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1 Preliminary remarks

The Tutte polynomial was defined originally for graphs and extends to more generally
to matroids. The many natural combinatorial interpretations of its evaluations and co-
efficients for graphs then translate to not obviously related combinatorial quantities in
other matroids. For example, the Tutte polynomial evaluated at (2, 0) gives the number
of acyclic orientations of a graph.1 Zaslavsky proved that the Tutte polynomial at (2, 0)
also counts the number of different arrangments of sets of hyperplanes in n-dimensional
Euclidean space (the underlying matroid is of a set of n-dimensional vectors over R).2

For another example of extending the scope of a definition, the Tutte polynomial
T (G;x, y) along the hyperbola xy = 1 when G is planar specializes to the Jones poly-
nomial of the alternating link associated with G (via the medial graph of G). Starting
from the knot theory context, analogues of the Tutte polynomial have recently been de-
fined for signed graphs (needed for encoding arbitrary links, not just alternating) and
embedded graphs (in other surfaces than the plane).

We shall see the connection of the Tutte polynomial and the Jones polynomial via
the Kauffman bracket of a link: the deletion-contraction recurrence for the Tutte polyno-
mial of a graph is mirrored in the skein relation for the Jones polynomial (involving local
transformations of a knot).

But before this we shall see with the interlace polynomial another example of this
phenomenon – originally defined meaningfully only for a restricted class of graphs (namely
interlace graphs, or circle graphs), its recursive definition (analogous to deletion-contraction
for the Tutte polynomial) applies to any graph. Interpreting its values for graphs generally
remains an open area of research. Its definition has already been extended to matroids
too.

1This amid the world of graphs is in itself surprising, as it is the evaluation of the chromatic polynomial
at −1: this is the tip of the iceberg with regard to the connection between orientations and colourings of
graphs

2A hyperplane in n-dimensional Euclidean space is an (n−1)-dimensional flat subset (congruent to
(n − 1)-dimensional space), i.e., affine subspace of dimension n − 1. Flats in Euclidean spaces are affine
subspaces such as points, lines, planes,... More generally, a flat in a matroid is a subset with the property
that adding any other element to it increases its rank, and a hyperplane in a matroid of rank r is a flat of
rank r − 1.
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Figure 1: Schematic diagram of interrelationships between various combinatorially defined
polynomials. The dashed lines from one class up to another indicate containment. Arrows
indicate operations (invertible when double arrow) from one class to another. Once defined
for a class of objects, a polynomial may be extended in its scope by lifting up to a more
general class of objects – this is what happens for the Tutte polynomial (graphs to matroids)
and interlace polynomial (circle graphs to graphs to binary matroids). In the reverse
direction, restricting the Jones polynomial to alternating links gives the Tutte polynomial
along xy = 1. Missing from the diagram are the class of signed plane graphs: these
encode all knots/links and by extending to signed graphs generally there is a signed Tutte
polynomial which satisfies a deletion-contraction recurrence, only with two cases according
to the sign of the edge.

Common to the application to knots and to Eulerian tours on 2-in 2-out digraphs is
the operation of taking the medial graph of a plane graph and considering the types of
transition that may occur at a vertex when following the knot (under or over) or Eulerian
tour of the graph (which of the edges to follow out of the vertex). There are three possible
types of transition when following edges in and out of at a vertex of degree 4, and this would
bring us to Jaeger’s transition polynomial (see [2]) which includes the Penrose polynomial
as a special case, and is also intimately related to the Tutte polynomial. However, we shall
only have time to consider the interlace polynomial and Jones polynomial.
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2 Graphs, duality and matroids

2.1 Cuts, circuits and cycles

We start with undirected graphs. A set A of edges in a graph G = (V,E) is an edge cut,
or cutset, if the graph G − A = (V,E \ A) has more components than G. In most cases
we shall be able to assume that G is a connected graph. In this case a cutset is a set of
edges which disconnects the graph. An inclusion minimal edge cut of a graph G is called
a bond. It is easy to see that a bond is always contained in a single component of G. If A
is a bond of a connected graph G then the graph G− A has exactly two components, say
with vertex sets V1 and V2. A is the the set of all edges between V1 and V2, denoted by
E(V1, V2). A cut of size one is called a bridge.

A path we interpret both as a subgraph and as a sequence v0, e1, v1, . . . , et, vt of vertices
and edges of the graph, in which the vertices vi (and hence edges too) are distinct. In a
trail vertices may be repeated, only edges ei being distinct, and in a walk both vertices and
edges may be repeated. A circuit of length t is formed by a sequence v0, e1, v1, . . . , et, vt in
which all vertices are distinct with the exception only of v0 = vt (so it can be thought of as
a “closed path”) . Similarly, a trail v0, e1, v1, . . . , et, vt satisfying v0 = vt is called a closed
trail or a cycle.3

As all the edges of a closed trail are distinct, a closed trail may be identified with the
subset of edges traversed by it. By saying that a set of edges is a cycle is meant that for
some ordering it will be form a closed trail. If all the edges of the connected graph G are
traced by some cycle then G is an Eulerian graph.

Proposition 2.1 A graph is Eulerian if and only if it is connected and all its vertices have
even degree.

It follows that any Eulerian subgraph is an edge-disjoint union of circuits (this is some-
times called Veblen’s theorem [14]). The following are two algorithms for constructing an
Eulerian cycle of a connected graph G all of whose vertices are of even degree:

(i) Fleury’s algorithm [6] (“Don’t burn your bridges”) starts with an arbitrarily chosen
vertex v0 and an arbitrary starting edge e0 incident with v0. The edge e0 is deleted
and its other endpoint is the next vertex v1 to be chosen. At each stage, at current
vertex vi an edge ei can be chosen as the next edge in the cycle if it is not a bridge in
the remaining graph, unless there is no such edge, in which case the only remaining
edge left at the current vertex is chosen. It then moves to the other endpoint vi+1 of
edge ei, after which ei is deleted from the graph. At the end of the algorithm there
are no edges left, and the sequence in which the edges were chosen forms an Eulerian
cycle. [In this algorithm, the last edges chosen from vi (i > 0) before returning to v0
form a spanning tree of G – each of them is a bridge by definition of the algorithm.]

3Circuits and cycles have been defined this way round in order to have circuits in the graph theory sense
coincide with circuits in the matroid theory sense. For us any circuit is a cycle, not vice versa. However,
this is sometimes counter to graph theory terminology found elsewhere, where cycles are circuits....
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(ii) Hierholzer’s algorithm [9] chooses any starting vertex v0, and follows a trail of
edges from that vertex until it returns to v0. It is not possible to get stuck at any
vertex other than v0, because all vertex degrees being even ensures that when the trail
enters a vertex v 6= v0 there must be an unused edge leaving v. The trail formed in
this way is closed, but may not cover all the vertices and edges of the initial graph. As
long as there exists a vertex v belonging to the current cycle that has incident edges
not yet in the cycle, start another trail from v, following unused edges until returning
to v, and join the cycle formed in this way to the previous cycle. [This algorithm
may be thought of as gluing cycles together to form a Eulerian cycle covering all
the edges of G, cf. Veblen’s theorem that an Eulerian cycle can be partitioned into
circuits.]

Proposition 2.2 The intersection of any cutset with any cycle is even.

Question 1

(i) Prove (or recall the proofs of) Propositions 2.1 and 2.2.

(ii) Prove that the symmetric difference of two bonds contains a bond.

(iii) Prove that the symmetric difference of two circuits contains a circuit.

2.2 Orthogonality of cycles and cutsets

If F is a field then the set of all vectors of length m with entries in F forms a vector space
Fm of dimension m. This vector space is equipped with inner product xy> =

∑m
i=1 xiyi.

If V is a vector subspace of Fm then the set of all vectors y which are orthogonal to all
vectors x ∈ V , is again a vector space which is called the orthogonal complement of V and
denoted by V ⊥. Observe that V ⊥⊥ = V and that dimV ⊥ = m− dim(V ).

Consider a graph G = (V,E) with m edges and the field F = Z2 on two elements. The
vector space ZE2 formed by all vectors x = (xe : e ∈ E), where xe ∈ Z2, is isomorphic to the
vector space Zm2 . A vector x may be thought of as the characteristic (indicator) vector of
a subset of edges of G. Now consider the set E of all vectors x which correspond to cycles
(i.e., to Eulerian subgraphs). Also, denote by C the set of all vectors x which correspond
to edge cuts of G. We have the following basic result:

Theorem 2.3 For any graph G the following hold:

(i) Both E and C are vector subspaces of ZE2 .

(ii) E and C are orthogonal complements of each other.

(iii) dim(E) = m − n + k, where n = |V (G)| and k is the number of components of G,
and dim(C) = n− k.

4



Before proving this result, recall that a spanning forest of a graph G = (V,E) is any (edge-)
inclusion maximal subgraph (V,A) not containing any cycle. A spanning forest is just a
spanning tree if G is connected. Of course |A| = |V | − c(G), where c(G) is the number of
components of G. A spanning forest (V,A) can be dually defined as an inclusion-minimal
subgraph of G which has the same number of connected components as G.
Proof. Both E and C are vector subspaces of ZE2 by virtue of Question 1 above. Propo-
sition 2.2 says that C ⊆ E⊥, so that dim C ≤ m − dim E . It therefore suffices to prove
dim(E) ≥ m− n+ k and dim(C) ≥ n− k.

Let A be the edge set of a spanning forest of G (so |A| = n−k, |E \A| = m−n+k). By
maximality of A the graph (V,A∪{e}) contains, for every e ∈ E\A, a uniquely determined
cycle Ze containing the edge e. By the minimal connectivity definition of a spanning forest
we know that for every e ∈ A the graph (V,A\{e}) has more components than G and thus
there exists a unique cutset Ce of G containing the edge e with the same components as
the graph (V,A \ {e}). But now both cycle Ze and cut Ce are the only selected cycles and
cuts containing the edge e Since e 6∈ Zf for each f ∈ E \ (A∪{e}), and similarly e 6∈ Cf for
each f ∈ A \ {e}, the cycles {Ze : e ∈ E \ A} are linearly independent, as are the cutsets
{Ce : e ∈ A}. This proves both dim(E) ≥ m− n+ k and dim(C) ≥ n− k. �

Question 2

(i) Prove that if Z is a cycle in G and A the set of edges of a spanning
forest of G then

∑
e∈Z\A Ze = Z (for simplicity we identify in this

notation a cycle with its characteristic vector).

