
OPTIMIZATION METHODS: CLASS 3
Linearity, convexity, a�nity

The exercises are on the opposite side.

D: A set A ⊆ Rd is an a�ne space, if A is of the form L + v for some linear space L and a shift
vector v ∈ Rd. By �A is of the form L+v� we mean a bijection between vectors of L and vectors of A
given as b(u) = u+ v. Each a�ne space has a dimension, de�ned as the dimension of its associated
linear space L.

D: A vector x is an a�ne combination of a �nite set of vectors a1, a2, . . . an if x =
∑n

i=1 αiai, where
αi are real number satisfying

∑n
i=1 αi = 1.

A set of vectors V ⊆ Rd is a�nely independent if it holds that no vector v ∈ V is an a�ne combination
of the rest.

D: GIven a set of vectors V ⊆ Rd, we can think of its a�ne span, which is a set of vectors A that
are all possible a�ne combinations of any �nite subset of V .

Similar to the linear spaces, a�ne spaces have a �nite basis, so we do not need to consider all �nite
subsets of V , but we can generate the a�ne span as a�ne combinations of the base.

D: A hyperplane is any a�ne space in Rd of dimension d − 1. Thus, on a 2D plane, any line is a
hyperplane. In the 3D space, any plane is a hyperplane, and so on.

A hyperplane splits the space Rd into two halfspaces. We count the hyperplane itself as a part of
both halfspaces.

D: A set K ⊆ Rd is a convex set, if ∀x, y ∈ K, ∀t ∈ [0, 1] : tx + (1 − t)y ∈ K. In other words, if
you take two points inside the convex set K, the entire line segment between those two points must
belong to K.

D: A vector x is a convex combination of a set of vectors a1, a2, . . . an if x =
∑n

i=1 αiai, where αi are
real numbers satisfying

∑n
i=1 αi = 1 and also ∀i : αi ∈ [0, 1].

A set of vectors/points V ⊆ Rd is in a convex position, if it holds that no vector v ∈ V is a convex
combination of the rest.

D: As with linearity and a�nity, for convexity we also de�ne a span/hull:

If we have a set of vectors V ⊆ Rd, its convex hull is a set of all vectors C, which are convex
combinations of any �nite subset of the vectors in V .

Here, we really need to consider any �nite subset of V , because convex sets in general do not have a
�nite basis.

D: A convex polytope is any object in Rd that is an intersection of �nitely many halfspaces. Alterna-
tively, we can say that a convex polytope is any set of points of the form {x|Ax ≤ b} for some real
matrix A and some real vector b.

A quick reminder from linear algebra:

T: Every linear space of dimension k contains a basis of k vectors. We can �nd a special basis that
is orthogonal or even orthonormal). And for any basis (even a non-orthogonal one) we can compute
its orthogonal complement. (How?)



From last time:

Exercise one Josef K. got an exercise at his Optimization methods class:

Design an integer program for the travelling salesman problem: For a given graph with distances

G = (V,E, f), where f : E → R+
0 , �nd a Hamiltonian cycle with the shortest length.

He suggests the following:

�For every edge uv we have a variable xuv ∈ {0, 1}, the target function is min
∑

uv∈E f(uv)xuv and
for every vertex u we create a condition of the form

∑
i|ui∈E xui = 2.�

Prove that Josef K. got the right solution � or prove him wrong and suggest a better one.

Exercise two Let us consider a polytope (actually, a line segment)

P = {x ∈ R|x ≥ 1&x ≤ 2}.

Transform its inequalities into an equational form and then draw the polytope in the equational
form.

Exercise three Prove the following equivalence:

A set of n + 1 vectors v0, v1, v2, v3, . . . , vn in Rd is a�nely independent if and only if the set of n
vectors v1 − v0, v2 − v0, v3 − v0, . . . , vn − v0 is linearly independent.

Exercise four Alice and Bob play a game. Alice will think of a linear inequality in R3

but it will not describe it to Bob. She will only tell Bob three points b1, b2, b3 in R3, which satisfy the
inequality.

Bob now must call out new points b4, b5, b6 . . . which also satisfy the inequality � until Alice gets
bored of the game and they both go play hopscotch.

Suggest a strategy for Bob to win.

Exercise five

1. Can two 2D planes intersect in exactly one point, if we place them in R4?
2. If that was too easy: Can two 3D spaces (a�ne spaces of dimension 3) intersect in exactly one

point in R5?

Exercise six

1. Prove that each a�ne space can be expressed as an intersection of �nitely many a�ne hyper-
planes.

2. Prove that every hyperplane can be expressed as the set {x|cTx = b}.
Hint: Whenever you want to prove something about an a�ne space, try shifting it using the vector
−v so that it becomes a linear space L, and then argue about the linear space instead.

Exercise seven Prove the following equivalence, which gives you an easy way to alge-
braically describe a�ne spaces:

A set F ⊆ Rd is an a�ne space if and only if F = {x ∈ Rd|Ax = b} for some matrix A ∈ Rd×d and
some vector b ∈ Rd. (Just to make things simpler, we count an empty set as an a�ne space too.)

Exercise eight We know that a set K is convex if the set contains all line segments with
endpoints in K. Prove a very similar description for a�nity:

A set A is an a�ne subspace of Rd if and only if for each two points a, b ∈ A the entire line de�ned
by a, b is contained in A.


