
OPTIMIZATION METHODS: CLASS 10
Primal-dual algorithms

D: Suppose there is a (difficult) optimization problem with OPT as the value of the objective
function. We say that an algorithm A is a k-approximation algorithm for this problem if A runs in
polynomial time, returns a feasible solution on every input and the value of the objective function
for any solution A produced by A is bounded by A ≤ k ·OPT (in the case of maximization, we want
OPT ≤ k · A).
O:For every solution of a maximization integer LP and for its LP relaxation it holds that OPTLP ≥
OPTILP . In case of minimization, we have OPTLP ≤ OPTILP .
D(Slack): Suppose we have a system of linear inequalities (S) and, more specifically, the j-th
inequality

aj1x1 + aj2x2 + aj3x3 + . . .+ ajnxn ≤ bj.

Suppose we are also given a vector x′ that satisfies the j-th inequality. Then the slack of the j-th
inequality and the solution x′ is s(S)j = bj −

∑n
i=1 ajix

′
i.

Notice that it always holds that s
(S)
j ≥ 0. If the inequality is ≥, we define the slack as s

(S)
j =∑n

i=1 ajix
′
i − bj, so that again s

(S)
j ≥ 0.

T(Complementary slackness): Assume we have a linear program (P) and its dual (D) of the following
form.

max cTx,Ax ≤ b, x ≥ 0, (P)
min bTy, ATy ≥ c, y ≥ 0. (D)

We are also given a pair of feasible solutions of the primal and dual (x′, y′). Then the following holds:
The pair (x′, y′) is a pair of optimal solutions if and only if all the following conditions are satisfied:

∀i ∈ {1, . . . , n} : x′
i · s

(D)
i = 0, (1)

∀j ∈ {1, . . . ,m} : s(P )
j · y′j = 0. (2)

D:For a graph G = (V,E) with two special vertices s, t, an s, t-cut is a subset of vertices C such that
s ∈ C, t /∈ C.

Exercise one You have just been presented a 2-approximation algorithm for Weighted
Vertex Cover, where we generated a pair of feasible solutions (x, y). This pair of feasible solution
will not usually be an optimal pair – it is just a 2-approximation.
Check the complementary slackness conditions and explain which ones hold and which do not.

Exercise two Below is a bipartite graph with weights on the edges. Next to each vertex
you see a value to a supposedly optimal dual solution for Perfect Matching of Minimum Cost.
Prove that this dual solution is optimal.
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Exercise three Formulate Shorted s, t-Path in a positive weighted undirected graph as
an {0, 1}-integer linear program. Your program should use exponentially many conditions, in fact,
one for each s, t-cut in the graph. Dualize this program afterwards.

Exercise four Consider the following algorithm:
1. ~y ← 0, where y is a vector of dual variables.
2. F ← ∅
3. While there is no s, t-path in G[F ]:
4. Consider the unique connected component C in G[F ] which contains s.
5. Increase yC until some constraint (corresponding to an edge e) is tight.
6. Add e to F .
7. For each e ∈ F :
8. If F \ {e} contains an s, t-path, remove e from F .
9. Return F as the shortest s, t-path.

Prove that this algorithm finds a shortest path.

Exercise five Minimum Steiner Forest (MSF) is the following problem: on input we
get an undirected weighted graph G = (V,E,w) with weights on the edges (w : E → R+) and we
also get a collection of disjoint sets S1, S2, . . . , Sk ⊂ V . Your task is to find a set F ⊆ E of minimum
weight such that every two vertices u, v ∈ Si (for every i) belong to the same component in G[F ].
G[F ] is clearly an acyclic graph – thus we call it a Steiner forest.
Formulate MSF as an integer program, write its relaxation, dualize such relaxation, and finally list
the relevant complementary slackness conditions.

Exercise six Formulate a primal-dual algorithm for MSF. Hint: The algorithm should
be similar to the one for the shortest path problem.
Voluntary homework: Argue that this algorithm is a 2-approximation algorithm.