(ii) Prove a similar statement for cuts.

2.3 Graph duality

Henceforth we allow graphs with parallel edges and loops. A simple graph is a graph with
no parallel edges or loops. When clarity demands it, the term multigraph is used for a
graph in which there may be parallel edges and loops.

Two simple graphs G = (V,E) and G′ = (V ′, E ′) are isomorphic if there is a bijection
f : V → V ′ such that uv ∈ E if and only if f(u)f(v) ∈ E ′, for all u, v ∈ V .

Definition 2.4 Two multigraphs G = (V,E) and G′ = (V ′, E ′) are isomorphic if there
are functions f : V → V ′ and f : E → E ′ such that

(i) if e has endpoints u and v then g(e) has endpoints f(u) and f(v);

(ii) f and g are bijections.

An isomorphism between multigraphs is an isomorphism between their underlying sim-
ple graphs together with the condition that edge multiplicities are the same (including
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Figure 2: Some plane graphs and their duals. The leftmost example illustrates how edges
in series become parallel edges in the dual and bridges become loops in the dual.

loops). A multigraph G = (V,E) can be represented by its adjacency matrix A = A(G)
with (u, v) entry equal to the number of edges joining u and v. Multigraphs G and G′ are
isomorphic if and only if the matrices A(G) and A(G′) are permutation-equivalent.

A graph G = (V,E) is planar if it can be drawn in the plane so that in the drawing
distinct arcs are openly disjoint and share only end-vertices in the case that corresponding
edges are incident. A graph with such a drawing is called a plane graph. An edge may lie
on the boundary of one face (and this if and only if it is a bridge) or two faces. As we are
considering multigraphs, a face may be formed by only two edges.

Let G = (V,E, F ) be an (undirected) plane graph with set of faces F . The geometric
dual of G is the graph G∗ = (V ∗, E∗, F ∗), with V ∗ = F,E∗ = {e∗ : e ∈ E}, where e∗ has
endpoints the faces of G which have e on their boundary (thus e∗ is a loop when e is a
bridge). The face set F ∗ of G∗ may be identified with the vertex set of G; and then the
edge set E∗ may be identified with the edge set E of G.

The dual graph G∗ is again planar and (G∗)∗ ∼= G.
A simple graph may have a graph with parallel edges and loops as its dual. For example,

if T is a tree with n vertices then the dual of any of its plane drawings is a single vertex
graph with n−1 loops. As another example consider any 2-connected plane graph G (so in
particular there are no bridges) and let G′ be the graph which arises from G by subdividing
every edge of G by one vertex. Then the dual graph G′∗ arises from G∗ by replacing every
edge by two “parallel” edges.

Further examples of dual pairs are shown in Figure 2.
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Figure 3: The medial graph (dashed grey lines) of K3 (solid black lines) is isomorphic to
the medial graph of the dual graph K∗3 (the graph K∗3 is shown with dotted black lines).

Question 3

(i) Can you find some more examples of self-dual plane graphs?

(ii) The medial graph m(G) of a plane graph G is defined by placing
vertices on the midpoints of edges of G and joining vertices by an
edge when they lie on consecutive edges of a face (by a double edge
if consecutive in two different faces). Prove that m(G) ∼= m(G∗).
(See Figure 3.)

Theorem 2.1 Let G = (V,E) be a plane graph. Then the correspondence e 7→ e∗ has the
following properties:

(i) A ⊆ E is a cycle if and only if A∗ = {e∗ : e ∈ A} is a cut in G∗.

(ii) A ⊆ E is a cut if and only if A∗ = {e∗ : e ∈ A} is a cycle in G∗.

To prove this rigorously requires appeal to the Jordan Curve Theorem.
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Question 4

(i) Give an example of a 2-connected planar graph G with two inequiv-
alent embeddings, i.e., find G with two embeddings that have non-
isomorphic geometric duals G∗.

(ii) For any given k, describe a 2-connected planar graph with at least k
pairwise inequivalent embeddings.

2.4 Matroids

Whitney [18] introduced matroids in 1935 as an abstraction of both linear independence
and the properties of cycles in graphs. Matroids present a natural “self-dual” notion which
captures both cycles and cutsets.

There are many “cryptomorphic” ways to define a matroid axiomatically. First we start
with independence as the primitive notion – for graphs a set of edges is independent if it
spans a forest, i.e., contains no cycles.

Definition 2.5 (Independent sets) Let E be a finite set. A matroid M on E is a pair
(E, I) where I is a non-empty collection of subsets of E with the properties:

(i) If I1 ∈ I and I2 ⊂ I1 then I2 ∈ I (I is an ideal),

(ii) (Exchange Property) If I1, I2 ∈ I, |I2| < |I1|, then there exists e ∈ I1 such that
I2 ∪ {e} ∈ I.

If E is a family of vectors in a vector space V , and I is the set of linearly independent
subsets of E, then (E, I) is a matroid (called a vector matroid).

A basis is a maximal independent set with respect to inclusion, i.e., a subset of edges
that is independent with the property that adding any other edges destroys the property
of independence.

The rank of A ⊆ E is defined by

ρ(A) = max{|I| : I ∈ I, I ⊆ A}.

A circuit is a minimal non-independent set of edges with respect to inclusion, i.e., a
subset of edges that is not independent but with the property that any proper subset is
independent. Equivalently, a circuit is a minimal subset of edges contained in no basis. (A
circuit in a graphic matroid corresponds to a spanning subgraph in which all vertices have
degree 2 or 0.)

A matroid on E may be alternatively defined using any one of these three notions just
defined as primitive:
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Definition 2.6 (Circuits) Let E be a finite set. A matroid M on E is a pair (E, C) where
C is a non-empty collection of subsets of E with the properties:

(i) No member of C contains another (C is an antichain),

(ii) If C1, C2 ∈ C are distinct and e ∈ C1∩C2 there exists C3 ∈ C such that C3 ⊂ C1∪C2

and e 6∈ C3.

Definition 2.7 (Rank function) Let E be a finite set. A matroid M on E is a pair (E, ρ)
where ρ is a function defined on subsets of E with the following properties:

(i) ρ(A) ≤ |A| is a non-negative integer;

(ii) if A ⊆ B ⊆ E then ρ(A) ≤ ρ(B) (ρ is monotone), and ρ({x}) ≤ 1;

(iii) (Semimodularity) For any A,B ⊆ E,

ρ(A ∪B) + ρ(A ∩B) ≤ ρ(A) + ρ(B).

Definition 2.8 (Bases) Let E be a finite set. A matroid M on E is a pair (E,B) where
B is a non-empty collection of subsets of E with the properties:

(i) No member of B contains another (B is an antichain);

(ii) (Steinitz-MacLane Exhange Lemma) If B1, B2 ∈ B and e ∈ B1 \ B2 then there is
f ∈ B2 \B1 such that B1 \ {e} ∪ {f} ∈ B.

For more about matroids see for example Peter Cameron’s notes at
www.maths.qmul.ac.uk/˜pjc/comb/matroid.pdf (see in particular Section 3, in which the
connection between the success of the greedy algorithm and bases of a matroid is explained),
and for even more the books [15] and [12].
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Question 5

(i) Prove that for any graph G = (V,E) the collection C of all subsets
of E that form a circuit in G forms a matroid on E.

What are the independent sets of this matroid? What is the corre-
sponding rank function? And what are the bases?

Matroids which are defined in this way are called graphic matroids,
usually denoted by M(G). If M(G) is defined by the cycles of G
then we also speak about the cycle matroid of G.

(ii) Let E be a finite (multi)set of vectors (in a vector space). Subsets
of E will be independent if they are linearly independent. Bases and
rank function (defined as the dimension of the space generated by
the set) have a clear meaning from linear algebra.

What are the circuits?

Matroids which are defined in this way are called linear or repre-
sentable matroids. If the vector space is over field F then the ma-
troid is F-representable, and a binary matroid is one that is Z2-
representable.

(iii) Prove that the lines of the Fano plane (see Figure 4) form the cir-
cuits of a matroid (called the Fano matroid and denoted by Fano).
Alternatively, declare a set of points to be independent if it does not
contain a line and prove that this defines a matroid (the same one of
course). Is Fano a binary matroid?

(iv) Let D be a digraph and S and T subsets of its vertices (not necessarily
disjoint). Show that M defined on T is a matroid when it is stipulated
that I ⊆ T is independent if there exists a set of vertex-disjoint paths
each starting in S and whose endpoints are exactly I. (This is a
gammoid; a strict gammoid is the case where S = T comprises all
vertices of D.)

When are two matroids on sets E and E ′ isomorphic? One obvious thing to demand is
a bijection ι : E −→ E ′ such that, for every A ⊆ E, (i) ι(A) is a circuit iff A is a circuit,
(ii) ι(A) is independent iff A is independent, (iii) ι(A) is a basis iff A is a basis, and (iv)
ρ(A) = ρ(ι(A)).

But when do two graphs have isomorphic cycle matroids? This is more interesting and
it leads to the following notion:

Definition 2.9 Two graphs G and G′ are 2-isomorphic if G can be transformed into G′

by means of the following two operations and their inverses:

(i) Identify two vertices in different connected components of G;

10



b

b

b b

b

bb

Figure 4: The Fano plane, consisting of 7 points and 7 lines, each containing 3 points. One
line is represented as a circle.

(ii) Suppose G is obtained from disjoint graphs G1 and G2 by identifying the vertices u1
of G1 and u2 of G2, and identifying v1 of G1 and v2 of G2. The Whitney twist of G
is the graph obtained by identifying u1 with v2 and u2 with v1.

The first operation joins two components in a 1-cut (its inverse separating a graph at
a 1-cut). The Whitney twist acts by flipping the graph G about one of its 2-cuts, and is
illustrated in Figure 5.

