
get an undirected weighted graph G = (V, E,w) with weights on the edges (w : E — R") and we
also get a collection of disjoint sets S1,5,, ..., 5k C V. Your task is to find a set F' C E of minimum
weight such that every two vertices u,v € S; (for every i) belong to the same component in G[F].
G|[F] is clearly an acyclic graph — thus we call it a Steiner forest.

Formulate MSF as an integer program, write its relaxation, dualize such relaxation, and finally list
the relevant complementary slackness conditions.

EXERCISE SIX Formulate a primal-dual algorithm for MSF. Hint: The algorithm should
be similar to the one for the shortest path problem.
Voluntary homework: Argue that this algorithm is a 2-approximation algorithm.



