
OPTIMIZATION METHODS: CLASS 4
Polytopes and their properties

The exercises are on the next page.

D: A set K ⊆ Rd is a convex set, if ∀x, y ∈ K, ∀t ∈ [0, 1] : tx + (1 − t)y ∈ K. In other words, if
you take two points inside the convex set K, the entire line segment between those two points must
belong to K.

D: A hyperplane is any a�ne space in Rd of dimension d − 1. Thus, on a 2D plane, any line is a
hyperplane. In the 3D space, any plane is a hyperplane, and so on.

A hyperplane splits the space Rd into two halfspaces. We count the hyperplane itself as a part of
both halfspaces.

D: A convex polytope is any object in Rd that is an intersection of �nitely many halfspaces. Alterna-
tively, we can say that a convex polytope is any set of points of the form {x|Ax ≤ b} for some real
matrix A and some real vector b.

We are not going to be investigating non-convex polytopes in this class, so we will often say just
polytope for short.

D: We say that a convex polytope P is bounded if P can be contained inside a ball of a �xed radius.
In other words, it does not stretch in�nitely in some direction and it has �nite volume.

Note: Sometimes in the literature, people distinguish between convex polyhedra which can be un-
bounded and convex polytopes which are always bounded. Since many people (including myself) often
get those names mixed up, we will prefer the terms �polytope� and �bounded polytope�.

D: Let P be some convex polytope in Rd. We say that a hyperplane H is a supporting hyperplane if
it does not cut the polytope.

In other words, if the hyperplane H is de�ned as {x ∈ Rd|cTx = t}, then we say H is supporting if
and only if it holds that ∀y ∈ P : {cTy ≤ t} or it holds that ∀y ∈ P : {cTy ≥ t}.
D: A face F of a polytope P is any set of the form F = P ∩H for any supporting hyperplane H.

Note that our de�nition allows that P ∩H = ∅. We also count P itself as a face. These two faces P ,∅
are improper faces, the rest of the faces (whenever P ∩H 6= ∅) are called proper.

D: A vertex of a polytope P is a face of dimension 0 (a single point). An edge is any face of dimension
1 (a line segment, half-line or a line). On the other side of the spectrum, a facet of P is a face of
dimension d− 1.

D: A d-dimensional simplex is a polytope which arises as a convex hull of any d + 1 a�nely inde-
pendent points. All simplexes are structurally the same, so whenever you think about a simplex, you
can consider the set:

conv(0, (0, 0, . . . , 0, 1), (0, 0, . . . , 1, 0), . . . , (1, 0, . . . , 0, 0))

T(Vertex description of a polytope): Every bounded convex polytope is equal to the convex hull
of all its vertices. Bounded polytopes therefore can be described using all their halfspaces (then the
polytope is their intersection) or their vertices (then the polytope is their convex hull).

T(Basic solutions are exactly vertices of a polytope): A point xi is a vertex of a convex polytope
Ax ≤ b de�ned in Rd if and only if xi is a basic solution of Ax ≤ b.

In other words: In order for xi to be a vertex, it has to be inside the polytope (satisfy all the
inequalities) and it also must satisfy d linearly-independent inequalities with equality.



Exercise one Two convex properties:

• Prove the following: if each point ~x1, ~x2, . . . , ~xn ∈ Rd satis�es a set of constraints ~ai
T · ~xj ≤ bi

for i, j ∈ {1, 2, . . . , n}, then any convex combination of the points xi satis�es the same set of
constraints. In other words, ∀α1, . . . , αn ≥ 0 such that

∑n
j=1 αj = 1 it holds that

~ai
T ·

(
n∑

j=1

αj ~xj

)
≤ bi.

• Prove the following: if a set of points ~x1, ~x2, . . . , ~xn ∈ Rd satis�es a set of constraints ~ai
T · ~xj ≤ bi

for i, j ∈ {1, 2, . . . , n}, then the same set of points xi satis�es any convex combination of the

constraints. Formally, prove that ∀β1, . . . , βn ≥ 0 such that
∑n

i=1 βi = 1 it holds that:(
n∑

k=1

βk ~ak

)T

· ~xj ≤
n∑

k=1

βkbk.

Hint: Notice the di�erence in the statements! Also, prove both statements for the smallest set of
things for which it makes sense: prove the �rst for many points and one inequality, and prove the
second for one point and many inequalities. Then argue that this is enough.

Exercise two Prove that a set of all optimal solutions of an LP, for instance one of this
form: max cTx,Ax ≤ b, x ≥ 0 is a convex set.

Exercise three Properties of convex polytopes:

• Prove that a face F of a polytope P is a polytope itself; also prove that every face G of F is
also a face of P .
• Let now us suppose that P is bounded (it has no in�nite face). Using this, prove that every
face F of a polytope P is a convex hull of some subset of vertices of P .
• Prove that any face of a simplex is a simplex itself.
• Think of your favourite polytope P and �nd two di�erent supporting hyperplanes ha, hb which
intersect P and induce the same face F .

Exercise four Check if the point v = (1, 1, 1, 1) is a vertex of a polytope P de�ned as the
following set of inequalities:

−1 −6 1 3
−1 −2 7 1
0 3 −10 −1
−6 −11 −2 −12
1 6 −1 −3

 ·

x1
x2
x3
x4

 ≤

−3
5
−8
−7
4


Exercise five Prove that any bounded convex polytope of dimension d in Rd has at least
d+ 1 vertices and at least d+ 1 facets.

Exercise six Find all vertices of a polytope de�ned as follows:

2x1 + x2 + x3 ≤ 14

2x1 + 5x2 + 5x3 ≤ 30

x1 ≥ 0

x2 ≥ 0

x3 ≥ 0