Question 6 Suppose that the graphs G1 and G2 are connected planar
graphs in Figure 5. Let G be the graph obtained by identifying u1 with
v1 and u2 with v2, and G′ the Whitney twist of G. Describe how (G′)∗ is
related to G∗ in terms of the graphs G∗1 and G∗2.

Proposition 2.10 If two graphs are 2-isomorphic then their cycle matroids are isomorphic

Proof. Clearly the edge set of cycles are unchanged when identifying two vertices in
different components. Suppose G′ is obtained from G by a Whitney twist about a given 2-
cut of G. A cycle that does not pass through either vertex of the 2-cut remains unchanged.
A cycle of G passing through one of the vertices of the 2-cut must pass through the other.
If traversing this cycle we encounter the edges e1, e2, . . . , ei, f1, f2, . . . , fj, where the e-edges
belong to G1 and the f -edges to G2, then in the Whitney twist corresponds the cycle in
whose traversal we meet the edges in the order e1, . . . , ei, fj, fj−1, . . . , f1. Thus the edge
sets of cycles are the same in both graphs. �

Theorem 2.2 Whitney [17] The cycle matroids of G and G′ are isomorphic if and only if
G and G′ are 2-isomorphic. In particular, if G is 3-connected and G has isomorphic cycle
matroid to G′ then G and G′ are isomorphic.

Geometric duals of different embeddings of a plane graph G are 2-isomorphic, although
they may not be isomorphic when G is not 3-connected.
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Figure 5: The Whitney twist of a graph about a 2-cut.

2.5 Dual matroids

Consider a graph G = (V,E) and its cycle matroid M(G). The independent sets of M(G)
correspond to the edge sets of spanning forests of G, the bases to maximal spanning forests
of G. Thus the rank of the set E is |V | − c(G) where c(G) is the number of components of
G and any basis of M(G) has rank |V | − c(G) .

A maximal set of edges not containing any circuit (basis of G) is a maximal spanning
forest of G. Circuits and cutsets are in dual correspondence for planar graphs. The dual
notion of a basis for G is a maximal set of edges not containing any cutset of G, which is
precisely the complement of a maximal spanning forest of G. Each of these sets has size
|E| − |V |+ c(G).

Definition 2.11 Let M = (E,B) be matroid given by its bases. Then the dual matroid
M∗ is given by (E,B∗), where B∗ = {E \B;B ∈ B}.

Question 7 Prove that M∗ is indeed a matroid and that M∗∗ = M .

Lemma 2.12 Let M be a matroid on E with rank function ρ and M∗ the dual of M , with
rank function ρ∗. For A ⊆ E, let A∗ = E \ A. Then,

|A∗| − ρ∗(A∗) = ρ(E)− ρ(A),

and
ρ∗(E)− ρ∗(A∗) = |A| − ρ(A).
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Proof. Let I be a maximal independent subset of A in M , and I ∪ J a basis (J ⊆ A∗ by
maximality). Set K = A∗ \ J = E \ (A ∪ J) ⊆ E \ (I ∪ J). The set K is an independent
subset of A∗ (since E \ (I ∪ J) is a basis of M∗). We then have

ρ∗(A∗) ≥ |K| = |A∗| − |J | = |A∗| − ρ(E) + ρ(A),

with ρ(E)− ρ(A) independent elements in J . Dually,

ρ(A) ≥ |A| − ρ∗(E) + ρ∗(A∗).

But |A|+ |A∗| = |E| = ρ(E) + ρ∗(E), so the two inequalities are in fact equalities. �

The rank function ρ∗ of the dual matroid is thus given in terms of the rank function ρ for
M by

ρ∗(A) = |A| − ρ(E) + ρ(E \ A).

The dual of a graphic matroid need not be a graphic matroid.

Question 8

(i) Let the rank function be given by ρ(A) = min(|E|, r) (r a fixed pos-
itive integer). Determine the bases and circuits of the corresponding
matroid. (This matroid called uniform matroid and it is denoted by
U rm, where m = |E|.) What is its dual?

(ii) A matching in a graph is a subset of pairwise disjoint edges. Do
matchings form a matroid on a set of edges?

2.6 Deletion and contraction

A loop of a matroid M is an element e such that {e} is not independent (i.e., ρ({e}) = 0),
equivalently e which lies in no independent set, or in no maximal independent set (basis).

Dually, a coloop is an element e contained in every basis of M . A coloop in a connected
graph is an edge whose removal disconnects the graph. (Such an edge is commonly called
a bridge or isthmus.)

Let M be a matroid on a set E given by its set of circuits C. For e not a loop, denote
by C ′ those sets in C not containing e and for e not a coloop by C ′′ sets of the form C \ {e}
where the circuit C contains e. It is easy to see that both sets C ′, C ′′ satisfy the axioms for
the circuits of a matroid.

This matroid defined by C ′ is the matroid obtained by deletion of e (or restriction to
E \{e}), denoted by M\e. For C ′′ the matroid is that obained by contraction of e, denoted
by M/e.

If M is the cycle matroid of a graph G = (V,E) then, for an edge e ∈ E, M\e and
M\A are the cycle matroid of the graph G\e. The matroid M/e is the cycle matroid of
the graph G/e obtained by contraction of edge e.
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It is intuitively clear (but involves the Jordan Curve Theorem) that if G is a plane
graph then contraction of an edge e in G corresponds to deletion of edge e∗ in the dual
graph G∗ and that the deletion of an edge e in G corresponds to contraction of edge e∗ in
G∗. This duality holds in general for matroids and their duals:

Proposition 2.13 (i) e is a loop in M if and only if e is a coloop in M∗, and vice
versa.

(ii) If e is not a loop then (M/e)∗ ∼= M∗\e.

(iii) If e is not a coloop then (M\e)∗ ∼= M∗/e.

Proof. The element e lies in every basis of M (i.e., e is a coloop of M) if and only if it
lies in no basis of M∗ (i.e., e is a loop of M∗), and dually.

Suppose that e is not a loop of M . The bases of M/e are the bases of M containing e
with e removed. The complement of such a basis in E \{e} is a basis of M∗ not containing
e, which is to say a basis of M∗\e. So (M/e)∗ ∼= M∗ \ e. Statement (iii) is proved dually.
�

Definition 2.14 A matroid M ′ is a minor of matroid M if M ′ can be obtained from M
by a sequence of contractions and deletions, which is denoted by M ′ ≺M .

Using the above-mentioned facts we see that M ′ is a minor of M if and only if M ′∗ is
a minor of M∗. Matroid minors feature in beautiful characterization theorems such as the
following:

Theorem 2.3 A matroid M can be represented by linear independence over the field Z2

(M is a binary matroid) if and only if U2
4 fails to be a minor of M .

Theorem 2.4 A matroid M is the cycle matroid of a graph if and only if U2
4 , Fano and

Fano∗ fail to be minors of M and the cycle matroids of K3,3 and K5 fail to be minors of
the dual matroid M∗.

Theorem 2.5 A matroid M is representable by linear independence of vectors over every
finite field (such matroids are called regular) if and only if U2

4 , Fano and Fano∗ fail to be
minors of M .

(The dual of the Fano matroid ought not be confused with its geometric dual when repre-
sented by a drawing in the plane.)

It follows that every graphic matroid (cycle matroid) is regular, but this can be seen
much more easily directly. Another equivalent condition for regular matroids is that they
can be represented by linear independence of columns of a totally unimodular matrix (a
matrix whose square submatrices all have determinants equal to 0, 1, or -1). Rota’s con-
jecture is that matroids representable over a fixed finite field are characterized by finitely
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many forbidden minors. In contrast with this, matroids in general and even matroids rep-
resentable by independence of real vectors are not characterized by finitely many forbidden
minors.

Planar graphs have a matroid characterization. In fact the connection between planar
graphs (and thus to the Four Colour Conjecture) and linear algebra was a motivation for
the concept of a matroid in the 1930s (H. Whitney, B. L. Van der Waerden).

Theorem 2.6 A graph G is planar if and only if the dual matroid M∗(G) of the cycle
matroid M(G) is graphic.

Put otherwise, G is planar if and only if it has a dual graph. For duality of general
graphs we need matroids. (Here the matroid dual is distinct from the geometric dual,
defined for a 2-cell embedding of a graph in surfaces of arbitrary genus – genus 0 is the
case of plane embedding, or, equivalently, embedding in the 2-dimensional sphere.)

3 The Tutte polynomial

3.1 Definitions

Let G = (V,E) be a graph. A spanning subgraph is a subgraph (V,A) with A ⊆ E, and
is denoted by GA. An induced subgraph is a subgraph (U,A), where A = {uv ∈ E : u ∈
U, v ∈ U}, and is denoted by G[U ]. The number of connected components of G is denoted
by c(G). A maximal spanning forest F is a forest which is a spanning subgraph of G with
the property that F is contained in no other spanning forest of G, i.e., no edge of G can
be added to F without creatng a cycle of G. A maximal spanning forest of a connected
graph is a spanning tree.

The rank r(G) = |V | − c(G) is the size of maximal spanning forest of G. Conversely, a
spanning subgraph GA with c(GA) = c(G) is a maximal spanning forest of G. For A ⊆ E
we often identify A with the spanning subgraph (V,A) and write r(A) for r(GA). So
r(A) = |A| if and only if GA is a spanning forest; r(A) = r(E) if and only if GA has the
same number of connected components as G; and r(A) = |A| = r(E) if and only if GA is
a maximal spanning forest of G. The nullity n(G) = |E| − r(G) is the dimension of the
cycle space of G (for a plane graph, this is the number of faces of G excepting the outer
face). For A ⊆ E we set n(A) = n(GA).

Deleting an edge e ∈ E forms the spanning subgraph G\e = (V,E\{e}). Contracting
an edge e = uv forms the graph G/e obtained by deleting e and then identifying the
endpoints of e.

An edge e is a bridge (isthmus, cut-edge, coloop) of G if r(G\e) < r(G), i.e., the number
of connected components is increased upon removing e. An edge e is a bridge if and only
if r({e}) = 1. An edge e = uv is a loop of G if u = v. Contracting a loop is the same
as deleting it. An edge e is loop if and only if n({e}) = 1. An edge e is ordinary if it is
neither a bridge nor a loop.
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Proposition 3.1 Let τ(G) denote the number of maximal spanning forests of G = (V,E).
Then

τ(G) =





τ(G/e) + τ(G\e) e ordinary,

τ(G/e) e a bridge,

τ(G\e) e a loop,

1 G has no edges.

(1)

Proof. Partition maximal spanning forests of G into two classes: those that contain e
and those that don’t. �

Question 9 Write down recurrences similar to (1) satisfied by

(i) the number of spanning forests of G,

(ii) the number of spanning subgraphs with the same number of con-
nected components as G.

3.2 The chromatic polynomial

For k ∈ N the function P (G; k) is defined to be equal to the number of proper k-colourings
of G:

P (G; k) = #{f : V → [k] : f(u) 6= f(v) for each uv ∈ E},
where [k] = {1, . . . , k}.

Proposition 3.2 For any edge e ∈ E,

P (G; k) =





P (G\e; k)− P (G/e; k) e ordinary,

(k − 1)P (G/e; k) e a bridge,

0 e a loop,

k|V | G has no edges.

(2)

In fact, for any edge e –ordinary, bridge or loop– we have P (G; k) = P (G\e; k)−P (G/e; k).

Question 10 Use Proposition 3.2 to show that

(i) P (G; k) is a polynomial in k of degree |V |,

(ii) the coefficient of ki in P (G; k) is non-zero for c(G) ≤ i ≤ |V |,

(iii) the coefficients of ki, c(G) ≤ i ≤ |V |, alternate in sign.
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Figure 6: Using deletion-contraction to compute the Tutte polynomial of K3 and its dual
K∗3 .

3.3 Tutte polynomial by deletion-contraction

The Tutte polynomial of a graph G = (V,E) can be defined recursively by

T (G;x, y) =





T (G/e;x, y) + T (G\e;x, y) e ordinary,

xT (G/e;x, y) e a bridge,

yT (G\e;x, y) e a loop,

1 G has no edges.

(3)

Alternatively,

T (G;x, y) =

{
T (G/e;x, y) + T (G\e;x, y) e ordinary,

xky` G consists of k bridges and ` loops,
(4)

A graph G is 2-connected if and only if has no cut-vertex. A loop on a single vertex
(C1) and a single bridge (K2) are both 2-connected. For the case of many loops on a
single vertex (where one might still consider the vertex not to be a cut-vertex) we refer
to the cycle matroid, which is the direct sum of its constituent loops: so this graph is not
2-connected when there is more than one loop.

A block of G is a maximal 2-connected induced subgraph of G. If G is not 2-connected
then it can be written in the form G = G1∪G2 where |V (G1)∩V (G2)| ≤ 1. The intersection
graph of the blocks of a loopless connected graph is a tree. In particular, if G is loopless
and connected and has at least two blocks then there are at least two endblocks of G which
are blocks containing only one cut-vertex of G.
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Proposition 3.3 The Tutte polynomial of G is multiplicative over the connected compo-
nents of G and over the blocks of G: if G = G1 ∪G2 where G1 and G2 share at most one
vertex then T (G1 ∪G2;x, y) = T (G1;x, y)T (G2;x, y).

Proof. The statement is true when each edge is either a bridge or a loop, since in this
case T (G;x, y) = xky`, where k is the number of bridges and ` the number of loops.
We argue by induction on the number of ordinary edges of G. Let G = G1 ∪ G2 where
|V (G1) ∩ V (G2)| = 1. The endpoints of any edge e must belong to the same block of G;
if e is a bridge or loop then it forms its own block. Suppose G = G1 ∪ G2 where G1 is a
block of G containing an ordinary edge e. Deleting or contracting e can only decrease the
number of ordinary edges of G and since e is ordinary we have, writing T (G;x, y) = T (G),

T (G) = T (G/e) + T (G\e)
= T (G1/e ∪G2) + T (G1\e ∪G2)

= [T (G1/e) + T (G1\e)]T (G2)

= T (G1)T (G2),

where to obtain the third line we applied the inductive hypothesis. �

Theorem 3.4 “Recipe Theorem” Let G be a minor-closed class of graphs. There is a
unique graph invariant f : G → Z[x, y, α, β, γ] such that for graph G = (V,E)

f(G) =





αf(G/e) + βf(G\e) e ordinary edge of G,

xf(G/e) e a bridge in G,

yf(G\e) e a loop in G,

γ|V | G has no edges.

(5)

The graph invariant f is equal to the following specialization of the Tutte polynomial:

f(G) = γc(G)αr(G)βn(G)T (G;
x

α
,
y

β
). (6)

Note. (i) If instead of contracting a bridge we require that f(G) = xf(G\e) when e is a
bridge, the Tutte polynomial is evaluated at the point (γx/α, y/β) instead of (x/α, y/β).
In particular, when γ = 1 it does not matter whether bridges are deleted or contracted.

(ii) If either α or β is zero then we interpret (6) as the result of substituting values
of the parameters after expanding the expression on the right-hand side as a polynomial
in Z[α, β, γ, x, y]. Given a graph G with k bridges and ` loops, if α = 0 then f(G) =
γc(G)βn(G)−`xr(G)y`, and if β = 0 then f(G) = γc(G)αr(G)−kxkyn(G). If both α and β are
zero then f(G) = 0 if G has an ordinary edge, while f(G) = γc(G)xky` if E(G) consists of
just k bridges and ` loops.

Proof. Uniqueness of f(G) follows by induction on the number of edges and application
of the recurrence (5).

18



Formula (6) is certainly true for cocliques Kn. If G consists just of k bridges and ` loops
and has c connected components, then f(G) = γcxky` and since r(G) = k and n(G) = ` we

have T (G; x
α
, y
β
) =

(
x
α

)k ( y
β

)`
, so (6) is satisfied. Let e be an ordinary edge, and note that

c(G) = c(G/e) = c(G\e), so that r(G/e) = r(G)− 1, r(G \ e) = r(G) and n(G/e) = n(G),
n(G\e) = n(G)− 1. By induction on the number of ordinary edges,

f(G) = αf(G/e) + βf(G\e)
= α · γc(G)αr(G)−1βn(G)T (G/e;

x

α
,
y

β
) + β · γc(G)αr(G)βn(G)−1T (G\e; x

α
,
y

β
)

= γc(G)αr(G)βn(G)T (G;
x

α
,
y

β
).

�

Proposition 3.5 The chromatic polynomial is given by

P (G; z) = (−1)r(G)zc(G)T (G; 1− z, 0).

More generally, the monochrome polynomial,

B(G; k, y) =
∑

f :V (G)→[k]

y#{uv∈E(G):f(u)=f(v)},

is the following specialization of the Tutte polynomial:

B(G; k, y) = kc(G)(y − 1)r(G)T (G;
y − 1 + k

y − 1
, y).

Proof. For the chromatic polynomial we have P (G; z) = (z − 1)P (G/e; z) when e is
a bridge, for we have P (G\e; z) = zP (G/e; z). A direct argument for P (G \ e; k) =
kP (G/e; k) when e = uv is a bridge is as follows. Suppose G\e = G1 ∪G2 with u ∈ V (G1)
and v ∈ V (G2). Then G/e is obtained from G1 ∪ G2 by identifying the vertices u and
v to make a cut-vertex w. Given a fixed colour ` ∈ [k], there are P (G1; k)/k proper
colourings f1 : V (G1) → [k] of G1 with f1(w) = `, and P (G2; k)/k proper colourings
f2 : V (G2) → [k] of G2 with f2(w) = `. Since there are no edges between G1 and G2,
there are P (G1; k)P (G2; k)/k2 proper colourings of G/e with f(w) = `. This number is
independent of `, so there are P (G1; k)P (G2; k)/k proper colourings of G/e. On the other
hand, there are P (G1; k)P (G2; k) proper colourings of G\e. Hence P (G\e; k) = kP (G/e; k)
when e is a bridge of G.

A similar argument to the recurrence for the chromatic polynomial (Proposition 3.2)
gives

B(G; k, y) = (y − 1)B(G/e; k, y) +B(G\e; k, y), (7)

valid for all edges e. When e is a bridge we have B(G\e; k, y) = kB(G/e; k, y), by a similar
argument to the chromatic polynomial, by conditioning on the colour of the cut-vertex w
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of G/e obtained by identifying the endpoints of e. Instead of proper colourings, consider
colourings with exactly m1 monochrome edges in G1 and exactly m2 monochrome edges in
G2. Then the number of such colourings for G\e (the disjoint union of G1 and G2) is k times
the number for G/e (the gluing of G1 and G2 at a vertex). Collecting together all colourings
for which m1 +m2 = m, this implies that the coefficient of ym in B(G\e; k, y) is equal to k
times the corresponding coefficient in B(G/e; k, y). Since this holds for each m, it follows
that B(G\e; k, y) = kB(G/e; k, y) when e is a bridge, and so B(G; k, y) = (y−1+k)B(G/e)
by the recurrence formula (7). When e is a loop B(G; k, y) = yB(G\e; k, y) since a loop is
always monochromatic (or by looking at the recurrence formula (7) with G/e ∼= G\e when
e is a loop).

The result now follows by Theorem 3.4. �

Remark. The monochrome polynomial is the partition function for the k-state Potts
model in disguise.

3.4 Sugraph expansion of the Tutte polynomial

First let’s recap some notation. Let G = (V,E) be a graph and A ⊆ E. Identify A with
the spanning subgraph GA = (V,A). The rank of A is defined by rG(A) = |V (G)| − c(GA)
(this is the matroid rank function on the cycle matroid of G). The nullity of A is defined
by nG(A) = |A| − rG(A). Thus rG(E) = r(G) and nG(E) = n(G) in the notation already
introduced for the rank and nullity of the graph G. When context makes it clear what
graph G is, we drop the subscript and write r(A) for rG(A) and n(A) for nG(A).

It is easy to see that 0 ≤ r(A) ≤ |A| with r(A) = 0 if and only if A is empty or a set
of loops, and r(A) = |A| if and only if GA is a forest (set of bridges). Also, A ⊆ B implies
r(A) ≤ r(B) and r(A) = r(E) if and only if c(GA) = c(G).

Proposition 3.6 The Tutte polynomial of a graph G = (V,E) has subgraph expansion

T (G;x, y) =
∑

A⊆E

(x− 1)r(E)−r(A)(y − 1)n(A). (8)

Proof. Set
R(G;u, v) =

∑

A⊆E

ur(E)−r(A)v|A|−r(A),

(the Whitney rank-nullity generating function for G). We wish to prove that T (G;x, y) =
R(G;x − 1, y − 1) and shall do this by verifying that R(G;u, v) satisfies the recurrence:
(i) R(G;u, v) = 1 if E = ∅, (ii) R(G;u, v) = (u + 1)R(G\e;u, v) when e is a bridge, (iii)
R(G;u, v) = (v + 1)R(G\e;u, v) when e is a loop, and (iv) R(G;u, v) = R(G/e;u, v) +
R(G\e;u, v) when e is ordinary.

When E = ∅ we have R(G;u, v) = 1.
If e 6∈ A then

rG(A) = rG\e(A). (9)
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If e ∈ A then

rG\e(A\e) =

{
rG(A)− 1 if e is a bridge,

rG(A) if e is a loop,
(10)

and
rG/e(A\e) = rG(A)− 1 if e is ordinary or a bridge. (11)

Suppose e is a bridge. Then by (9) and (10),

R(G;u, v) =
∑

A⊆E\e

urG(E)−rG(A)v|A|−rG(A) +
∑

e∈A⊆E

urG(E)−r(A)v|A|−rG(A)

= u
∑

A⊆E\e

urG\e(E\e)−rG\e(A)v|A|−rG\e(A)

+
∑

B=A\e

urG\e(E\e)+1−(rG\e(B)+1)v|B|+1−(rG\e(B)+1)

= (u+ 1)R(G\e;u, v).

The case when e is a loop is similarly argued.
When e is ordinary, by (9) and (11),

R(G;u, v) =
∑

A⊆E\e

urG(E)−rG(A)v|A|−rG(A) +
∑

e∈A⊆E

urG(E)−rG(A)v|A|−rG(A)

=
∑

A⊆E\e

urG\e(E\e)−rG\e(A)v|A|−rG\e(A)

+
∑

B=A\e

urG/e(E\e)+1−(rG/e(B)+1)v|B|+1−(rG/e(B)+1)

= R(G\e;u, v) +R(G/e;u, v).

�

It is common to define the Tutte polynomial by its subgraph expansion (8), having
over the deletion–contraction formulation (3) the advantage of being unambiguously well-
defined. On the other hand, it is not apparent from (8) that the coefficients of the Tutte
polynomial are non-negative integers, and often it is easier to derive a combinatorial in-
terpretation for an evaluation of the Tutte polynomial by using the deletion–contraction
recurrence. Nonetheless, it is easy to read off some evaluations of the Tutte polynomial
from its subgraph expansion.
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Question 11 Let G = (V,E) be a connected graph. Using the subgraph
expansion for T (G;x, y) show the following:

(i) T (G; 1, 1) = #spanning trees,

T (G; 2, 1) = #spanning forests,

T (G; 1, 2) = #connected spanning subgraphs,

and T (G; 2, 2) = 2|E| = #spanning subgraphs.

(ii) If (x− 1)(y − 1) = 1 then T (G;x, y) = (x− 1)r(E)y|E|.

(iii) The generating function for spanning forests of G by number of con-
nected components is given by

xT (G;x+ 1, 1) =
∑

A⊆E

n(A)=0

xc(GA).

(iv) The generating function for connected spanning subgraphs of G by
size is given by

y|V |−1T (G; 1, y + 1) =
∑

A⊆E

c(GA)=c(G)

y|A|.

Along the hyperbola (x− 1)(y − 1) = z we have, for graph G = (V,E),

T (G;x, y) = (y − 1)−|V |
∑

A⊆E

(
z

y − 1

)c(GA)−c(G)

(y − 1)|A|+c(GA)

= (y − 1)−r(G)z−c(G)
∑

A⊆E

zc(GA)(y − 1)|A|.

When y = 0 this is the subgraph expansion for the chromatic polynomial obtained by an
inclusion–exclusion argument. The polynomial

∑
A⊆E z

c(GA)w|A| is the partition function
for the Fortuin–Kasteleyn random cluster model in statistical physics (the normalizing
constant for a probability space on subgraphs of G, the probability of GA = (V,A) de-
pending on both |A| and c(A)). This model generalizes the k-state Potts model, which is
the case z = k ∈ Z+, and whose partition function we have already met in the form of the
monochrome polynomial B(G; k, y).

3.5 Tutte polynomial of planar graphs

Let G = (V,E, F ) be a connected plane graph, with set of faces F , and let G∗ =
(V ∗, E∗, F ∗) be its geometric dual. To construct G∗, put a vertex in the interior of each face

22



of G, and connect two such vertices of G∗ by edges that correspond to common boundary
edges between the corresponding faces of G. If there are several common boundary edges
the result is a multiple edge of G∗.

We identify V ∗ with F , E∗ with E, and F ∗ with V .

Proposition 3.7 If G is a connected planar graph with dual G∗ then T (G∗;x, y) = T (G; y, x).

Proof. A bridge in G is a loop in G∗, a loop in G is a bridge in G∗, and deleting
(contracting) an edge in G corresponds to contracting (deleting) an edge in G∗. In other
words, (G/e)∗ ∼= G∗\e and (G\e)∗ ∼= G∗/e. From these properties, that T (G∗;x, y) =
T (G; y, x) follows from the deletion-contraction recurrence for the Tutte polynomial. �

A subgraph of G on edges A ⊆ E has no cycles (i.e., is a forest) if and only if the
subgraph in the dual G∗ on edges E \ A is connected. If there is a cycle in A then its
edges form the boundary of a simple closed curve in the plane, inside which lies at least
one vertex of G∗ (corresponding to a face enclosed by the cycle) and outside of which lies
another vertex of G∗. Likewise, the edges of A form a connected subgraph of G if and
only if the edges of E \ A form a forest of G∗: any cycle in G∗ has to cross an edge of a
connected subgraph A.

Question 12

(i) Prove that the rank and nullity functions of a planar graph and its dual
are related by rG∗(A) = nG(E)−nG(E \A) = |A|−rG(E)+rG(E \
A), and nG∗(A) = rG(E)− rG(E \A) = |A| −nG(E) +nG(E \A).

(ii) Deduce that T (G∗;x, y) = T (G; y, x) by using the subgraph expan-
sion of the Tutte polyomial.

4 Medial graphs and 2-in 2-out digraphs

4.1 Medial of a plane graph

To form the medial graph m(G) of a connected plane graph G that has at least one edge
first place a vertex ve into the interior of each edge e of G. Then, for each face F of G,
join ve and vf by an edge lying in F if and only if the edges e and f are consecutive on the
boundary of F . The medial graph m(G) is 4-regular, as each face creates two adjacencies
for each edge on its boundary. The faces of m(G) divide naturally into two types: those
that contain vertices of G (vertex-faces), and those corresponding to faces of G (face-faces).
Vertex-faces will be coloured black and face-faces coloured white. See Figure 7.

If G∗ is the planar dual of G then m(G∗) ∼= m(G) (if e 7→ e∗ is the duality mapping
between edges of G and edges of G∗ then e and f are consecutive edges of a face in G if
and only if e∗ and f ∗ are consecutive edges in a face of G∗).
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Figure 7: K4 and its medial graph, with faces containing vertices of G shaded black.

The plane graph G is the black face graph of m(G), i.e., the graph whose vertices are
the black faces of m(G) and whose edges join two black faces of m(G) that share a vertex.
The plane graph G∗ is the white face graph of m(G). The embedding of m(G∗) differs from
that of m(G) in having a different outer face: black faces in one (vertices of G) become
white faces in the other (faces of G).

Forming the black face graph is inverse to the medial construction. A 4-regular con-
nected plane graph H has bipartite dual graph so we can always 2-colour the faces of H
properly with colours black and white, making the exterior face white. If G(H) is the black
face graph of H then m(G(H)) = G.

Question 13 Describe how to construct the graph m(G)∗. What type of
graph is it?

4.2 Eulerian tours of digraphs

Definition 4.1 Let D be a digraph. An Euler cycle of D is a closed trail in D, i.e., a
closed walk in which each edge of D is traversed at most once. An Euler tour4 of D is a
closed trail that traverses all the edges of D, i.e., an Euler cycle in which each edge of D

4In [2] the term Euler cycle is used, for both Euler tour and Euler cycle. In [3] the term Euler circuit
is used both for Euler tour and Euler cycle, the distinction not being made between tour of the graph and
tour of a subgraph. The use of the word cycle for digraphs has been chosen here to correspond with that of
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is traversed exactly once. In other words, a walk v1, e1, v2, e2, . . . , vmem, v1 where e1, . . . , em
comprises a list of all the edges of D with no repetitions, and ei is the edge directed from
vi to vi+1 (in which vm+1 = v1).

Definition 4.2 An Euler cycle k-partition of D is a partition of the edges of D into k
non-empty Euler cycles C1, . . . , Ck. The number of Euler cycle k-partitions of D is denoted
by ek(D). (Thus e1(D) is the number of Euler tours of D.)

For an Euler tour C, let ve(C) =
(
v1 e1 v2 e2 . . . vm em

)
denote the cyclic

word comprising vertices and edges visited when traversing C (tours and cycles are con-
sidered equivalent up to starting point). The word ve(C) has the property that vertex v
appears exactly d+(v) times and each edge appears exactly once.

Similarly, we denote by v(C) =
(
v1 v2 . . . vm

)
the cyclic word comprising vertices

in the order visited when traversing C. The word v(C) has the property that vertex v
appears exactly d+(v) times and each edge appears exactly once.

If there are no parallel directed edges in D then v(C) determines ve(C) uniquely.
Given an Euler tour C, the digraph D is uniquely determined by C. The vertex-edge

word ve(C) contains not only the vertex-edge incidences and edge directions that determine
D, but also the fact that this is an Euler tour, so C in fact contains more information than
the adjacency matrix for D. For given C, we thus write D = D(C) to emphasize that the
digraph D is determined by C.

A digraph D has an Euler tour if and only if each vertex has the same indegree as
outdegree, d+(v) = d−(v), one of the orginating results of graph theory, due to Euler [5].
The vertex v is encountered exactly d+(v) times in traversing an Euler tour of D.

The algorithms of Fleury and Hierholzer for constructing Euler tours of a graph G,
described in Section 2.1 above, suggest two ways to think of an Euler tour of a digraph D.

The first (corresponding to Hierholzer’s algorithm) is to construct C by gluing together
Euler cycles C1, . . . , Ck of D, where C1 is arbitrary, and Ci+1 is a cycle that uses a vertex
appearing in at least one of the cycles C1, . . . , Ci. In other words, the cycles of an Euler
k-partition of D can be glued together to form an Euler tour of D. Given two cyclic vertex
words (v x) and (v y) , where x and y are sequences of vertices, representing Euler
cycles C and C ′, the cyclic vertex word (v x v y) represents the cycle obtained by
gluing C and C ′ together, i.e., first traversing C staring at v and then, upon returning to
the vertex v, following the cycle C ′. By iterating this gluing procedure, all k cycles in an
Euler k-partition of D glue together to form an Euler tour of D.

The second (corresponding to Fleury’s algorithm) arises by fixing a starting point u
for a given Euler tour and marking the last out-edge traversed from vertex v 6= u before
returning to u for the last time. These edges together form a spanning tree of D in which
every vertex v 6= u is connected to u by a directed path, in other words, a spanning
arboresecence of D rooted at u. Conversely, given a spanning arboresence T of D rooted at
u, an Euler tour can be traversed by first freely choosing one of d+(u) out-edges of u, and

its use for graphs (in which a circuit is minimal dependent set of edges, i.e., a closed path): the underlying
graph of an Euler cycle of D is a cycle (Eulerian subgraph) of the underlying undirected graph of D.
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(Permutations of a, b, c produce the given number of Euler cycle partitions.)

Euler cycle partition

Figure 8: Two orientations of m(K3) and their Euler cycle partitions, in which the Euler
cycles are presented as cyclic vertex words. An Eulerian orientation of 4-regular graph
is alternating if at each vertex incoming edges alternate with outgoing edges, and anti-
alternating of at each vertex incoming edges do not alternate with outgoing edges.
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Figure 9: Euler tour C of 2-in 2-out digraph D starting from u corresponds to spanning
arborescence rooted at u, whose edges are the second out-edge taken from v 6= u when
traversing C. The tour C may also be constructed by gluing together Euler cycles (illus-
trated here is one possibility, gluing the two given cycles at vertex b, which produces a
shifted version of C).

then at each vertex v freely choosing any out-edge not on T , as long as there are any, and
only when the edge on T remains taking it. This gives, for each spanning arboresecence T
rooted at u,

d+(u)!
∏

v 6=u

(d+(v)− 1)!

Euler tours starting at a given outedge from u, i.e.,

∏

v

(d+(v)− 1)!

Euler tours. Moreover, an Euler tour corresponding to spanning arborescence T rooted at
u cannot equal an Euler tour corresponding to a different spanning arborescence T ′ rooted
at u.

By the Matrix Tree Theorem for digraphs, the number of spanning arborescences of D
rooted at u is given by

tu(D) = detLV \{u},

where L is the Laplacian matrix L = ∆−A, in which A is the adjacency matrix of D, with
(v, w) entry equal to the number of directed edges from v to w, and ∆ is the diagonal matrix
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with (v, v) entry equal to d+(v), and LV \{u} is the matrix L with row and column indexed
by u removed. (Alternatively, tu(D) = 1

n
λ1 · · ·λn−1, where λ1, . . . , λn−1 are the non-zero

eigenvalues of L.) It is perhaps surprising that the number of spanning arborescences of
D does not depend on the root u.5

Theorem 4.3 (“BEST Theorem”, [1, 13]) The number of Euler tours of digraph D =
(V,E) is given by

e1(D) = tu(D)
∏

v∈V

(d+(v)−1)!,

where u is an arbitrary vertex of D and tu(D) the number of spanning arborescences of D
rooted at u.

4.3 2-in 2-out digraphs

From now on D will be a 2-in 2-out digraph, i.e., each vertex has indegree 2 and outdegree
2. If D has n vertices then it has 2n edges.

For an Euler tour C of 2-in 2-out digraph D, the word ve(C) has the property that
each vertex occurs exactly twice and each edge exactly once. For an Euler cycle the
corresponding cyclic vertex-edge word has the property that each vertex occurs at most
twice and each edge at most once. Similarly, the cyclic vertex word v(C) has the property
that each vertex occurs exactly twice and for an Euler cycle the corresponding cyclic vertex
word has the property that each vertex occurs at most twice.

For a 2-in 2-out digraph D there is a one-one correspondence between Euler tours of
D and spanning arborescences of D rooted at a fixed vertex u. See Figure 9. However, we
shall concentrate on the viewpoint of Euler cycle k-partitions (whose cycles glued together
form an Euler tour).

Given an an undirected graph G = (V,E), an Eulerian orientation of G is an orientation
of the edges with the property that each vertex has as many incoming edges as outgoing
edges: d−(v) = d+(v) for each v ∈ V . When orienting edges according to a traversal of
an Euler tour of G the result is an Eulerian orientation. Counting the number of Eulerian
orientations of G is #P-complete [11], even for plane 4-regular graphs [7]. (The situation
is quite different for a given digraph D, where by Theorem 4.3 counting Eulerian tours of
D can be done in polynomial time.)

Proposition 4.4 If G is a connected 4-regular graph on n vertices then G has (−1)n−1T (G; 0,−2)
Eulerian orientations.

Note that this does not extend to graphs G generally: the number of Eulerian orientations
of G is only given by this evaluation of the Tutte polynomial when all its vertex degrees
belong to {0, 1, 2, 4}.

5A similar phenomenon occurs for acyclic orientations of a connected graph G with unique sink at
vertex u: this turns out to be independent of u and is in fact given by the Tutte polynomial evaluation
T (G; 1, 0).
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Proof. The easiest way to prove this relies on knowing what a nowhere-zero Z3-flow is and
establishing that (−1)n−1T (G; 0,−2) = F (G; 3) is the number of nowhere-zero Z3-flows of
connected 4-regular G. (Making an inductive deletion-contraction argument and applying
the Recipe Theorem for evaluations of the Tutte polynomial is thwarted by the fact that
the property of being 4-regular is destroyed by edge deletion and contraction.) �

Definition 4.5 Let C be an Euler cycle of D with cyclic vertex-edge word

ve(C) =
(
x a y b x′ a y′ b

)
,

in which the vertices a, b are interlaced, and x, y, x′, y′ are vertex-edge sequences (possibly
empty). The transposition of C along a and b is the Euler cycle Cab of D defined by the
cyclic vertex-edge word

ve(Cab) =
(
x a y′ b x′ a y b

)
.

Note that transposition along an interlaced pair in an Euler cycle C produced another
Euler cycle of the same size; in particular, an Euler tour upon transposition becomes
another Euler tour.

If the cyclic vertex word for C is v(C) =
(
x a y b x′ a y′ b

)
, then that for

Cab is v(Cab) =
(
x a y′ b x′ a y b

)
. If D has no parallel edges then transposition

can be defined in terms of vertex words rather than vertex-edge words, because in this
case each vertex word v(C) uniquely determines the vertex-edge word ve(C). For the sake
of simplicity we shall work with vertex words rather than vertex-edge words, with the
understanding that only minor modifications need to be made in order to incorporate the
case of parallel directed edges.

Definition 4.6 Let a be a vertex of a 2-in 2-out digraph D such that (u, a), (a, v), (u′, a),
(a, v′) are the directed edges of D incident with a. (Possibly u = v or u′ = v′, corresponding
to loops on a.) A transition at a is one of the two possible pairings {u, v}, {u′, v′} or
{u, v′}, {u′, v}. (For the first pairing, the pair of edges (u, a), (a, v) and the pair of edges
(u′, a), (a, v′) both form directed paths, and similarly for the second pairing.)

Remark then that a 2-in 2-out digraph D on n vertices has 2n Euler cycle partitions,
corresponding to the independent choice of two possible transitions at each vertex of D.

Let C be an Euler cycle. When v(C) =
(
. . . u a v . . . u′ a v′ . . .

)
the tran-

sition of C at a is {u, v}, {u′, v′} .
Given v(C) =

(
. . . u a v . . . b . . . u′ a v′ . . . b

)
, the transposition along

interlaced a and b is given by

v(Cab) =
(
. . . u a v′ . . . b . . . u′ a v . . . b

)
,

in which the transition at a has been switched from {u, v}, {u′, v′} to {u, v′}, {u′, v}.
See Figure 10.
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Figure 10: Transition at a vertex a, and contracting out a from an Euler tour.

Definition 4.7 Suppose C is an Euler cycle with v(C) =
(
. . . u a v . . . u′ a v′ . . .

)
.

The contraction of C by a is the Euler cycle of D\{a} denoted by C − a and given by

v(C − a) =
(
. . . u v . . . u′ v′ . . .

)
.

Lemma 4.8 If D has an Euler tour C with no interlaced pairs then D has only one Euler
tour.

Proof. Induction on the number of vertices of D. The base case is where D is a single
vertex with two loops, for which the assertion is true. Suppose it is true for all 2-in 2-out
digraphs on n − 1 vertices and consider D on n vertices. By hypothesis D has an Euler
tour C with no interlacements. This implies there is some vertex a with a loop. (Consider
the word v(C) in which the two occurrences of a vertex u either enclose or are enclosed
by a pair of occurrences of another vertex v, or the two occurrences are disjoint; for given
vertex u, consider all the vertices that it encloses: either there are none, in which case take
a = u, or there is a such a vertex v whose two occurrences are between those of u, and now
repeat the argument with v in place of u and eventually an adjacent pair of vertices must
be found.) The Euler tour C − a of D − {a} has no interlacements, hence D − {a} has a
unique Euler tour by induction hypothesis, and therefore so does D, as the only choice for
an Euler tour at a is to traverse the loop between entering and leaving a. �

Lemma 4.9 If C and C ′ are Euler tours of D then there is a sequence of transpositions
that transforms C to C ′. In other words, the orbit of an Euler tour of D under the action
of transposition along interlaced vertices is the set of all Euler tours of D.

Proof. The proof is by induction on the number of vertices of D. The case of a single
vertex is vacuously true. Suppose the statement is true for digraphs on n− 1 vertices and
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let D be a 2-in 2-out digraph on n vertices. Suppose that D has distinct Euler tours C and
C ′. If there is a vertex a at which C and C ′ have the same transition, then by contracting
at a the tours C − a and C ′ − a can be obtained one from the other by a sequence of
transpositions, which upon reinserting a means the same is true of C and C ′.

Suppose then that C and C ′ have different transitions at all vertices. Then, since C
and C ′ are distinct, by Lemma 4.8 there is an interlaced pair a and b in C. The Euler tour
Cab then has the same transition as C ′ at vertex a, and the previous argument shows that
Cab can be obtained from C ′ by a sequence of transpositions, and hence the same is true
of C = (Cab)ab. �

5 Interlace polynomial

Definition 5.1 The interlace graph H(C) of an Euler tour of 2-in 2-out digraph D is
defined on the vertex set of D traversed by C in which vertices a and b are adjacent if a
and b are interlaced in C, i.e., if the cyclic vertex word of C takes the form

v(C) =
(
. . . a . . . b . . . a . . . b . . .

)
.

The interlace graph of C is the intersection graph of the chord diagram of C, in which
the vertices of the cyclic vertex word of C are placed around a circle and each pair of like
vertices is joined by a chord. This type of intersection graph is known as a circle graph.
See Figure 11.

Question 14 Explain why the 5-wheel (the graph on six vertices formed
by joining each vertex of a 5-cycle to a central vertex) is not a circle graph.
(This is the smallest example of a graph that is not a circle graph.)

For a vertex a in graph H denote by N(a) its open neighbourhood {c ∈ V (H) : ac ∈
E(H)} and by N [a] its closed neighbourhood N(a) ∪ {a}.

Lemma 5.2 Let a, b be interlaced in an Euler tour C of 2-in 2-out digraph D and Cab the
Euler tour of D obtained by transposition along a and b. Then the interlace graph H(Cab)
is obtained by applying the following two operations to H(C):

(i) Switch along ab: toggle adjacencies between N(a)∩N(b), N(a)\N [b] and N(b)\N [a]
(but not within these sets).

(ii) Swap a and b, i.e., ac is an edge in H(Cab) if and only if bc is an edge in H(C), and
bc is an edge in H(Cab) if and only if ac is an edge in H(C)).
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N(a) ∩N(b)

N(a)\N [b] N(b)\N [a]

V \(N [a]∪N [b])

Switch along adjacent a, b

Swap a, b

Figure 13: Switching along ab and then swapping a and b transforms H(C) to H(Cab).
The dashed lines indicate where adjacencies need to be toggled. Remaining adjacencies in
H(C) are preserved.

Proof. [Case analysis, as indicated in lectures. See [3]. Details will be written up later.]
�

See Figure 13.
Denote the graph obtained from H by switching along (adjacent) vertices a and b by

Hab, and the graph obtained from H by swapping a and b by Hab. Then Lemma 5.2 says
that for interlaced vertices a and b we have H(Cab) = (H(C)ab)ab. Since we shall only be
concerned with the interlace graph H(C) up to isomorphism, it suffices to work with the
fact that H(Cab) ∼= H(C)ab. Note also that (Hab)ab = H. We say two simple graphs H
and H ′ are switching equivalent if there is a sequence of switches transforming one into the
other. By Lemma 5.2 the interlace graphs of Euler tours C and C ′ of a 2-in 2-out digraph
D are switching equivalent.

Question 15

(i) Which 2-in 2-out digraphs have an Euler tour with empty interlace
graph Kn?

(ii) Show that Kn is unaffected by switching along an edge. Which
digraphs D have an Euler tour with interlace graph Kn?
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Define the function qk on interlace graphs by qk(H(C)) = ek(D(C)), where C is an
Euler tour of D. We have q1(K1) = 1 = q2(K1) and qk(K1) = 0 for k ≥ 2 since D(C) in
this case is the digraph on a single vertex with two loops.

Lemma 5.3 The function q1 satisfies the recurrence

q1(H(C)) = q1(H(C) \ a) + q1(H(C)ab \ b),

when ab is an edge of H(C), and q1(H(C)) = 1 when H(C) has no edges (C is the unique
Euler tour of D).

Proof. If H(C) has no edges then by Lemma 4.8 there is a unique Euler tour and
q1(H(C)) = 1 = e1(D(C)).

Otherwise, suppose ab is an edge of H(C). Referring to Figure 10, let D = D(C) be the
2-in 2-out digraph determined by C, D′ = D(C − a) that determined by the contraction
of C at a and D′′ = D(Cab − a) that determined by the contraction of Cab at a. Since
transposition at ab switches the transition at a, and C 7→ Cab is a bijection on Euler tours
of D, partitioning tours according to their transition at a we have

e1(D(C)) = e1(D(C − a)) + e1(D(Cab − a)).

The interlace graph ofD(C−a) isH(C)\a and the interlace graph ofD(Cab−a) isH(C)ab\b
(where b is the vertex deleted since H(Cab) = (H(C)ab)ab involves a swap of a and b which
is not carried out in just the switch H(C)ab). We have then e1(D(C − a)) = q1(H(C) \ a)
and e1(D(Cab − a)) = q1(H(C)ab \ b) and the statement of the lemma is now proved. �

Question 16 Prove that the function qk, k ≥ 1, satisfies the recurrence

qk(H(C)) = qk(H(C) \ a) + qk(H(C)ab \ b),

where C is an Euler tour of 2-in 2-out digraph D and a, b are interlaced
in C.

Lemma 5.3, and the fact that the switching operation is defined on any simple graph, not
just interlace graphs, prompted Arratia, Bollobás and Sorkin [3] to postulate the existence
of a polynomial Q(H;x) defined on simple graphs H as follows:

Definition 5.4 The interlace polynomial Q(H;x) of a simple graph H = (V,E) is defined
by the recurrence

Q(H;x) =

{
Q(H \ a;x) +Q(Hab \ b;x) ab ∈ E
x|V | E = ∅.
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Example 5.5 Take H = Kn and edge ab, for which Kn \ a ∼= Kab
n \ b ∼= Kn−1. By the

defining recurrence for Q(Kn;x) we have, by induction on n, Q(Kn;x) = 2n−1x.

Note that Q(H; 1) = q1(H) when H = H(C) is the interlace graph of an Euler tour
C. The authors of [3] prove that the order of edges ab chosen in the switching and vertex-
deletion recurrence defining Q(H;x) does not affect the resulting polynomial, i.e., that the
polynomial Q(H;x) is well-defined. This is analogous to the situation for the recurrence
defining the Tutte polynomial, where we have independence of the order of edge deletions
and contractions. Also analogous to the case of the Tutte polynomial, it is possible to
circumvent this somewhat tedious verification by producing a bona fide polynomial that
does indeed satisfy the given recurrence.

Theorem 5.6 The interlace polynomial of a simple graph H = (V,E) is given by the
induced subgraph expansion

Q(H;x) =
∑

U⊆V

(x− 1)|U |−rk(AU ),

where A is the adjacency matrix of H, AU its restriction to rows and columns indexed by
U , and rk(AU) the rank of the matrix AU over F2 (where rk(A∅) = 0 by fiat).

Proof. See [2, Ch. 9]. �

Proposition 5.7 Switching equivalent graphs have the same interlace polyomial.

Proof. For edge ab of H,

Q(Hab;x) = Q(Hba;x)

= Q(Hba \ b;x) +Q(H \ a;x) since (Hba)ab = H,

= Q(H;x)

�

Proposition 5.8 The interlace polyomial is multiplicative over disjoint unions.

Proof. We wish to prove that if H1 = (V1, E1) and H2 = (V2, E2) are vertex-disjoint
graphs then

Q(H1 ∪H2;x) = Q(H1;x)Q(H2;x).

If neither H1 nor H2 has any edges then the assertion is trivial, with Q(H1 ∪ H2;x) =
x|V1|+|V2| = x|V1|x|V2| = Q(H1;x)Q(H2;x). Without loss of generality then, suppose ab ∈ E1.
Then, by induction on the number of vertices of H1 ∪H2, and using the fact that deleting
a or b or switching on ab ∈ E1 does not affect H2,

Q(H1 ∪H2) = Q((H1 \ a) ∪H2) +Q((Hab
1 \ b) ∪H2)

= Q(H1 \ a)Q(H2) +Q(Hab
1 \ b)Q(H2)

= Q(H1)Q(H2),

�
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Question 17

(i) Prove that Q(H; 2) = 2n for a graph H on n vertices.

(ii) Show that if H is a forest and a a leaf of H (degree 1) attached to
vertex b then Q(H;x) = Q(H \ a;x) + xQ(H \ {a, b};x).

Proposition 5.9 For graph H = (V,E) and any U ⊆ V we have deg Q(H) ≥ deg Q(H[U ]).
In particular, deg Q(H) ≥ α(H), where α(H) is the size of the largest independent (stable)
set of vertices in H.

Proof. It suffice to prove that deg Q(H) ≥ deg Q(H \ a) for a ∈ V .
If a is isolated then q(H;x) = xQ(H \ a) by multiplicativity over disjoint unions.

Otherwise, for ab ∈ E, Q(H;x) = Q(H \ a;x) + Q(Hab \ b;x), and since the interlace
polynomial of a graph has nonnegative coefficients the result follows. �

Question 18

(i) Prove that, more generally than the first statement of Proposition 5.9,
for a connected graph H the coefficient of xi in Q(H[U ];x) is less
than or equal to that of xi in Q(H;x).

(ii) Prove that c(H) (number of connected components of H) is the
smallest index i for which the coefficient of xi in Q(H;x) is non-
zero.

Recall that for 2-in 2-out digraph D we denote by ek(D) the number of Euler cycle
k-partitions of D. Let

e(D;x) =
∑

k≥1

ek(D)xk−1.

Theorem 5.10 For Euler tour C of 2-in 2-out digraph D we have

e(D(C);x) = Q(H(C);x+ 1).

Proof. The proof is by induction on the number of vertices of D (number of vertices of
H).

For an interlaced pair of vertices a and b in Euler tour C of D,

ek(D(C)) = ek(D(C − a)) + ek(D(Cab − a)),
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since transposing C along a and b switches transition at a, and to each Euler cycle k-
partition there corresponds one of two possible transitions at a (either given by an inter-
lacement of one of the constituent Euler cycles, or by the transition obtained by taking
the union of the two Euler cycles containing a. Euler cycle k-partitions of D associated
with the one type of transition at a correspond bijectively to Euler cycle k-partitions of
D(C − a), while those with the other transition at a corresponds bijectively to Euler cycle
k-partitions of D(Cab − a).). Hence,

e(D;x) = e(D(C − a);x) + e(D(Cab − a);x)

= Q(H(C) \ a;x+ 1) +Q(Hab \ b;x+ 1) by induction hypothesis,

= Q(H(C);x+ 1).

If there is no interlaced pair of vertices in C, then H(C) has no edges and C has loop
on some vertex a (see proof of Lemma 4.8). In this case, by either keeping the loop as a
separate Euler cycle or gluing it to the Euler cycle passing through a, we have

e(D(C);x) = xe(D(C − a);x) + e(D(C − a);x)

= (x+ 1)e(D(C − a);x)

= (x+ 1)Q(H(C) \ a;x+ 1) by induction hypothesis,

= Q(H(C);x+ 1) by Prop. 5.8 (multiplicativity over disjoint unions).

�

We finish with the relationship between the interlace polynomial and the Tutte polyno-
mial of a plane graph. First it will be useful to describe how e(D;x) behaves over connected
components and blocks:

Lemma 5.11 (i) If D1 and D2 are 2-in 2-out digraphs on disjoint vertex sets then

e(D1 ∪D2;x) = xe(D1;x)e(D2;x).

(ii) If D is a 2-in 2-out digraph with cut-vertex a, C an arbitrary Euler tour of D, and
D1 and D2 are the two connected components of the 2-in 2-out digraph D(C − a),
then

e(D1 ∪D2;x) = (x+ 1)e(D1;x)e(D2;x).

Proof. For (i) we have

e(D1 ∪D2;x) =
∑

k≥2

(∑

i+j=k

ei(D1)ej(D2)

)
xk−1

= xe(D1;x)e(D2;x).

For (ii), if a is the cut-vertex of D1 ∪D2, there are two possibilities for a given Euler cycle
k-partition of D1∪D2: either it has a transition at a making it the union of an Euler cycle
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i-partition of D1 and Euler cycle (k− i)-partition of D1, or its transition at a joins a cycle
in a Euler cycle i-partition of D1 and a cycle in an Euler cycle (k + 1− i)-partition of D1.
By partitioning Euler cycle k-partitions of D1 ∪D2 into these two cases, we have

e(D1 ∪D2;x) =
∑

k≥2

(∑

i+j=k

ei(D1)ej(D2)

)
xk−1 +

∑

k≥1

( ∑

i+j=k+1

ei(D1)ej(D2)

)
xk−1

= (x+ 1)e(D1;x)e(D2;x).

�

Theorem 5.12 When G is a plane graph with medial graph −→m(G) given the alternating
orientation which orients black faces anticlockwise,

e(−→m(G);x) = T (G;x+ 1, x+ 1).

Hence if C is an Euler tour of −→m(G) and H(C) its interlace graph, then Q(H(C);x) =
T (G;x, x).

Proof. We prove that e(−→m(G);x) = T (G;x + 1, x + 1) for plane graph G = (V,E) by
induction on the number of edges of G. The statement is true for G = K2, where m(G)
is a single vertex with two loops and we have e(−→m(G);x) = 1 + x = T (K2;x + 1, x + 1).
(The case where G = K1 is also vacuously true.)

When e is an ordinary edge of G (neither bridge nor loop),

T (G;x+ 1, x+ 1) = T (G/e;x+ 1, x+ 1) + T (G\e;x+ 1, x+ 1)

= e(−→m(G)/e;x) + e(−→m(G\e;x) by induction hypothesis,

= e(−→m(G);x),

the last line by the fact that (cf. proof of Theorem 5.10 and Figure 14) −→m(G/e) and
−→m(G\e) correspond to −→mG) with vertex e contracted out according to the two possible
transitions at e that an Euler tour may take.

If e is a bridge, then e is a cut-vertex in −→m(G) and

T (G;x+ 1, x+ 1) = (x+ 1)T (G/e;x+ 1, x+ 1)

= (x+ 1)T (G1;x+ 1, x+ 1)T (G2;x+ 1, x+ 1) blocks G1 and G2 of G/e,

= (x+ 1)e(−→m(G1);x)e(−→m(G2);x) by induction hypothesis,

= e(−→m(G);x) cut-vertex e of m(G), Lemma 5.11(ii).

If e is a loop, then in −→m(G) the vertex e is a cut-vertex with a loop. Let −→m(G)′ denote
the digraph obtained by contracting out the vertex e (see Figure 15). Then −→m(G)′ =
−→m(G\e) and we have

T (G;x+ 1, x+ 1) = (x+ 1)T (G\e;x+ 1, x+ 1)

= (x+ 1)e(−→m(G)′;x) by induction hypothesis,

= e(−→m(G);x) cut-vertex e of m(G), Lemma 5.11(ii).
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D′ = −→m(G\e)

bc
e

D′′ = −→m(G/e)D = −→m(G)

bc

bc

bc

bc

bc

Figure 14: The two types of transition at a vertex of a plane 2-in 2-out digraph D, equal
to m(G) for some plane graph G, with alternating orientation anticlockwise around black
faces. The black transition corresponds to edge deletion in G, and the white transition to
edge contraction.

e

−→m(G) −→m(G)′ (contract out vertex e)

bc

bc bc

bcbc

bc

bc

bc

bc

= −→m(G\e)

bc

bc

Figure 15: Contracting out a vertex with a loop in the oriented medial graph (proof of
Theorem 5.12).
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bc

bc

bc

bc
bc bc

Euler tour of −→m(G)

bcbc

bc

bc

−→m(G)

Spanning tree of G

(black face graph of m(G))

Figure 16: Correspondence between Euler tours of an alternating orientation of the medial
graph of a plane graph G and spanning trees of G. A tour of the medial graph forms a
simple closed curve in the plane unifying all the black faces into one region.

(The last line can also be seen by considering the two cases where the loop is separate from
the other Euler cycles comprising the Euler cycle partition, or joined to an existing Euler
cycle.) �

Corollary 5.13 If G is a connected plane graph then the number of Euler tours of −→m(G)
is equal to the number of spanning trees of G.

Question 19 Prove Corollary 5.13 directly. (See Figure 16. Also [10].)

Given a 2-in 2-out digraph D there is a unique anticycle partition formed by following
two out-edges then two in-edges, and repeating this until all edges have been traversed
(once an edge is encountered again this closes a component of the anticycle, which is a
cycle which when traversed alternates in the orientation of its edges forward and backward).
The number of components in this anticycle partition is denoted by a(D). For the example
D = −→m(K4) see Figure 17, which interprets this anticycle partition as the diagram of a link
(in this case three unknots linked as Borromean rings). We shall develop this connection
in the next section about the Kauffman bracket and Jones polynomial.

The following evaluation of the interlace polynomial of the interlace graph of a 2-in 2-out
digraph D gives another interpretation of the Tutte polynomial evaluation T (G;−1,−1)
when D = −→m(G) for plane G:
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Theorem 5.14 Let D be a 2-in 2-out digraph on n vertices with Euler tour C and a(D)
the number of components in its anticycle partition. Then

e(D;−2) = (−1)n(−2)a(D)−1.

Proof. The proof is by induction on n. When n = 1 the digraph D is a single vertex
with two loops and we have a(D) = 1 and e(D;x) = 1 +x, so e(D;−2) = −1 = (−1)(−2)0

and the base case is true.
Consider D on n > 1 vertices and a vertex a of D. Let D′a denote the digraph D

with a contracted out according to one possible transition for Euler cycles at a and D′′a
the digraph D with a contracted out according to the other possible transition for Euler
cycles at a. (Given an Euler tour C interlaced at a and b we can take D′a = D(C − a) and
D′′a = D(Cab − a).)

If the vertex a belongs to two anticycles then a(D′a) = a(D′′a) = a(D)− 1 and

e(D;−2) = e(D′a;−2) + e(D′′a;−2)

= (−1)n−1(−2)a(D)−2 + (−1)n−1(−2)a(D)−2 by induction hypothesis,

= (−1)n(−2)a(D)−1.

If on the other hand the vertex a belongs to a single anticycle component then {a(D′a), a(D′′a)} =
{a(D), a(D) + 1} and

e(D;−2) = (−1)n−1(−2)a(D)−1 + (−1)n−1(−2)a(D)

= (−1)n(−2)a(D)−1.

�

Corollary 5.15 If G is a plane graph and −→m(G) its medial graph with alternating orien-
tation then

T (G;−1,−1) = (−1)|E(G)|(−2)a(
−→m(G))−1,

where a(−→m(G)) is the number of components in the anticycle partition of −→m(G).

Actually, for a general graph G we have the evaluation

T (G;−1,−1) = (−1)|E(G)|(−2)dim(C∩C⊥),

where C is the (binary) cycle space of G and C⊥ the cutset space of G. The space C ∩ C⊥
is called the bicycle space of G. See [8] for an elucidation of the correspondence.

6 The Kauffman bracket of a link

[See handwritten lecture notes.]
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bc

bc

bc

bc
bc bc

alternating orientation diagram ofdirect from overpass
of 4-regular graph

(here of Borromean rings)

to underpass
(here medial graph of K4) (anticircuit)

alternating link

Figure 17: Canonical alternating orientation of m(K4) and interpretation of the anticycle
partition (into three components) as the diagram of an alternating link, which in this case
represents the Borromean rings.
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